Stability of Liquid Bridges Between Unequal Disks under Zero-gravity Conditions

The stability of axismmemic equilhriam shapes of a lituid bridge betucen the coatial disks of differom ralli mander sero-gratify conditions is imesrigatted. The stathiliy regions hate beon cetcalated for different values of the ration of the disk radio in terms of the dimensionless paramoters whict charactorize the length and the voltane of the bridge. It has been foumd that disk radil mequatity radically changes the upper botudary of the stability region. The analysis of the whepe of marimally stahle equilibrian swfaces hats beon caried owt. Relatomshins bemect the crifical tatues of the paraneters have been deducel for some particutar cases. which are of special interest for the materials purificution processes and growing of single aystals by the floaing zome method: for apical ealues of the growing angle for semi-conductor materiats and for liquid volumes clase to that of the cylinder hating a radius equal to the mean rudius of the dists.

1 Introduction

The last years increasing interest in the study of equilibrium shapes of a liquid bridge between two circular coaxial disks and their stability is connected with the problems arising during the modeling of the process of puritication of materials and growth of single crystals in space by the floating zone method [1, 2].

Presently, most of the investigations are connected with the most simple typical case, namely with axisymmetric equilibrium states, when a liquid mass of volume a forms an axisymmetric bridge between two coaxial disks of radii r_{1} and $r_{2}\left(r_{3} \leq r_{2}\right)$, which are spaced a distance $/$ apart, and the gas-liguid-solid contact line is pirned to the edges of disks (fig. 1).

For zero-gravity conditions the problem of determining the equilibrium shapes and their stability has been solved amost completely only in the case when disks are of equal radius ($K \equiv r_{1} / r_{2}=1$). This study was initiated by the Belgium physicist Plateor who presented a qualitative description of his experimental results in a cclebrated treatise [3]

[^0](sec also [4]). Gillefte and Drson [5] investigated theoretically the stability of the equibibrium shapes with resped to axisymmerric perturbations and computed the boundary of the stable region in the plate of the two parameters characlerizing the equilibrium of system: slendemess $A_{1}=/ / 2 r_{1}$ and relative liquid volume $V_{1} \equiv e /\left(\pi r_{i}^{2} l\right)$. Later. Sloboshanin [6] (see also [7]) investigated the stability of such system with respect 10 arbitrary (not necessarily axisymmetric) perturbations. Experimental data on the boundary of the stable region were obtatined by Sam: and Martime [8] and Russo and Stecm [9].

The first results concerning with stability of liquid bridges between unequal disks were oblamed by Marthez [10]. He determined the minimum possible volume of a stable liquid bridge (considering only axisymmetric perturbations) For a set values of $K \leq 1$ and he constructed part of the lower boundary (that corresponding to moderately large values of the slenderness) of the stable region in the plane of the dimensionless variables $A \equiv /\left(r_{1}+r_{2}\right)$ and $\bar{V} \equiv v /\left(r_{1}+r_{2}\right)^{3}$.

More complete results on this have been published later by Marime and Perales [11]. Here the dependence V(A) on the minimum volume stability limit has been calculated and tabulated for values $A \geq 0.6$ and different values of $K \leq 1$. Besides, the values of the parameters characterizing the shape of the corresponding neutrally stable equilibrium surfaces are presented. As a distinctive characteristic, for $A \geq 0.6$ and $0.1 \leq K \leq 1$ the critical shape are unduloids for the lower boundary. In addition, they determined the parameters of critical catenoidal surfaces for each considered value of K. Approximate formulas for the description of the dependence $\bar{V}(A, K)$ on the lower boundary in case of long liquid bridges and slightly unequal disks were deduced by Meseguer [12, 13].

Fig. I. Geomety and comednati systen for the hatid bridge problem

This paper aims to construct the general boundary of the stable region for a wide range of values of the parameter K. The minimum permissible volume (the lower boundary of stability region) will be determined not only in case of critical unduloidal and catenoidal surfaces, but also for nodoidal surfaces (corresponding to small values of A). Besides, it is necessary to construct the upper boundary of the stability region which determines the maximum permissible volume for axisymmetric bridges. The stability will be studied with respect not only to axisymmetric perturbations, but to arbitrary ones.

These boundarics, constructed for various values of K in the plane of parameters ($\left.A, V \equiv 4 c /\left[\pi\left(r_{1}+r_{2}\right)^{2}\right]\right)$, together with certain characteristios of the shape of the neutrally stable equilibriun surlaces (mamely, the values of angles β_{1} and β_{2} on the smaller and the larger disk, see fig. I) allow to find the critical values of the parameters for fixed values of ℓ, β_{1}, or β_{2}. Nevertheless, the critical values of liquid bridge parameters for valucs of V close 101 as well as for constant values of angles β_{1} and β_{2}, which have the special interest in the floating zone technology, will be presented.

2 Solution Methods

We shatl assume for the sake of definiteness that the larger disk is above the smallor one. Let us place the origin of the cylindrical system of coordinates ($r, 0, z$) at the center of the smaller disk and let us point the z-axis towards the larger disk (fig. 1). The shape of an axisymmetric equilibrium free surface in the parametric form $r(s),-(s)$ (s is the are length of any meridian section $\theta=$ const.) is described by the solutions of the following equations [7]:
$r^{\prime \prime}=-z^{\prime}\left(q-\frac{z^{\prime}}{r}\right), \quad z^{\prime \prime}=r^{\prime}\left(q-\frac{z^{\prime}}{r}\right), \quad\left(\prime \cong \frac{d}{d}\right)$,
where q is twice the mean curvature of the surface.
For any non-catenodial surface $(q \neq 0)$, the transformation
$\varrho=|q| r, \quad \zeta=|g| z, \quad \tau=|q| s$
leads to the system
$g^{\prime \prime}=-\varsigma^{\prime} \beta$,
$\zeta^{\prime \prime}=q^{\prime} \beta^{\prime}$,
$\beta= \pm 1-\frac{\ddot{\prime}}{Q}, \quad\left(\dot{=} \frac{\mathrm{d}}{\mathrm{d} \tau}\right)$.
Here $\beta=\beta(\tau)$ is the angle belween the p-axis and the tangent to the equilibrium profle (the surlice axial section) which is directed in the sonse of increasing t . The upper (lower) sign in eq. (Ic) corresponds to a positive (negstive) value of q.

The solution of the system of eqs. (1) is sought under the following initial conditions on the smatler disk:
$\varrho(0)=g_{1}, \quad \varrho^{\prime}(0)=\cos \left(\beta_{1}\right), \quad \ddot{\zeta}(0)=0, \quad \because(0)=\sin \left(\beta_{1} \lambda\right.$.
$\beta(0)=\beta_{1}$.
According to the method described in [7]. to determine the critical (neutratly stable) equilibrium surface the following problems which determine the functions $\varphi_{01}(\tau), \varphi_{01}(\tau)$
and $\varphi_{1}(\tau)$ nust be solved together with the problem (1). (2):
$\varphi_{01}^{\prime \prime}+\frac{\varrho^{\prime}}{\underline{Q}} \cdot \varphi_{01}^{\prime}+\left(\beta^{2}+\frac{\zeta^{\prime}}{\varrho^{2}}\right) \varphi_{01}=0, \quad \begin{aligned} & \varphi_{01}(0)=0 . \\ & \varphi_{01}^{\prime}(0)=1,\end{aligned}$
$\varphi_{02}^{\prime \prime}+\frac{\theta^{\prime}}{\theta} \varphi_{02}^{\prime}+\left(\beta^{\prime 2}+\frac{\ddot{\zeta}^{\prime 2}}{\theta^{2}}\right) \varphi_{0_{2}}+1=0, \quad \varphi_{02}(0)=0$,
$\varphi_{1}^{\prime \prime}+\frac{Q^{\prime}}{g} \varphi_{1}^{\prime}+\left(\beta^{\prime 2}-\frac{Q^{\prime}}{Q^{2}}\right) \varphi_{1}=0 . \quad \begin{array}{ll}\varphi_{1}(0)=0 . \\ \varphi_{1}^{\prime}(0)=1 .\end{array}$
The integration of the systems should proceed up to the point $\tau=\tau_{*}>0$ where either the function $\rho_{1}(\tau)$ or the function
$D(\tau) \equiv-\varphi_{011}(\tau) \int_{0}^{i} 0 \varphi_{1,2} d \tau+\varphi_{022}(\tau) \int_{0}^{i} v \varphi_{01} d \tau$
vanish for the first time. Since, for a given value of K and a chosen value of β_{t}, the quantity $g\left(\tau_{*}\right)$ depends on ϱ_{1}, the quantity $\varrho_{\text {, }}$ must be changed until we obtain, for some $Q_{1}=Q_{i}^{\prime \prime}$ a valuc $r_{*}^{\prime \prime}=\tau_{*}\left(Q_{0}^{\prime}\right)$ such that the condition
$Q\left(\tau_{*}^{0}\right)=\frac{1}{K^{\prime}} Q_{1}$
is satisfied within the required accuracy (checking that, for this value, $\zeta\left(\tau_{*}^{*}\right)>0$). For a given value of K, there exists an interval of values of β_{1}, for which the above problem has a solution.

For the obtained value $a_{1}=e_{1}^{0}$, the solution of the problem (1)-(2) on the interval $0 \leq \tau \leq \tau_{*}^{0}$ determines the shape of the profile of the neutrally stable equilibrium surface (if this profile does not intersect the disks surface at some interior point $\tau, 0<\tau<\tau_{*}^{*}$). This surface is critical with respect to axisymmetric perturbations if the function which

 bridges with a disk radii motio of $\mathrm{K}=0.7$ (solid fines) and $\mathrm{K}=1$
 in the bchation in the case $\mathrm{K}=1$

Fig. 3. Sketeh of typect equilionimm shapes of hiquid britge
vanishes in the point $\tau=\tau_{*}^{\prime \prime}$ is $D(\tau)$ and is critical with respect to non-axisymmetric perturbations if the function which vanishes is $\varphi_{1}(r)$. These non-axisymmetric perturbations corresponds to the first hamonic, i.e they are proportional to $\cos (\theta)$.

The constructed critical surlace determines the coordinates
$A=\frac{\zeta\left(\tau_{*}^{(0)}\right.}{Q_{1}^{0}+g_{2}^{\left(t \tau_{*}^{0}\right)}}, \quad V=\frac{4}{\zeta\left(\tau_{*}^{0}\right)\left[\varphi_{1}^{0}+Q\left(\tau_{*}^{0}\right]^{2}\right.} \int_{0}^{\tau_{0}^{u}} g_{0}^{2} d \tau$
of one point of the stability boundary in the plane (A, F) for a given K. Other points can be determined in a simblar way by changing the value β_{1}.

To better understand the numerical results, some properties of the integral lines of the system (1) $[6,7]$ are usefut. These lines can be determined from the parameters of one of the stationary points $\tau=\tau_{0}$ of the function $\theta(\tau)$ where
$\varrho\left(\tau_{0}\right)=\varrho_{U}, \quad \varrho^{\prime}\left(\tau_{0}\right)=0, \quad \zeta\left(\tau_{0}\right)=\zeta_{0}, \quad \zeta^{\prime \prime}\left(\tau_{0}\right)=1$.
$\beta\left(\tau_{10}\right)=\pi / 2$.
Since the numerical values τ_{10} and ζ_{0} depend only on the chosen origin of τ and on the displacement of integral line as a whole along the ζ-axis, only the value ρ_{μ} is essential for characterization of the shape of integral lime. This line is

Table 1. Patrameters of the critical bridge belonging to apper bondary of stability regien wid corresponding to a domge in the notare of dankerous perturhotions

κ	A	r	β_{1}	β_{2}	0
0.30	0.028	15.78	-149.8	64.4	0.694
0.25	0.580	3.45	-128.3	117.9	0.576
0.20	2.138	8.46	-109.6	158.1	0.234
0.15	4.120	19.42	-104.0	167.9	0.109
0.10	7.796	5221	-100.4	173.4	0.043

symmerric with respect to the line $\because=\ddot{c}_{6}$ and the dependence $g(t)$ is 2π-perindic.

3 Results

Accorling to the above methed. the calculations of the batic characteristios of the critical equilibrium states of a liguid bridge were performed for $0.1 \leq K \leq 0.95$ and over a wide range of A values. In the following, the obtamed results are presented and their analysis in comparison with the data known for $\mathcal{K}=1[6,7]$ is made.

3.1 Gencral Botmdary of Stahilty Region

For each value of $K<$, the general boundary of stability region in the plane (A. V) consists of two non-imtersecting branches (upper and tower) along which $V \rightarrow x$ as $A \rightarrow \infty$ for both of them. The stability region spans between these branches. Fig. 2 shows the typical form of the most interesting segments of a typical boundary for $K<1$.

3.1.1 Upper Boundary

It is determined by the critical equilibrium surfaces of nodoids with a profle which is outwards convex. The profiles of such nodoids are the portions of integral lines of the problem (1), (4) for $\beta^{\prime}=1-\zeta / g$ and $\varrho_{0}>2$. In fig. $3 a$ the shape of such line, corresponding to a given value of Ω_{0}, is shown schematically.

Its segment $A_{1} A_{2}$, which is characterized by the equalities $\beta\left(A_{1}\right)=0$ and $\beta\left(A_{2}\right)=\pi$, is the profile of the critical surface, comesponding to a certain point on upper boundary, for $K=1$ (the designations A_{1} and A_{2} for the initial and the final point of the critical profile in the case $K=I$ will atso be used in the next shetches in fig. 3). It is known for such surfaces that, as A increases from zero, the value $\varrho\left(A_{1}\right)=\theta\left(A_{2}\right)=\left(Q_{1}^{2}-2 \varrho_{0}\right)^{1 / 2}$ decreases monotonically from $+\infty$ and tends to zero as $A \rightarrow \infty$; the function (A) (see dot-dash line in fig. 2) increases monotonically from 1 (the $\mathrm{V}^{\mathrm{V}} \cong 1+A(\pi / 2)+N^{2}\left(\frac{x}{3}-\pi^{2}\right)$ approximation can be used for small A) and behaves as $V \sim \frac{2}{3} A^{2}$ as $A \rightarrow \infty$. In the case $K=1$ the critical perturbations, which lead to neutral stability, are nonaxisymmetric and their normal to the surface component is proportional to $\zeta^{\prime}(x) \cos (0)$.

The shape of the critical surlaces profites for $K<1$ can be inferred from fig. 3a. Let us choose as initial point on the same integral line some point B_{1}, in the neighbourhood of A_{1}, for which $B\left(B_{1}\right)<0$. We will denote the corresponding

Fig. 4. Dependence of the angle at the whatler ask, B_{1}, on the slemderness, A, for critical bridges corresponding to the upper boutadary of stabitity region. Numbers on the ctores indicate the disk rodia ratio, K
critical point (in which either $\phi_{1}(r)$ or $D(\tau)$ vanish for the first time) by B_{2}. Clearly, the portion $B_{1} B_{2}$ cannot fully contain the portion $A_{1} A_{2}$, so that the point B_{2} must be closely-spaced from A_{2} to its lower right. The segment $B_{1} B_{2}$ is the profile of critical surface for $K=\varrho\left(B_{1}\right) \operatorname{le}\left(B_{2}\right)<1$. If the point C_{1} for which $\beta\left(C_{1}\right)<\beta\left(B_{1}\right)$ is chosen as initial one, then the corresponding critical point C_{2} is still further spaced from A_{2} in comparison with the point B_{2}. Obviously, if $-\pi / 2<\beta\left(C_{1}\right)<0$, the transition from the segment $B_{1} B_{2}$ to the segment $C_{1} C_{2}$ illustrates the transition of the profiles of critical surfaces with decreasing value of K.

For the initial point D_{1} in which $\beta\left(D_{1}\right)=-\pi$, the corresponding critical point coincides with A_{1}. Therefore, taking into account the condition $A>0\left(\zeta_{2}>\zeta_{1}\right)$, we obtain that $-\pi<\beta_{1}<0$ and $0<\beta_{2}<\pi$ for the profile of critical surface in the case $K<1$.

Besides, for the critical surface, as for any other equilibrium shape, the following retationship between the parameters of the mitial and final points holds
$\sin \left(\beta_{2}\right)=K \sin \left(\beta_{1}\right)+\frac{1-K^{2}}{2 K} \theta_{1}$.
and the shape of the integral line is determined from the values of Q_{1} and β,
$Q_{0}=1+\sqrt{1+\theta_{1}^{2}-2 \theta_{1} \sin \left(\beta_{1}\right)}$.
Eqs. (5) and (6) are obtancd by integrating the product of $\underline{0}$ and eq. (1b) in view of the equality $\beta^{\prime}=1-\% / 9$.

Since the value of ϕ at the nearest to the 5 -axis stationary point of the function $g(t)$ equals to $g,-2$. the given integral line can determine the profiles of a bridge only for $K \geq\left(1-2 / 0_{0}\right)$. That is why the value g_{4} decreases as K decreases and $\underline{a}_{4} \rightarrow 2^{+}$as $K \rightarrow 0$.

Since for $K=I$ the profiles of the critical surfaces are characterized by the value $\beta_{1}=0$ and in this case the non-axisymmetric perturbations are always the criticat ones. it should be expected that in the case $K<I$ for the critical surfaces, whose profiles have $\left|\beta_{1}\right| \ll 1$. the non-axisymmetric

 the whather disk presented in fig. 4

Fig. 6. Vahes of the minimmon ratucs of the anges at the smather divk $(\beta)=\eta)$ and the larger dikk $\left.(\beta)_{2}=\because, 2\right)$ for critical bridges corresponding to the upper bomblary emd whatl exthes of the stomiderHess
perturbations are still the critical ones. The probability of stability losing with respect to axisymmetric perturbations increases as $\left|B_{1}\right|$ increases. The amalysis of the results, obtained for the case $K=1$. shows that only on the integral lines corresponding to small values of $\left(0_{0}-2\right)$ there are the portions which define for $K<1$ the profiles of the surfaces critical with respect to axisymmetric perturbations.

Cakulations show that for $0.307 \leq K \leq 1$ the nonaxisymmetric perturbations are the critical ones in the whole upper beundary. If $0<K<0.306$, there is a transition value $\beta_{1}=\beta_{1}$, such that the asisymmetric perturbations are critical for $\beta_{1}<\beta_{1}$ and the non-axisymmetric ones are critical for $\beta_{1}>\beta_{1}$. The values of the patameters of critical surfaces corresponding to a change in the nature of eritical perturbations are given in table 1 for dilferent values $K<K_{i}^{\prime} \quad\left(0.306<K_{i}<0.307\right)$. It should be noted that $\beta_{1}<-\pi / 2$ for all considered values of K.

The numerical results show that, atong the boundary corresponding to $K=$ comst. ($K,<K<\mathrm{I}$). the functions

Fig. 7. V'abres of the angle β, at the lateger dist (at), the dinnomsion-
 deperting on skonderness. A. whotg the wefer boundery for $K=0.2$ in the vicime of the proin of a change in the noture of crifical pertarbations. Lathets "AXI" and " N '-AXI' correvpond to critical axisymmetric and non-axispmanefic perturbations, ropectiods

09
15
D. 10

Fig, 8. Dependences of the dimensionless smaller disk radius, Q_{1}, on Whe shonderness, A, along the woper boundary of stability region. Numbers on the curces indicate the disk radii ratio, K
$\beta_{1}(A)$ and $\beta_{2}(A)$ are smooth and increase monotonically starting from the values $\gamma_{1}(K)\left(-\pi<\gamma_{1}<-\pi / 2\right)$ and $\gamma_{2}(K)$ $\left(0<i_{2}<\pi / 2\right)$ when $A \rightarrow 0$, and tend to 0 and to π, respectively, as $A \rightarrow \infty$. The dependences $\beta_{1}(A)$ and $\beta_{2}(A)$ are shown in figs. 4 and 5 , respectively. For $(1-K)<1$, the diference $\beta_{2}-\beta_{1}$ on every critical prolile is close to π, in agrement with eq. (5) (according to numerical results, $\beta_{2}-\beta_{1}=\pi+\delta$, where $0<\delta<0.05$ for $K \geq 0.7,0<\delta<$ 0.02 for $K \geq 0.8$ and $0<\delta<0.005$ for $K \geq 0.9$). The dependences $\gamma_{1}(K)$ and $z_{2}(K)$ are shown in fig. 6. Here $\pi_{1}(K) \rightarrow-\pi / 2$ and $z_{2}\left(K^{\prime}\right) \rightarrow \pi / 2$ as $K \rightarrow I$, although $i_{1}=0$ and $;_{2}=\pi$ for $K=1$.

If $0<K<K_{i}$, in the point of change in the type of critial perturbations the belaviour is not smooth and in its neighbourhood the dependences $\beta_{1}(1)$ and $\beta_{2}(A)$ may be multiple-valued (for $K=0.2$, it is illustrated in figs. 4 and $7 a)$.

Along the upper boundary corresponding to $K=$ const., the maximum value or $g_{1}(A)$ is obtained for a retatively small value of A (fig. 8) and $\varrho_{1} \rightarrow 0$ as $A \rightarrow \infty$. This maxi-

Fig. 9. Upper bowndames of stabilisy region for small and middle (a) and large (b) tahes of the stenderness, A, and different walues of disk radii ratio. K. Numbers on the curres indicute the tatues of \mathcal{K}. The dotced lite in (a) joins the poins of minimum V for giten K

Fig. 10. Shetch of a crinical cequiliorion sate comesponding to the maximum tolume stobility limit for smadl rahues of she stemdermess
mum corresponds to the critical profile. for which the initial and final points are located in the immediate vicinity of the extrome points of the function $Q(t)$, so that $Q_{1} \approx Q_{0}-2$, $Q_{2} \approx g_{0}$ and $g_{\text {braw }}=2 K /\left(1-K^{\prime}\right)$ for given K. The greater K. the better is this approximation. If $0<K<K_{\text {, }}$, the function $\varrho_{1}(1)$ loses its smoothness in the point of type change of critical perturbations and may become multiple-valued in a vicinity of this point (see fig. 7b). The dependences $\beta_{1}(A)$,

Fig. 11. Lonver botmaries of stahifity region for rations tahes of (hisk radti ratio, K. indicated bl the montuers on the comes: (d) gencral diagram: (b) detail for small satues of the stendemess, A. The dashed lines I and II are the locii of the poims correpponding to Whe crival catcnoids and the himiting notoids with an anghe $\beta_{s}=\pi / 2$ at the smaller disk. wespectively
$\beta_{2}(A)$ and $Q_{1}(A)$ are connected through the retation (5) and thus they are not independent.

The parameters β_{1}, β_{2}, and ϱ_{1} define the shape of surace profile, whereas A and \bar{V} determine the stability of a liguid bridge for given K. A remarkable difference with the case $K=1$ is that for $K<I$ the dependence $F($ al) along the upper boundary in nom-monotonc: F tends to imtinity not only as $A \rightarrow r$ but also as $A \rightarrow 0$ (see lig. 9a where the boundary segments corresponding to small values of a are presented in more detail). This behaviour can be expatined from the sketch in fig. 10 (for small values of i) and from eq. (3) for ${ }^{\prime}$ (the integral appeating in this expression remains finite as $A \rightarrow 0$).

If $A \ll 1$ and $(1-K) \ll I$, then the corresponding values of g_{1} are large (fig. 8a) and the equilibrium problem is similar to the corresponding plane problem. According to [7]. in this case the profile of the critical surface is close to a semicircle and the critical perturbations are non-axisym-
metric. Assuming that the profile of critical surface is a semicircle, we get
$V=\frac{\pi(1-K)^{2}}{2(1+K)^{2} A}+\frac{2\left(1+K^{2}\right)}{(1+K)^{2}}+\frac{\pi}{2} A+\frac{2}{3} A^{2}$.
The comparison with numerical results shows that the relttive error of the approximation (7) for $K^{\prime} \geq 0.8$ does not exceed 1%. if $A \leq 0.15$. and 5% if $A \leq 0.5$.

The dotted line in fig. 9_{a} is the locus of the points with a minimum in the function P (1). for a given K. Using eq. (7). we obtain the following coordmates of this point for $(1-K) \ll I$:
$A \equiv \frac{1-K}{1+K}-\frac{4}{3 \pi} \frac{(1-K)^{2}}{(1+K)^{2}}$.
$1 \supseteq \frac{2\left(1+K^{2}\right)}{(1+K)^{2}}+\frac{\pi(1-K)}{(1+K)}+\frac{2(1-K)^{2}}{3(1+K)^{2}}$.
The redative error of these expressions is less than 1 "in for $K \geq 0.9$ and less than 5% for $K \geq 0.7$.

For $K_{i} \leq K^{\prime} \leq 1$, the upper boundary displaces upwards as the value of K decreases. The same tendency holds for $0<K<K$, and the values of A where the nonaxisymmetric perturbations are critical. However, for values of 1 corresponding to the axisymmetric critical perturbations, the decreasing of K can cause the opposite effect (see lig. 9). The behaviour of the dependence $V(A)$ for $0<K<K$, in the vicinity of the point of change in the mature of critical perturbations is illustrated in fig. 7e.

3.1.2 Lower Boundary

In the case $K=1$ the lower boundary consists of several segments (fig. 2). The points belonging to the segnents Fh ($A>\pi$) and $E F(2.130 \leq A<\pi)$ correspond to unduloidal surfaces whose profiles have vertical tangents at the terminal points ($\beta_{1}=\beta_{2}=\pi / 2$). These profiles, schematically shown in figs. 36 , c respectively, represent portions of the integral lines of the problem (1). (4) under $\beta^{\prime}=1-\zeta^{\prime} / 0$ and for values $1<\varrho_{0}<2$ and $0.589 \leq \varrho_{0}<1$ respectively. In these cases the values of ϱ at the disks are $Q_{1}=Q_{2}=2-Q_{0}$. The boundary point F corresponds to the critical cylindrical surface ($A=\pi, g_{0}=1$). The points in the segments $D E$ $(0.472<A<2.130)$ and $C D(0.361<A<0.472)$ correspond to critical unduloidal surfaces and critical nodoidal surfaces respectively, whose profiles do not contain points, except the equatorial one, with a vertical or a horizontal tangent, so that $\pi / 2<\beta_{1}<\pi$ and $0<\beta_{2}<\pi / 2$ (sec figs. 3d, e). These profiles are portions of the integral lines of the problem (1). (4). respectively, for $\beta=1-\zeta / 0,0<Q_{0}$ <0.589 and $\beta^{\prime}=-1-5 / \rho, 0<\varrho_{0}<0.095$. The boundary point D corresponds to the critical catenoidal surlace. For the surfaces, corresponding to the points within the CDEFF boundary segment, the axisymmetric perturbations are critical. Finally, the points belonging to the segment $A C$ of the boundary correspond to nodoidal surfaces whose concave profiles have horizontal tangents at the terminal points $\left(\beta_{1}=\pi . \beta_{2}=0\right.$, see fig. 3 f). These profiles represent portions of the integral lines of the problem (1). (4) under $\beta^{\prime}=-1-\zeta / Q_{0}$, and $Q_{n} \geq 0.095$ and here $Q_{1}=Q_{2}=$ $\left(0_{0}^{2}+20_{0}\right)^{1 / 2}$. The corresponding surfaces are critical with

 sigh-terver bondaries. The dushed time I is the locus of the points corresponding to the critical catenoids. Numbers on fle curces indi(whe the disk rulii ration. K. The dor-desh line $K=1$ coincidesnaid the lime $\beta_{1}=90$ for $A \geq 2130$
respect to non-axisymmetric perturbations and. simultaneously, are the limiting ones from the point of view of the possibility of their geometrical fitting between fat disks. It should be noted that $V^{\prime} \sim \frac{2}{3} A^{2}$ as $A \rightarrow \infty$ and
$V \cong 1-A \frac{\pi}{2}+A^{2}\left(\frac{8}{3}-\frac{1}{4} \pi^{2}\right)$
for small values of A.
Numerical results for $0.1 \leq K<1$ have shown that all critical surfaces, for which the geometrical conditions of fitting are extrictly fulfilled ($\beta_{1}<\pi, \beta_{2}>0$), are neutrally stable with respect to axisymmetric perturbations. Thereby, it has been confirmed the correctness of the results obtained earlier in [1i], where the stability of bridges with unduloidal and catenoidal cquilibrium surfaces were studied with respect to axisymmetric perturbations. The related critical surfaces correspond to the right-hand branches of the lower boundaries for given values of K (see fig. II, where the dotted line I, separating those boundary segments, passes through the points cortesponding to the critical catenoidal surfaces).

According to [5, 14], the free surface without an equatorial plane of symmetry are unstable if their profic length, $\left(\tau_{2}-\tau_{1}\right)$, is equal to or larger than 2π. Besides, the unduloidal surface, symmetric with respect to the equatorial plane, is critical if $\left(\tau_{2}-\tau_{1}\right)=2 \pi$ and its profile is convex in a vicinity of the equatorial point (the profice $A_{1} A_{2}$ in fig. 3b). Using these facts, it can be proved that, for $K<1$, the inequalities $\pi / 2<\beta_{1}<\pi$ hoid for the profles of critical unduloids. These profiles are shown schematically by segments $B_{1} B_{2}$ and $C_{1} C_{2}$ in figs. $3 \mathrm{~b}-\mathrm{d}$. By considering the values e_{0} for the integral lines corresponding to figs. $3 \mathrm{~b}-\mathrm{d}$ and the properties of these lines it can be deduced that $\pi / 2<\beta_{2}<\pi$ for large values of Λ (figs. $3 \mathrm{~b}, \mathrm{c}$), but $0<\beta_{2}<\pi / 2$ (fig. 3d) for medium values of A down to and including values corresponding to the critical catenoid. These statements have been confirmed by numerical results

Fig. 13. Vobles of the angle at the larser dish, B2, andogoas to that at the whatler disk presented in fig. 12

Fig. 14. F'ahes of the dimensionless smatler disk radins. os, depenting on the slonderness, 1, for the critich wnduloidal swfuces. Nomber on the cures indicate the disk redii ratio, K
(obtained for the first time in [II]) which show in addtion that, as A increases, the value β_{1} along the boundary $K=$ const. decreases and β_{2} increases (figs. 12, 13). The valuís β_{1}, β_{2}, and A for the critical eatenoids related to various K were tabulated in [11]. As A increases, the quantity Q_{1} along the branch of lower boundary $K=$ const., corresponding to critical unduloids and the eritical eatenoid, varies from zero (catenoid) to a maximm and then decreases tending to zero as $.1 \rightarrow x$ (lig. 14). The asymptotical behaviour of θ, as $A \rightarrow \infty$ is determined by profiles on the integral lites for which $g_{n} \rightarrow 2$. The equalities (5) and (6) still hold for critical unduloids and the retation $\sin \left(\beta_{2}\right)=K \sin \left(\beta_{1}\right)$ should be used instead of eq. (5) for catenoids.

Finally, it should be noted that, according to our cateulations, the anabyical expressions
$V \cong \frac{2,1}{\pi}-1+3\left(\frac{3}{2}\right)^{13}\left[\frac{1-K^{2}}{\left(1+K^{2}\right)(2 A-2 \sin (1))}\right]^{23}$.

Table 2. Antervats of A watues within whith a relative error of eqs. (IO) and (II) is swetler than indicated eathe

relative error ("\%)	K	cq. (10)	eq. (1)
1	0.9	2.95 to 3.03	2.55 to 2.95
	0.8	2.86 to 2.91	2.30 to 2.68
	0.7	2.76 to 2.80	2.12 to 2.38
2	0.9	2.90 to 3.08	2.48 to 3.04
	0.8	2.83 to 2.94	2.23 10 2.77
	0.7	2.74 10 2.82	2.03 10 2.50
5	0.9	2.7310 .3 .20	2.35 to 3.24
	0.8	2.74 to 3.03	2.10102 .97
	0.7	2.67102 .89	1.88102 .70

$V \cong \frac{2 A}{\pi}-1+3\left(\frac{3}{2}\right)^{3 / 3}\left[\frac{1-K}{\pi(1+K)}\right]^{2 / 3}$
suggested by Mesegtuer [12, 13] For the approximation of the lower boundary, when $(1-K) \ll 1$ and $|A-\pi| \ll 1$, can be used with the relative error shown in table 2.

The segments of the lower boundaries, included between the intersection point (analogous to point C for $K=1$, see fig. 2) and the dotted line I (fig. Ilb), are determined by the critical nodoidal surfaces with outwards concave profiles which belong to the integral lines of the problem (1), (4) for $\beta^{\prime}=-\mathrm{I}-\Sigma^{\prime} / \rho$ and $0<\Omega_{0}<0.095$. Schematically, they are shown in fig. 3e. For the initial point B_{1}, neighbouring to A_{1} and such that $\beta\left(B_{1}\right)<\beta\left(A_{1}\right)$, the corresponding critical point B_{2} is closely-spaced from A_{2} and $\left.\beta(B)_{2}\right)<\beta\left(A_{2}\right)$. The profile $B_{1} B_{2}$ determines one of the critical nodoidal surfaces for $K=\varrho\left(B_{1}\right) / \varrho\left(B_{2}\right)<1$. Successive displacements of the initial point in the direction of decreasing β_{1} lead to the sequence of critical profiles on a given integral line with decreasing K and decreasing β_{3}, which is still positive. Finally, there exists some initial point C_{1} for which the point C_{2} with $\beta\left(C_{2}\right)=0$ is critical. The profile $C_{1} C_{2}$ determines the critical surface which corresponds to the intersection point on the lower boundary for $K=\phi\left(C_{1}\right) / g\left(C_{2}\right)$. For the profiles of critical nodoids the inequalities $\pi / 2<\beta_{1}<\pi$. $0<\beta_{2}<\left(\pi-\beta_{1}\right)$ hold. Corresponding dependences $\beta_{1}(1)$ and $\bar{\beta}_{2}(A)$ extend the same previously constructed dependences for critical unduloids beyond the doted lime I figs. 12. 13). The dependences $g_{1}(A)$ are the segments of the curves presented in fig. is which are included between $\varrho_{1}=0$ and the intersection points on these curves. For nodoids with concave profles, the retations
$\sin \left(\beta_{3}\right)=K \sin \left(\beta_{1}\right)-\frac{1-K 2}{2 K} e_{1}$.
$g_{1}=-1+\sqrt{1+e_{1}^{2}+2} \overline{g_{1} \sin \left(\beta_{1}\right)}$
should be used instead of eqs. (5) and (6).
Choosing the intial point with a value $\beta_{1}<\beta C_{1}$) on the integral line corresponding to $\beta=-1-\xi^{\prime} / 0$ and $0<0_{0}<0.095$ (lig. 3e), we will obtain $\beta_{3}<0$ for the critical profile. The same will happen for the integral lines corresponding to $\beta^{\prime}=-1-\xi^{\prime} / 0$ and $\varrho_{0} \geq 0.095$, if we choose (n ecessarily) the initial point with $\beta_{1}<\pi$ (fig. 30). However. the critical nodoidal surface with $\beta_{2}<0$ does not satisly the

Fig. 15. Vahes of the dimensionkess shather disk radias, ϱ_{1}, depending on the stendemess. A, for the critical and limiting nodoid sadfoces. Nimbers on the cwres indicote the absk radit ratio, K
geometric condition of fitting between flat solid disks. Therefore, the left-hand segment of the lower boundary included between the intersection point and the point with $A=0$ (fig. 11 b) is determined by the limiting nodoidal surfaces whose concave profiles are bounded by a final point with $\beta_{2}=0$. These surfaces are stable. But for values of the parameters A and V lying below and above mentioned boundary segment, there does not exist any liquid bridge equilibrium strace pinned to the edges of the disks.
When moving along this boundary segment from the intersection point, the value of β_{1} is decreasing monotonically starting from the value $\beta_{1}>\pi / 2$ at the intersection point and tending to zero as $A \rightarrow 0$ (fig. 16). In so doing the value Q_{0} increases mitatly from its value g_{1} at the intersection point to the maximum value $Q_{1, n+x}=2 K^{2} /\left(1-K^{2}\right)$ and decreases subsequently, approaching to zero as $A \rightarrow 0$ (fig. 15).

If $(1-K) \ll 1$, for the interval of A values corresponding to large values of ϱ_{1}, the profile of the limiting nodoidal

 K

Fig. 17. Dependonce of the relative hiquit rohtme, $I^{\prime}=V_{0}$.for smah whers of slonderness on the disk radit ratio, K, for the limiting nodoid surfaces
surface can be substituted for a circle are and therefore the following approximate relationships can be obtained.
$\cos (\beta)=\frac{(1-K)^{2}-(1+K)^{2} A^{2}}{(1-K)^{2}+(1+K)^{2} A^{2}}$.
$V \cong \frac{4}{(1+K)^{2}\left(1-\cos \left(\beta_{1}\right)\right)}$
$\left\{1-\cos \left(\beta_{1}\right)-\frac{(1-\kappa)}{\sin \left(\beta_{1}\right)}\left(\beta_{1}-\sin \left(\beta_{1}\right) \cos \left(\beta_{1}\right)\right)\right.$
$\left.+\frac{(1-K)^{2}}{\sin ^{2}\left(\beta_{1}\right)}\left(\frac{2}{3}-\cos \left(\beta_{1}\right)+\frac{1}{3} \cos ^{3}\left(\beta_{1}\right)\right)\right\}$.
For the profite corresponding to $\theta_{1, m,}$, the value β_{1} is $\pi / 2$. The parameters of related equilibrium state

Fig. 18. Criticat tatues of the stondentess. A. depending on disk radii ratio. K. Numbers on the curves indicate the retative colume. V
$A=\frac{1-K}{2 K}\left[1-\frac{\pi}{4} \frac{1-K^{2}}{2 K^{2}}+\frac{\pi}{4}\left(\frac{1-K^{2}}{2 K^{2}}\right)^{2}+\cdots\right]$.
$V=\frac{4 K^{2}}{(1+K)^{2}}\left[1+\left(2-\frac{\pi}{2}\right) \frac{1-K^{2}}{2 K^{2}}\right.$
$\left.-\left(\frac{1}{2} \pi+\frac{1}{8} \pi^{2}-\frac{8}{3}\right)\left(\frac{1-K^{2}}{2 K^{2}}\right)^{2}+\cdots\right]$.
obtained by considering a deviation of the profile from the circle arc, are more precise when compared with those following from eq. (12). Here the relative crror is smaller than 0.6% if $K \geq 0.8$.

Fig. Ilb shows the dashed line 11 which is the locus of the points corresponding to the equilibrium state with $Q_{1 m a x}$. The other profiles of the limiting surfaces are separated into two classes: those containing the point with vertical tangent $\left(\pi / 2<\beta_{1}<\pi\right)$ and those not having this point ($0<\beta_{1}<\pi / 2$). The profiles of these two diflerent classes (the profiles $B_{1} A_{2}$ and $B_{1}^{\prime} A_{2}$ in fig. 30) correspond to the same value of $\varrho_{1}, \varrho_{1 A}<\varrho_{1}<\varrho_{1 \text { max }}$: the addition of the values of β_{1} for these two profiles is π. The value V tends to

Fig. 19. Bomdaries of the stabitioy region of hawid bridges with disk radii ratio of (a) $K=0.8$ and (b) $K=0.9$ (dashed times). The solid lines corvespond to given talues of (a) $\beta_{t}=80 \mathrm{amd} \beta_{2}=100$ (1 w d (b) $\beta,=90,100^{\circ}, 105^{\circ}$
V_{0} as $A \rightarrow 0$. where $V_{0}^{\prime}<1$ for $K^{\prime}<1$. The depentence $V_{0}(K)$ is shown in fig. 17.

3.2 Particular Resulls

Let us present in more detail some results, interesting for the floating zone technique. First of all, they are concerned to data on the stability of a liquid zone for the values of It which are close to one. In fig. 18 the dependences of the critical values of A on K are shown for $V^{\prime}=0.9,0.95$, 1.05 . and 1.1. The dependences I (fig. 18a) correspond to the right-hand parts of the lower boundaries of stability region. the dependences 11 (fig. 18b) to the left-hand parts of these boundaries. and the dependences III and IV (lig. I8b). which continue each other, correspond to the left-hand and right-hand segments (they are separated by the dotted line in fig. 9 a) of the upper boundaries of stability region.

If $V \leq 1$, a single interval of stable values of 1 exists for the every K. For $K \leq K_{1}\left(I^{\prime}\right)$, this interval is bounded by the line $A=0$ and the curves corresponding to dependence I

Fig. 20. Limu of minimom retotive whane, Ve defendme on the disk radi ratio. K. for wahle bridges mith given ratues of the amgle β_{5} on Whe whaller divk. Nimhers on cwess indiote the twhes of β_{i}
with given V and. for $K>K_{1}(V)$, by the curves corresponding to dependences II and I. The function $K=K_{1}(V)$ is the inverse of the function $V_{0}(K)$ presented in fig. 17.

If $V>1$, then, for $K<K_{2}(V)$, a single interval of the above mentioned vatues of A still exists, and it is bounded by $A=0$ and the curve corresponding to dependence 1 . For $K>K_{2}$, two intervals exist: first of them spans between $A=0$ and the dependence III and the second one between dependences IV and I. For $K=K_{2}$, the lower (III) and the upper (IV) dependences merge. The values K_{2} is determined as the K value for which the minimum of the function $V(A)$ on the upper boundary equals to the given value of V. It can be found from eq. (9).

Let us derive a formula, which like eqs. (7) -(12) can be used for the construction of the above mentioned dependences. It determines the relation between A and the critical value of V on the lower boundary in the case of $K=1$ and $|V-1| \ll i$. It can be obtained from the analysis of the critical shapes of unduloids which are close to the cylinder yiclding
$V^{\prime} \cong 1-2\left(\frac{A}{\pi}-1\right)+\frac{5}{2}\left(\frac{A}{\pi}-1\right)^{2}$.
In this case the relationship (13) is more precise when compared with other obtained eartier [12, 13] where only the linear patt of this dependence was considered.

It is preferable to carry out the crystal growth under a constant value of the growing angle α. This angle is defined as $\alpha=\pi / 2-\beta_{1}$ or $\alpha=\beta_{2}-\pi / 2$ depending on whether the solidification front is considered to be the smaller or the larger disk. The value α depends on the physical properties of the solid material and, usually, is close to zero but for single crystals of Si and Ge it turns to be equaf to $11 \pm 1^{\text {* }}$ and $13 \pm 1^{\prime \prime}$, respectively [15]. Therefore the data of main interes are those on the stability of a bridge for $\beta_{1}=90^{\circ}, 80^{\circ}, 75^{\circ}$ and $\beta_{2}=90^{\circ}, 100^{\circ}, 105^{\circ}$.

According to the results presented in sect. 3.1, the equilibrium bridge surfaces are stable for $K<1$ and $0 \leq \beta_{1} \leq \pi / 2$

Fig. 21. Alinimen amlmaimum colues of rehetite hiquid tothane, V. for the stable bridges states widt giten tathes of the angle β_{2} on the forger disk. Numbers on carces indicafe the wheses of β_{2}
if they satisly the geometric condition of fitting ($\beta_{2} \geq 0$) and have not any neck $\left(\tau_{2}-\tau_{1}<2 \pi\right)$. In the (A, V)-plane, the line corresponding to the above states with a given value of β_{1} starts in some point (A_{1}, V_{1}) on the left-hand part of the lower boundary and no tonger crosses the boundary but lies inside the stability region corresponding to K. Along this line, $A \geq A_{1}$, and $V(A)$ is a monotonically increasing function (fig. 19a). The stability boundary for such states is determined by the minimum volume value ($V=V_{1}$) which is necessary for the fulfilment of the fitting condition. For the above mentioned values of β_{1}, it is presented in fig. 20.

The line corresponding to the stable equilibrium states with given $\beta_{2} \geq \pi / 2$ lies inside the stability region for the related K and joins some points $\left(\Lambda_{3}, V_{3}\right)$ and $\left(\Lambda_{2}, V_{2}\right)$ on the upper boundary and on the right-hand part of the lower boundary respectively (fig. 19a). Along this line both the Λ and V values can vary non-monotonically reaching the minimum and the maximum value of V and the maximum value of A inside the stable region. Such behaviour of the quantities A and V is typical for the relatively large values of K and not-too-small values of ($\beta_{2}-\pi / 2$) (see fig. 19). Therefore, the stability of these states is not uniquely determined by the parameters $\left(A_{2}, V_{2}\right)$ and $\left(A_{3}, V_{3}\right)$ of the critical states. An unambiguous conclusion on the stability can be made only for the values of K for which the V values along the line $\beta_{2}=$ const. satisfy the unequalities $V_{2}<$ $V<V_{3}$ inside the stable region. For these values of K the minimum, V_{2}, and the maximum, V_{3}, values of V for the stable states under the above mentioned values of β_{2} are given in fig. 2!.

4 Conclusions

Some numerical results and approximate formulas are presented which allow to judge on the stability or instability of axisymmetric equilibrium states of a zero-g liquid bridge between unecqual disks for given values of radii of disks, their separation and liquid volume. It has been found that
disk radii inequality leads to a qualitative change in the form of the stable region boundary.

Acknowledgments

This work has been supported by the Spanish Comision Interministerial de Ciencia y Tecnologia (CICYT) and is part of a more general endeavour for the study of fluid physics and materials processing under microgratity (Project No. ESP92-0001-CP). One of the anthors. L.A.S.. has been supported by the Spanish Dirección General de Investigación Cientifica y Técnica (DGICY5) Project No. SAB93-0008.

References

I Wither, K.-Th.: Kristallzäclatung. DVdW, Berlin (1973)
2 Steg, L. (ed.): Materials Scienees in Space with Application 10 Space Processing. Amer. Inst. Acromaut. Astromaut., New York (1977)
3 Plateat, J.: Statique Experimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, Gauthier-Viltars, Paris (1873)

4 Miched, D. H.: Meniscus Stability. Ann. Rev. Fluid Mech., vol. 13, p. 189 (1981)
5 Gillette, R. D.. Dyson, D. C.: Stability of Fluid Interlaces of Revolution Between Equal Solid Cireular Plates. Chem. Eng. J., vol. 2, p. 44 (1971)

6 Slobortumin, L. A.: Problens of the Stability of Liquids in Equilibriam, Appearing in Spatiat Technology; in Hydromechanics and licat and Mass Transfer in Zero-gravity, p. 9. Nataka, Moscow (1982) (in Russian)
7 Myshkis, A. D., Bahskii, V. G., Kopathetwii, N. D., Sloho. -hanin, L. A., Truptsor, A, D.: Low-gravity Fluid Mechanics. Springer-Verlag, Berlin (1987)
8 Samz. A.. Martine:, L.: Minimum Volume for a Liquid Bridge Between Equal Disks. J. Coll. Interface Sci., vol. 93, p. 235 (1983)
9 Russo, M. J., Steen, P. /I.: Instability of Rotund Capillary Bricges to Gereral Disturbances - Experiment and Theory. j. Coll. Interface Sci.., vol. 113, p. 154 (1986)
10 Martme-, I.: Stability of Axisymmetric Liquid Bridges; in: ESA SP-191. p. 267. Europeam Space Agency. Paris (1983)
II Marinc: F. Perales. J, M.: Liquid Bridge Stability Data. J. Cryst. Growth, vol. 78, p. 369 (1986)
12 Mescenter. J.: Stability of Long Liquid Columns; in: ESA SP-222, p. 297. European Space Agency, Paris (1984)
13 Meseguer, J.: The Dynamics of Axisymmetric Slender Liquid Bridges Between Unequal Disks. J. Cryst. Growth, vol. 73. p. 549 (1985)
14 Stobozhamin. L. A.: Hydrostatic Problems Arising during Simulation of the Process of Purification of Materials and Growth of Single Crystals by the Poating Zone Method. Part 2. Equílibrian and Statility of Zone Mell ander Zero-gravity Condition. Preprint 24-84, Fiz. Tekh. Inst. Nizk, Temp. Akad. Natuk Ukr. SSR. Kharkov (1984) (in Russian)
is Surck, T., Coriell. S. R.: Shape Stability in Fioat Zoning of Silicon Crystals. J. Cryst. Growth, vol. 37, p. 253 (1977)

[^0]: Mail address: Lev A. Slobozhanin, B. Verkin mstitute for Low Temperature Plysics and Engineering. Acatemy of Sciences of Ukrane, 47 Lenm Ave., 310164 Kharkov, Ukrame, Mariola Gomez, Jose M. Perales, LamfiETSI Aeronatuicos, UPM, Ciudad Universitaria, E- 28040 Madrid, Spain.
 Paper submitted: May 13, 1994
 Paper accepted: October 21. 1994

