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Theoretical and Experimental Analysis of 
Stability Limits of Non-axisymmetric 
Liquid Bridges under Microgravity 
Conditions 

In this paper the stability of non-axisymmetric liquid bridges 
under microgravity conditions is investigated. The influence 
on the stability of an almost cylindrical liquid bridge of 
axisymmelric effects like its volume, a small axial accelera
tion acting on it and unequal-diameter supporting disks, as 
well as that of non-axisymmetric perturbations like small 
lateral acceleration and non-coaxial supporting disks, has 
been analysed by using standard bifurcation techniques. The 
'expression for the maximum length of a liquid bridge, includ
ing all the above mentioned effects, has been obtained. In 
addition, the effect on the stability of liquid bridges having 
non-coaxial supporting disks has been experimentally studied 
within the constraints of an Earth laboratory by using milli-
melric liquid bridges. Analytical and experimental results 
show that each one of the non-axisymmetric perturbations 
like the ones here considered (lateral acceleration and eccen
tricity) can be, from the point of view of stability, as critical 
as axisynunetric perturbations. In addition, it is demonstrated 
that when both non-axisymmetric perturbations are not negli
gible, the coupling of both perturbations can be a stabilizing 
effect on the liquid bridge. 

1 Introduction 
r 

The fluid configuration'considered in this paper consists of 
an isothermal mass of liquid of volume V held by surface 
tension forces between two parallel solid disks (of radii Rt 

and R2, respectively) placed a distance L apart. Both disks 
can be non-coaxial, 2E being the distance between the disk 
axes (fig. 1). Such fluid configuration can be uniquely defined 
by the following dimensionless parameters: the dimen-
sionless volume V = VI(iiRlL), where R0 = (/?, + R2)I2, 

the slenderness A = LI(2R0), the dimensionless eccentri
city e = EIR0, the dimensionless disk radii difference, h = 
(R2 - Rt)l(R2 + /?,), the Bond number B = QgR-lla (where 
Q is the difference in densities between the liquid bridge and 
the surrounding medium, g the acceleration acting on the 
liquid bridge and a stands for the surface tension), the angle 
a between the direction on which Bond number acts and the 
liquid bridge axis, defined in fig. 1, and the angle /i between 
the plane defined by the axes of the disks and the lateral 
component of the gravity acceleration. 

As it is well-known, liquid bridges can lose their stability 
with respect to either axisymmetric or non-axisym
metric perturbations [1, 2]. However, in most of the papers 
dealing with liquid bridges, either from the theoretical 
or the experimental point of view, only axisymmetric 
configurations have been considered [3]. Concerning non-
axisymmetric perturbations, some effort has been devoted 
to a non-axisymmetric instability which appears when the 
liquid bridge is rotated as a solid body. The pioneering 
experimental work was done on board Skylab 4 where a 
demonstration of the so-called C-mode was performed [4] 
with a not fully controlled excitation. The theoretical back
ground for this instability can be found in [5, 6], An 
experiment under well-controlled excitation was performed 
later on board a TEXUS sounding rocket, where the liquid 
bridge was rotated around an axis slightly shifted from that 
of the disks, the results being in good agreement with the 
theory [7]. 

The influence of a non-axisymmetric stimulus like a 
non-axial acceleration was analyzed by Coriell, Hardy and 
Cordes [8] for the case of cylindrical volume liquid bridges 
(V = 1) with slendernesses close to the Rayleigh stability 
limit A = n. The same problem, but including the effect of 
the eccentricity of the supporting disks, was theoretically 
analyzed by Perales [9] although there was a mistake in one 
of his conclusions. Apart from these two last quoted pa
pers, as far as we know, no more works dealing with static 
non-axisymmetric perturbations have been published, the 
knowledge on the behaviour of liquid bridges under non-
axisymmetric perturbations being much smaller than the 
existing background on the behaviour of axisymmetric liq
uid bridges. 
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Fig. 1. Geometry and coordinate system for the liquid bridge problem 

This paper is devoted to the analysis of the stability 
limits of liquid bridges under microgravity conditions 
with volume close to the cylindrical one (V = 1), slcnder-
ness close to K, and subjected to both axisymmetric 
and non-axisymmetric perturbations. The main conclusion 
that can be derived from the analytical results here pre
sented is that the combined effect of both lateral accelera
tion and eccentricity can stabilize liquid bridges subjected 
to axial accelerations. Aiming to check the theoretical pre
dictions, several experiments have been performed on Earth 
by using millimetric liquid bridges. In order to keep the 
experimental effort between reasonable limits, the study has 
been restricted to the analysis of the influence on minimum 
volume stability limits of the eccentricity of the disks of 
liquid bridges between equal disks (h — 0) subjected to 
either axial or lateral accelerations, the agreement between 
experimental results and theoretical predictions being good 
enough. 

2 Mathematical Model 

Equilibrium shapes of liquid bridges are described by the 
Young-Laplace equation, which in dimensionless variables 
reads 

M{F) + P-Btlz + B,F cos (0 - j?) = 0, ( 0 

where M{F) is twice the mean curvature of the interface 

M(F) ={F[\+ (F:)
2][F00 -F}+ FF;:[F2 + (F0)

2] 

-2F0[F0 + FFZF:0}} 

•{F2l\+(F:)
2}+(F0y}-"2. (2) 

Boundary conditions are 

F(±A,0) =[(1 ± / i ) 2 -<? 2 s i r r ( f l ) ] " 2 ±ecos (0 ) , (3) 

F(z, 0 + 2n) = F(z, 0), (4) 

F2 60 = 2TI/1 V. (5) 

To write down the above expressions all lengths have been 
made dimensionless with ^ 0 ; Ba and B, are the two compo
nents of Bond number, Ba = B cos (a) and B, = B sin (a), 
respectively, and P is a constant related with the difference 
between the outer pressure, assumed constant, and the 
inner pressure, which has been made dimensionless with 
dlR0. The subscripts z and 0 indicate derivatives with 
respect to z and 0, respectively. 

Critical points result after linearization of the above 
formulation [9], It is well-known that in the case 
5„ = B, = h = e = 0, K = l , the problem under consider
ation has the trivial equilibrium solution F = 1, P = 1 for 
any A. The introduction of the following expansions 
F(z, 0) = 1 + ; / ( - , 0) + 0(c2), P = \+r.p+ 0(r,2), where <:' 
stands for the magnitude of the deformation of the inter
face, allows us to calculate / ( ; , 0) after neglecting 0{t:2) 
terms in the problem formulation. All the solutions of the 
linear problem are axisymmetric, the expression for the 
interface deformation being non-trivial only for a discrete 
number of values of A; the smallest value of A for which 
the bifurcation to non-cylindrical equilibrium shapes takes 
place is /l = it, where the transition from stable to unstable 
equilibrium shapes occurs (all other bifurcation points are 
not relevant as they cannot be reached because the liquid 
bridge will break before). Therefore, the instability appears 
at A •=• 7t and, within this approximation, the unstable equi
librium shapes are defined by / ( r , 0) = sin (nz/A), / )=() , 
which is the solution that must be perturbed to calculate the 
variation of the maximum stable slenderness for small val
ues of the considered parameters. 

From now on the process to obtain the variation of the 
maximum stable slenderness due to the different effects 
under consideration is similar to that described by Pcralex 
[9], although in that paper only non-axisymmetric effects 
(Btl = h = 0, B, # 0, e T4 0) and cylindrical volume liquid 
bridges (V = 1) were considered. First of all, a new var
iable, x = rcr//l, which normalizes boundary conditions, 
/. = 1 — A In, is introduced, and higher order terms than 
those appearing in the linear problem are retained. Let 



g{x, 0) and q be the expressions representing these higher 
order terms in the expressions of the interface shape and the 
pressure, respectively. The new expansions for F and P are 
then F(z, 0) = 1 + e sin (.v) + g(x, 0), P = 1 + q, which, af
ter substitution in eqs. ( l ) - ( 5 ) , gives the new formulation: 

M*( 1 + £ sin (A) + g(x, 0)) + \ + q 

+ (1 + e sin (A) + g(x, 0))B, cos (0 - /i) 

-Bax{\ - A ) = 0 , 

g ( ± n , 0) = ±/i ± e c o s ( 0 ) --e2sm2(0) + 

g(x, 0)=g{x, 6+2n), 

dx [2g(\ + £ s i n ( . v ) ) + g 2 ] d 0 = 4 n : 

(6) 

(7) 

(8) 

(9) 

where, instead of V, a new parameter measuring the differ
ence in volume with respect to that of a cylindrical liquid 
bridge, v = V — 1, has been used. Note that the curvature 
of the interface, M*, is now computed in terms of the 
variables x and 0, so that M* includes A as a parameter. It 
must be pointed out that this formulation requires an 
additional condition in order to uniquely define the 
parameter e, this condition being 

dx g sin (.v) dO = 0. 

The problem (6) -(10) allows us to calculate q and g{x, 0) in 
terms of A, v, h, Z?„, Bh and <?. As these parameters are 
assumed to be small enough, calculations can be performed 
by using standard perturbation techniques. It is known that 
this procedure requires the anticipation of certain proper
ties of the solution, situation which can be avoided by using 
the idea of the bifurcation equation [10]. In this case, 
instead of eq. (6) the equation to be solved is 

M*( 1 + £ sin (A-) + g(x, ())) + \+q 

+ (1 + £ sin (,v) + g(x, 0))B, cos (0 - p) 

- B „ A - ( 1 - A ) +cp sin (.v) = 0 (11) 

and by using the Implicit Function Theorem [11] it is 
demonstrated that eq£. ( 7 ) - ( l l ) uniquely define 

g{x, 0; c, A, v, h, 5„, B„ e) 

= islg,(x,o) + i i s,djSu(x,o) 
i'- 2 i = I j =. I 

i » I j » I A = | 

C/(E, A, v, h, 3„, Bh e) 

7 7 7 7 7 7 

= I <V/- + I I «W/./+ I I I WAi* + • 
I - I ; = I k - 1 

(/)(£, A, y, /i, B„, 5,, e) 

7 7 7 7 7 7 

I <5,<v7,+ X I 5,fyp„+ I I I <H<V/V + 
i ' - 2 i - I j « I i - 1 ;' - 1 A- - I 

at least in a neighbourhood of £ = A = v = h = B„ = 
B, =e =0 (in these last expressions <5, = £, <52 = A, <;, = r, 
<54 = /i, <55 = flu, <56 = 5,, (57 = e). Such solutions will corre
spond to the solution of original set of eqs. (6)-(10) if and 
only if the parameters involved satisfy <p(e, A, v, /i, B„, S„ e) 
= 0, which is called the bifurcation equation. 

Before solving the problem it is convenient to analyze 
the symmetries involved in the problem which will allow us 
to anticipate some characteristics of the solution and to 
ease the algebra involved. As it can be seen through the 
inspection of the formulation, the problem is invariant 
under the following sets of symmetries: 

- £ , / ! • •h,B „->-B„ 

-£, h -/>, B„ -B„ 

x -> —A; £ 

<p — - q > 

X -» —A, 0 -*0 + n; £ 

B/-* — Bh cp -» — <p 

0 -*0 +K; B,-> —B,,e -> —e 

and from these symmetries it is deduced that 

(12) 

(13) 

(14) 

<p(e, A, v, h, Ba, B,, e) = — <p(—£, A, v, —h, — 5„, B,, —e). 
(15) 

(/>(£, A, v, h, 5;,, 5,, e) = ~-</J( —E, A, u, —/i, •fl,.e). 

(10) <P(£>^ ",/', Ba,B„e) = ip(E, A, u, /i, £„, - f l „ - e ) . 

(16) 

(17) 

According with eqs. (15)-(17) it can be deduced without 
any further calculation that a significant number of co
efficients q>,, tp,j, <pljk are zero. For instance, from eqs. (15) 
and (16) it is deduced that the coefficient cp, multiplying the 
terms either in B, or in e must be zero, and from eqs. (16) 
and (17) the same conclusion with respect to the'coefficients 
of the terms in A or in v is obtained. Concerning ihe 
second-order terms, from eqs. (16) and (17) it is obtained 
that the coefficients of the terms tr, r.h, i;5„, i:t\ //-, /;/?„, he, 
Bl, Bue, and <?2 must be zero, etc. Therefore, the only 
first-order coefficients.which are non-zero are those corre
sponding to the terms in /; and in 5„, and the second-order 
coefficients to be taken into account are those in cA, a\ A/i. 
A3„, y/i, vB„ and B,e. Once the above mentioned non-zero 
terms are taken into account the only third-order terms that 
can be of the same order as any of the above mentioned 
terms are those in fi\ r.Bj and ce1. Thus the expansion for 
q> can be simplified to yield 

cp = <pji + ysB„ + 2<75UEA + 2(,o]3£u + 2(p24/Ji 

+ 2(p25/.B„ + 2<p}4vh + 2cpiivBl, + 2(pblB,e 

+ (?,,,E3 + 3<p1()6£/3r' + 3<p,77£e2 + ' • •, (18) 

where it has been taken into account that <ptj = q>/n and 
fw ~ 'Pjii — Vjji- Setting <p = 0 the original problem is recov
ered and the value of £ can be deduced as a function of the 
remaining parameters A, v, h, Ba, Bh and e after 

tpji + (p5Ba + 2/.(cp24h + <p2iBu) + Iv^pyji + iPisB,,) 

+ 2(f>hlB,e + 2c(</312A + </>l3y) + 3E(<P,6 6B2 + ipme2) 

+ <Pi 
••) . = 0. (19) 

4 Microgravity sci. technol. VIII/1 (1995) 



Note that the terms 2A(</>,4// + (p2SBtl) and 2u(<p34/i + <p35£„) 
are negligible when compared with (pji + cpiBa\ therefore, 
they can be neglected unless <pji + ipsBa = 0. In the same 
way the term 3E(<PI665 ;

2 + i ) ) n ] r ) can be neglected provided 
2<ps7£,e 5^0. Although some of first and second order co
efficients have been calculated previously [5, 9, 12, 13], a 
deduction of all of them, for completeness, can be found in 
the appendix. It must be pinpointed that (pbl is non-zero if 
cos (P) ^ 0. Perales [9] concluded that there was no cou
pling between B, and e in the stability limit, but there was 
a mistake in his reasoning, which is only true if cos (/J) = 
0. 

Concerning the relevant third order terms, they have 
been calculated in the past. Vega and Perales [5] calcu
lated that <pm = —3/2 and Perales [9] calculated that 
3cpIM,= _n 2 /2 and 3<pn7= - 3 / ( 2 T T 2 ) . Thus, eq. (19) reads 

2\B„ -) - - B,e cos (/}) +;.( Bu 
V. 71 l 

3 + 4B«+hh 

V* 

i t /3 

7t/6 J{? 

it/2 

Fig. 2. Variation with the eccentricity of the supporting disks, e, of 
the reduced minimum volume, V* = V — 1 ~ 2(Ajn — \), of liquid 
bridges between equal disks subjected to a lateral Bond number 
B, = 0.02 

+ e(2/. + v) • e , T * ? + 2 ^ : • ^ e 3 = 0 (20) 

where the underlined terms are in most of cases, as already 
stated, negligible when compared with some other term in 
the equation. 

In order to get a simple analytical expression for the 
maximum stable slenderness, let us assume that 2(5„ — /i/n) 
is not too small (when compared with the higher order 
terms). In this case the first two underlined terms can be 
neglected (otherwise the algebra is much more involved) 
and the maximum value of /. (the stability limit, /.,.,.,,), 
which is reached in the point where d/./dc = 0 , is 

/.,,„ = r 
h 3 V'5 

B„ =- B,e cos (/i) 
71 2rr 

1 K2
 D , 3 , 

(21) 

or, using the original dimensionless variables, to the order 
here considered the maximum stable slenderness becomes 

Tt 
B,e cos (/?) 

2/3 

+ I ( K - l ) - ^ > . _3_ 

4rc-
(22) 

Obviously, eq. (22) is only of application to liquid bridge 
configurations close enough to the reference one (5„ = 
B, = /; = e = 0, V — 1), but allows us to deduce more gen
eral conclusions concerning the influence of the perturba
tions under consideration on the stability limit. For 
instance, within this approximation, there is no coupling 
between the different effects on the variation of the critical 
slenderness but between B, and e and, when these two 
effects are considered, another important feature pointed 
out by eq. (22) is that /1,.,.„ does depend on the angle [1 
between the plane defined by the axes of the disks and the 
direction of the lateral component of microgravity. The 
variation with the eccentricity e and the angle B of the 
parameter V* = V — 1 — 2{A\n — 1), which can represent 

either the minimum stable volume or the maximum stable 
slenderness, has been plotted in fig. 2 for liquid bridges with 
B„ - h = 0 and B, = 0.02. Note that, for fixed B, and e, the 
stability limit can dramatically change depending on the 
angle /i. 

Another important characteristic of the stability of liq
uid bridges that must be remarked is that the combined 
effect of both lateral Bond number and eccentricity (the 
term in B,e) can be a stabilizing factor for the liquid 
column. Observe that, leaving apart the combined eileci of 
axial Bond number and unequal disks, which was already 
analyzed by Meseguer [12], in the case of non-coaxial disks 
the liquid bridge can be more stable if the acceleration has 
both axial and lateral components than if only one of them 
is acting on the liquid bridge. 

Finally, let us analyze the importance of the two ne
glected terms in eq. (20) when eq. (21) was obtained. As 
already stated these two terms are of importance only when 
the term powered to 2/3 in eq. (21) is very small and they 
give an analytical explanation on the discrepancies previ
ously observed between analytical [12, 14] and numerical 
[15] results concerning the influence of both axial accelera
tion and unequal size of the disks on the stability limits of 
liquid bridges. For the sake of simplicity, let us assume 
v - B, - e = 0, so that eq. (20) becomes 

2\B.,J^xU-\,) + 2-,,-\,^, (23) 

if the underlined term is neglected, the expression /.,.,.„ = 
(3/2)4/ '1(5„-/i/rc)2 '3 is obtained (this last expression was 
the one calculated by Meseguer [12]). Such expression has 
been represented for two different values of h in fig. 3 
(dashed lines) and indicate that, up to this order, the 
maximum stable slenderness will be A,„ = rt at B„m = /i/rt no 
matter what the value of/; is, the maximum stable slender
ness depending on \B„ - B„m\. Of course, this behaviour 
changes when higher order terms are retained. The stability 
limit which results when the full eq. (23) is used has been 
represented also in fig. 3 (solid lines). Observe that retaining 
higher order terms slightly changes the position of the cusp 



Fig. 3. Variation with lite axial Bond number, Ba, of lite maximum 
slenderness, A,.„, = n(l — A,,,,), of axisymmetric liquid bridges 
(B, = e = 0) between unequal disks (h T4 0) having cylindrical volume 
(v — 0). Dashed lines represent the stability limits resulting when the 
underlined term in eq. (23) is neglected, whereas solid lines represent 
those obtained when the full eq. (23) is used. The symbols represent 
numerical results 

(although the differences are imperceptible at the used 
scale) and that the range of stable Bond numbers shifts to 
larger values. To get an idea of the range of validity of 
such analytical approximations, some numerical results ob
tained by using a numerical method already published 
elsewhere [15] have been also plotted in fig. 3 (black sym
bols). 

3 Experimental Set-up and Experimental Results 

The experiments described in the following have been per
formed in a millimetric liquid bridge facility consisting of a 
three-axes table in which the liquid bridge is formed. The 
upper disk can be displaced along the r-axis by means of a 
micrometric screw whereas the lower disk can be moved 
along the .vy-plane by means of two micrometric screws 
which displace the lower disk along the .x-axis and the 
y-axis, respectively. Both disks are equal in radius, 
^ n = 0.35 mm. Fluid injection or removal is made through 
a hole in the center of the lower disk which is connected to 
a calibrated syringe. The experimental set-up also includes a 
CCD camera and a computer with an image processor. To 
enhance the contour of the liquid bridge interface back
ground uniform illumination was used. The liquid bridge 
facility and the CCD camera are mounted on a platform 
which can be oriented at any direction with respect to that 
of the local gravity acceleration. 

The experimental procedure was as follows. First of all, 
with the disks in coaxial position and the liquid bridge axis 
vertical, the upper disk is placed close to the lower disk. 
Then a small amount of working liquid (distilled water) is 
injected and a small liquid bridge is formed. Once the initial 
liquid bridge is established, the slenderness is increased by 
moving upwards the upper disk while additional volume of 
liquid is injected. The result of this preparation process is a 
liquid bridge with the desired slenderness and a volume of 
liquid close to V = 1 which is used as a reference to calcu
late the value of the Bond number. The volume and the 
Bond number are calculated by fitting theoretical expres
sions for the liquid bridge equilibrium shapes to the mea
sured shapes by a least square method similar so that 
described in [14]. The calculated value of the bond number 
was B =0.020 ±0.001. 

Fig. 4. Minimum volume of the liquid bridge, V, versus eccentricity, 
e, of liquid bridges between equal disks subjected to a vertical Bond 
number B:l = 0.02. The symbols represent experimental results 
whereas solid lines correspond to theoretical approximations ob
tained as indicated in the text. While symbols (upper curve) corre
spond to liquid bridges with A = 2.5 whereas black symbols (lower 
curve) correspond to liquid bridges with A = 2.0 

In the case of liquid bridges placed vertically (5„ ^ 0, 
B, — 0), experimental results are shown in fig. 4. In this plot 
the symbols represent experimental values whereas the 
curves are theoretical estimations of the stability limits 
obtained as explained below. As it can be observed there is 
some scattering in the experimental points, which is due to 
the way in which the experiments have been done. In cilcct. 
although experiments were carefully performed, the han
dling of the experimental equipment requires the direct 
manipulation of the facility by the operator. This manipula
tion, together with the noisy vibrational ambient existing in 
any Earth laboratory, is the source of uncontrolled pertur
bations that explain the scattering of the experimental re
sults. 

The curves shown in fig. 4 are theoretical estimations 
according to eq. (22). After this expression, once the 
slenderness is fixed, the variation with the eccentricity of 
the minimum stable volume of a liquid bridge between 
equal disks, when subjected to an axial acceleration 
(/, = B, = 0, B„ # 0) can be expressed as V = K0 + 3<':/(2rr). 
where Va stands for the minimum volume stability limit 



Fig. 5. Minimum volume of the liquid bridge, V, versus eccentricity, 
e, of liquid bridges between equal disks with slenderness A = 2.0 
subjected to a lateral Bond number B, — 0.02. The symbols repre
sents experimental results. White (black) symbols correspond to the 
value [1 = 0 (ji = nj2) of the angle between the direction in which 
lateral gravity acts and the plane defined by the axes of the disks 
whereas .solid lines correspond to theoretical approximations ob
tained as indicated in the text 
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Fig. 6. Minimum volume of the liquid bridge, V, versus eccentricity, 
e, of liquid bridges between equal disks with slenderness A — 2.5 
subjected to a lateral Bond number B, = 0.02. The symbols repre
sents experimental results. White (black) symbols correspond to the 
value [1 = 0 ([I — n\2) of the angle between the direction in which 
lateral gravity acts and the plane defined by the axes of the disks 
whereas solid lines correspond to theoretical approximations ob
tained as indicated in the text 

corresponding to 5„ = 0.02 and e = 0. Obviously, since eq. 
(22) is only valid close to the reference configuration 
(A ~ n, V ~ 1, h ~ 0, B„ - 0, B, ~ 0, e ~ 0), we cannot ex
pect that the values of Va resulting from this expression, 
K0= 1 + 2 ( / 1 / J C - 1) +2(3/2)4"5= /-\ be a good approxima
tion of the exact values. This is why in fig. 4 the exact 
theoretical values of V0 (the minimum volume stability 
limits corresponding to h = B, = e = 0, B„ = 0.02) as re
ported in [2,15] have been used instead of those given by eq. 
(22); these values are K„ = 0.580 at A = 2.0 and V0 = 0.785 
at A =2 .5 . 

Two main characteristics can be pointed out after the 
results shown in fig. 4. The first is that the experimental 
points seem to give higher values of the minimum volume 
stability limits, even when e — 0. This can be explained by 
taking into account, as already remarked, the different 
sources of perturbations existing in an Earth laboratory, 
that can cause the breaking of the very small liquid bridges 
used in experiments when the configuration is close to the 
stability limit (note that a given perturbation will be more 
and more important as the size of the liquid bridge de
creases). The second aspect to be remarked is that the 
agreement between theo/etical predictions and experimental 
results is good enough for small values of the eccentricity. 
Obviously this agreement fails when the eccentricity is 
large, out of the rangevof validity of eq. (22). 

To experimentally check the influence of the angle /J on 
the stability limits a second set of experiments was per
formed. In this case the platform which supports the liquid 
bridge facility and the CCD camera was rotated TC/2, so that 
the liquid bridge was placed horizontally (S„ = 0, B, -
0.02). Experimental results corresponding to [3 = 0 and 
P = rt/2, as well as theoretical predictions as given by eq. 
(22), are shown in fig. 5 for liquid bridges with A = 2.0 and 
in fig. 6 for liquid bridges with A - 2.5. In this case the 
above comment with respect to the value of VQ still holds; 
instead of the values of K0 given by eq. (22) the exact 
numerical values corresponding to /; = Ba = B, = e = 0 

(this is, VQ = 0.566 at A =2 .0 and K0 = 0.693 at A =2.5) 
have been used [2, 15]. Observe that experimental results 
show a behaviour similar to that predicted by eq. (22): 
liquid bridges are more unstable when lateral gravity acts in 
a direction parallel to the plane defined by the axes of the 
disks (/? = 0) than when lateral gravity is normal to this 
plane (/? = rt/2). Another aspect to be pointed out is that 
the agreement between experimental and analytical results 
increases as the slenderness increases, as one could expect. 

4 Conclusions 

A theoretical expression for the stability limit of long liquid 
bridges with an almost cylindrical shape when subjected to 
a wide variety of perturbations, either axisymmetric or 
non-axisymmctric, has been obtained. In addition, the de
pendence of the stability limit on the eccentricity of the 
supporting disks has been experimentally studied by using 
millimetric liquid bridges. 

It has been demonstrated both theoretically and experi
mentally that there is a coupling between the two non-
axisymmetric effects under consideration (lateral Bond 
number, B,, and eccentricity of the supporting disks, e), the 
magnitude of this coupling depending on the value of the 
angle [i between the direction defined by B, and the plane 
formed by the axes of the disks. It must be pointed out that 
this new term, B,e cos (/i), has an influence on the stability 
of the liquid column similar to the influence due to axial 
perturbations like axial Bond number, B„, or different sizes 
of the disks, h. This result, somehow surprising, shows that 
it is possible to stabilize axisymmetric perturbations, like B„ 
or /i, by using combined non-axisymmetric effects like B, 
and e. 

Appendix 

The calculation of the coefficients </>,-, </?„, <pijk appearing in 
eq. (19) requires to solve the problem defined by eq. (11) 
plus conditions (7)-(10), once the asymptotic expansions 



for g, q and <p are introduced in the problem formulation. 
In order to get more compact expressions for the different 
problems to be solved, let us include the term £ sin (.v), 
which corresponds to the solution of the linear problem, in 
the series expansion for g, so that the term <5,g, will be 
<5,g, = £ ( g , + s i n ( x ) ) . With this choice, eq. (11) reads 
M*( 1 + g) + 1 + 9 + (1 + g)<56 cos (0 - /?) - <55( 1 - <52)x + 
cp sin (x) = 0, where the small parameters <5, are as denned 
in the text. Boundary conditions remain the same, except 
the condition of volume preservation which, according to 
the new definition of g,, becomes 

dx ( 2 g + g 2 ) d0 =4K 2<5 3 

- J 0 

Substitution of the asymptotic expansions for g, q, and <p in 
the problem formulation gives the following sets of first and 
second order problems: 

First order problems 

&,, + S>„ + Si + 4,6 cos (0 - (1) - Altx + q, + cp, sin (x) = 0 

g , ( ± n , 0 ) = ± 4 * ± d „ cos (0) 

g , ( x , 0 ) = g , ( x , 0 + 2 n ) 

dx g, dO = 2n2An 

where Au stands for the Kronecker delta function (A^ = 1 if 
i =y and AtJ = 0 if i ^j). 

Second order problems 

So,, + S'M, + io + ®v + la + Vu sin (.v) = 0 

where 

I _I 
^ij ~~ hih>j "i" 2 oivO/v 'j aiu&ju oiSjoo Sioo&j 

1 
+ 1 +A, 

•[( l+4,2)4,g,v <+(l+zl ,2)d,2g, .J 

l 
+ T (4,s 4y2 + Ai2AjS)x 

the second order problems; and the same happens with 
some of the second order problems, namely those of order 
£2, Bj, e2, cB, and £<?, because their solutions appear as part 
of the forcing terms in the relevant third order problems). 
In effect, let g stand for any of the functions g„ gtj or gijk; 
it can be easily demonstrated that 

sin (x) (£*,+g„„+f) d0 dx 

= [ & K , e ) - g ( - J t , o ) ] d 0 (Al) 

Therefore, since all differential equations, no matter what 
the order is, can be written as gvv + gm + g + Sf(x, 0) + 
q + ip sin x = 0, the application of eq. (Al) yields 

(2n 

2n2 V = -^-i<\lgi^0)-g(-Ti,0)]d0 

sin (x) ®{x, 0) dO dx (A2) 

Note that for all second order problems g,;(rc, 0) = 
gij( — n, 0), so that, in this case eq. (A2) becomes 

2n2 sin (x) @,j(x, 0) dO dx. (A3) 

The solution of the first order problems are 

£ i = 0 , <P.=0, 

# 2 = 0 , <r;2 = 0, 

g3 = - ( l + c o s ( x ) ) , </>3 = 0, 

x 2 
g 4 = - - c o s ( x ) , CPA=—, 
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g5 = x( 1 + cos (x)), <p5 = 2, 

^ ^ ( ^ - - x 2 ) c o s ( 0 - / j ) , <p6 = 0, 

g„(±rc, 0) = --An A„ sin2 (0) 

£*,(*. 0) = &,•(*, 0 + 2n) 

dx ( 2 g , 7 + g , g , ) d 0 = O 

Observe that there are n = 7 problems of first order and 
that, because g,7 =g>/ , the number of different problems of 
second order will be only n{n + l)/2 = 28 instead of 
n2 = 49. Before pursuing further it must be pointed out that 
since we are interested only in the coefficients q>„ </>,., cpjk, 
most of the above second order problems have not to be 
completely solved (obviously all first order problems must 
be solved because their solutions appear as forcing terms in 

. = - cos (0), 
TC 

</>7 = 0 , 

whereas for the second order problems the application of 
eq. (A3) gives 

< P l 2 = 1 . 

<P,3 = 2 > 

^ = ~ 2 ^ 

<PJS = 2 > 

4 > 3 4 : 

47t ' 



3 

</>67= - ; - C O S ( / J ) , 

the remaining coefficients being <p/y = 0, where most of these 
zero values were already ant icipated in the text after anal
yzing the symmetries involved in the problem formul
at ion. 
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