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Theoretical and Experimental Analysis of
Stability Limits of Non-axisymmetric
Liquid Bridges under Microgravity

Conditions

In this paper the stability of non-axisymmetric liguid bridges
under microgravity conditions is investigared. The influence
on the stability of an almost cylindrical figuid bridge of
axisymmetrie ¢ffects like its volume, a small axial accelera-
fion acting on it and unegial-dicaneter supporting disks, as
well as that of non-axisymuetric pertrbations like small
lateral acceleration and now-coaxia! supporting disks, hos
been analyvzed by wsing standurd bifurcation rechniques, The
‘expression for the maxinuat lengeh of a figuid bridge, includ-
ing all the uhove mentivned effects, hus been obtained, in
addition, the effect on the stability of liquid bridges having
non-coaxial supporting disks has been experimenially studied
within the constraings of an Earth laboratory by using milli-
metric diguid bridges. Analviical and experinental results
show that each one of the non-uxisymmerric perturbations
fike the ones here considered (lateral acceleration and eccen-
tricity) can be, from the paint of view of stability, as critical
as axisymmietric peraurbaiions. In addition, it is demonstraied
that when hoth non-axisvamtetric perturbations are not negli-
gible, the coupling of both perturbations can be a stabilizing
effect on the liquid bridge.

1 Introduction

ta
The Buid configuration’considered in this paper consists of
an isothermal mass of liquid of volume F held by surface
tension forces between two parallel solid disks (of radii R,
and R,, respectively) placed a distance L apart. Both disks
can be non-coaxial, 2E being the distance between the disk
axes (fig. 1). Such fiuid configuration can be uniquely defined
by the flollowing dimensionless parameters: the dimen-
sionless volume ¥ = FHnRSL), where R, =(R, + R.}2,

the slenderness A = Lf(2R,), the dimensionless eccentri-
city ¢ = E/R,, the dimensionless disk radii difference, / =
(R, ~ R, + R)), the Bond number 8 = §¢R;{é (where
¢ is the diflerence in densities between the liguid bridge and
the surrounding medium, £ the acceleration acling on the
liquid bridge and ¢ stands lor the surface tension), the angle
2 between the direction on which Bond number acts and the
liquid bridge axis, defined in fig. 1, and the angle f between
the plane defined by the axes of the disks and the luterul
component of the gravity aceeleration.

As it is weil-known, liquid bridges can fose their stability
with respect to either axisymmetric or non-axisyni-
metric perturbations [1, 2}. However, in most of the papers
dealing with liquid bridges, either from the theoretical
or the experimental point of view, only axisymmetric
configurations have been considered {3). Concerning nun-
axisymmetric perturbations, some effort has been devoted
to a2 non-axisyrmunetric instabifity which appears when the
liquid bridge is rotated as a solid body. The pionecring
experimental work was done on board Skylub 4 where
demonstration of the so-calied C-mode was performed [4]
with a not fully controlled excitation. The theoreticul buck-
ground for this instability can be found in [3, 6]. An
experiment under well-controlled excitation was performed
fater on board a TEXUS sounding rocket. where the fiquid
bridge was rotated uround an axis slightly shitted from that
of the disks, the results being in good agreement with the
theary [7).

The influence of a non-axisymmetric stimulus like a
non-axial acceleration was analyzed by Coriedl, Hardy and
Cordes 8] for the case of cylindrical volume liguid bridaes
(¥ = 1) with slendernesses close to the Rayleigh stability
limit A = n. The same problent, but including the effect of
the eccentricity of the supporting disks, was Lheoretically
analyzed by Perafes [9] although there was 4 mistake in one
of his conclusions. Apart from these two lasl quoted pa-
pers, as far as we know, no more works dealing with static
non-axisymmeltric perturbations have been published, the
knowledge on the behaviour of liquid bridges under non-
axisymietric perturbations being much smaller than the
existing buckground on the behaviour of axisymmetric lig-
uid bridges,



(o
| |

!
L/2 e

%___,/

o

-

Fig. 1. Geomotry and covrdinate syxtemt for the liguid bridge problem

This paper is devotled to the analysis of the stability
limits of ligquid bridges under microgravity conditions
with volume c¢lose to the gylindrical one (¥ = [}, slender-
ness close 1o m, and subjected to both axisymmetric
and non-axisymmetric perturbations. The main conclusion
that can be derived [rom the analytical results here pre-
sented is thal the combined eRect of both lateral accelera-
tion and eccentricily can siabilize liquid bridges subjected
o axial accelerations. Aiming to check the theoretical pre-
dictions, several experiments have been performed on Earth
by using millimetric liquid bridges. In order to keep the
experimental effort between reasonable limits, the study has
been restricted to the analysis of the influence on minimum
volume stability limits of the eccentricity of the disks of
liguid bridges between equal disks (4 =0) subjected 1o
cither axial or lateral accelerations, the agreement between
experimental results and theoretical predictions being good
enough.

2 Mathematical Model

Equilibrium shapes of liquid bridges arc described b}f the
Young-Laplace equation, which in dimensioniess vanables
reads

M(FY+P—B:z+ BFcos{l--f) =0, (1)
where M(F) is twice the mean curvature of the interface
M(F} = {F[1 + (F.)Y[Fuo — F1 + FF.[F? + (F)'}

—2F[Fy + FF.F L)}

AP+ (F) + (F)* 7 (2)
Boundary conditions are
F(+A, 0 =[(l£M~e?sin® (H]'? + e cos (), {3}
F(z, 0 + 2n) = F(z, 0), 4
A n
%sz Jde{]:'lnAV. (5)
-d 1]

To write down the above expressions all lengths have been
made dimensionless with R,; 8, and B, are the two compo-
nents of Bond number, B, = 8 cos(z) and B, = B sin (=),
respectively, and P is a constant related with the difference
between the outer pressure, assumed constant, and the
inner pressure, which has been made dimenstonless with
G/R,. The subscripis z and 0 indicate derivatives with
respecl 1o = and 0, respeclively.

Critical points result alter lincarization of the above
lformulation [9]. 1L is well-known that in the cise
8,=8,=h=c¢=90, V=1, the problem under consider-
ation has the trivial equilibrium solution F =1, P =1 for
any A. The introduction of the following expansions
Fio, ) =1+, )+ 0%, P=1+tp+ 07, where ¢
stands for the magnitude of the deformation of the inter-
face, allows us to culculate f(z, 8} after neglecting O(e7)
terms in the problem formulation. All the solutions of the
lingar problem are axisymmelric, the expression for the
interface deformation being non-trivigl only for a discrete
number of values of A4; the smallest value of A for which
the bifurcation to non-cylindncal equilibriunt shapes takes
place is A = x, where the transition from stable Lo unstable
equilibrium shapes occurs {all other bilurcation points ure
not refevant as they cannol be reached beeause the liguid
bridge will breuk belore). Therefore, the instability appears
at A = and, within this approximation, the unstable equi-
librium shapes are defined by f(z, &) =sin{nzfA), p =0,
which is the solution that must be perturbed to calculate the
variation of the maximum stable slenderness for smalf val-
ugs of the considered parameters,

From now on the process to obtain the variation of the
maximum stable slenderness due to the different cfiects
under consideration is similar to (hut described by Perafes
{9]. although in that paper only non-axisymmetric effects
(8, =h=0 8#0¢#0) and cylindrical velume hlguid
bridges (V¥ = 1) were considered. First of all, a new var-
iable, x =nco/4, which normalizes boundary conditions,
o= | — Afn, is introduced, and higher order terms than
those appearing in the linear problem are retained. Lel



gix, 0y and g be the expressions representing these higher
order terms in the expressions of the interface shape and the
pressure, respectively. The new expansions for Fand £ ure
then F(z,0) =1 4& sin (x) + g(x, 4}, P =1+ ¢, which, afl-
ter substitution in egs. {1)-(5), gives the new formulation:

Ml +esin(x) +gix, 00+ 1 +4¢
+(t+esin () +glv, 0B, cos (0 - )

— B, x(1 -2 =0, (6)
g{in,ﬂ):i;"rj;ems(f)}-—-ét’lsinl(ﬁ)+"', )
glx, 0) = glx, 8 + 2n}) (8)

n

22
Jd.\‘ J[Eg(l +esin(x)) +g3dl = 4:1:2[:: — % e{l‘ (%)
- 1
where, instead of ¥, a new parameter measuring the differ-
ence in volume with respect to that of a cylindrical liquid
bridge, v = I — I, has been used. Nole that the curvature
of the inlerface, M*, is now computed in terms of the
variables x and &, so that M* includes A as a parameter. [t
must be pointed ocut that this formulation requires an
additional condition in order to uniquely define the
parameter ¢, this condition being

L] In
jdx jg sin {x} df = 0. (10y
- i}

The problem (6} -( 19} altows us to calculate ¢ and glx, 0} in
terms of 4, v, . B,, B, and e. As these parameters are
assumed to be small enough, calculations can be performed
by wsing standard perturbation techniques. It is known thal
this procedure requires the anticipation of certain proper-
lies of the solution, situation which can be avoided by using
the idea of the bifurcation equation [10). In this case.
instead ol eq. (6} the equation 10 be solved is

MA L +esin{y) +g(x, 0N+ +y¢

+ {1+ &sin(x)y + gl 08, cos (0 — )

—Bx(l =iy +@sin{x)=0 (1)
and by using the Implicit Function Theorem [11] it is
demonstrated that egs. (7)-(11} uniquely define
gx, 06, 20, 1 B, :9,, ¢)
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at least in a neighbourhood of e=Ad=v=h=8, =
B, =¢ =0 (in these last expressions 8, =g, d, =4, d;y=r,
ds=h, 85 = B,, 8= B, &;=¢). Such soluitons will corre-
spond to the sotution of original set of eqs. (6)—(10} if and
only if the parameters involved satisfy ple, A, v, /i, B,. B, ¢}
=0, which is called the bifurcation equation.

Before solving the problem it is convenient to analyze
the symmelries involved in the problem which will allow us
to anticipate some characteristics of the solution and o
ease the algebra involved. As it can be seen through the
inspection of the formulation, the problern is invariun
under the following sets of symmetries:

X==x, ==t~ —h B,——B,e— —e¢,

¢——0 (12}
x==x0=0+mem—g,h—=-=0 8B ——-8,

B~ —B,p->—¢p {13)
G0 tn Bo ~B e —¢ (14

and from these symmetries it is deduced that

(P(ai A\ o, }l"v Bu! BI‘ e) = -'—QD( —&, )‘9 o, —_’I',s - Bﬂ! B.fs _‘,}v

(15}
@le, A v B, B, e)=—p(—c v, ~h -8, —8, ¢,

{16
(P(b'» }‘v v, hv Bat Bh ‘?) = (P(ﬁ, 'ju 1N hv Bgm '_‘Bh '-'f*). ( ]?)

According with egs. (15)~(17) it can be deduced without
any further calculation that a significant number of co-
efficients @,. ¢, @, are zero. For instance, from eqs. (13)
and (16} it is deduced that the coeflicient ¢, muliiplying the
terms either in &, or in ¢ must be zero, and rom eqs. { Hy
and (17) the same conclusion with respect 1o the coeflicients
of the terms in 2 or in v is obtained. Concerning the
second-order terms, from egs. {16) and (17} it is obtained
thit the coefficients of the terms &2, ¢h, £8,, ve, &%, KB, he.
B}, B,e, and e must be zero, etc. Therefore, the only
frst-order coefficients which are non-zero are those corre-
sponding to the terms in & and in B, and the second-order
coeflicients to be taken into account are those in ¢4, ce, 2,
AB,, vh, ¢8, and B,e. Once the above mentioned non-zero
terms are taken into account the only third-order terms that
can be of the same order as any of the above mentioned
terms are those in o', £87 and ce® Thus the expansion for
¢ can be simpiified to yield

@ = @ult + @3 B, 4+ 20362 + 201360 + 2, 4k
+ 20,528, + 2@,00 + 205508, + 204, 8,0
8+ 30,487 4 dpgpeet o, (18)

where it has been taken into account that ¢, = ¢,, and
@y = @y = 0 Selling ¢ =0 the original problem is recov-
ered and the value of ¢ can be deduced as a funciion of the
remaining parameters 4, o, i, B,, B, and ¢ afler

@l + @5 B, + 24002l + 95 B,) + 20(pash + 035 8,)
+ 205 Bre + 26(@ 24 + @ 30) 4 3600106 BT + @112¢7)
+‘P|||53"‘=0‘ (19}



Note that the terms 24(@,, 0 + 926 8,) and 2u{@.sft + ¢35 8,)
are negligible when compared with @/t + @58, ; therefore,
they can be neglected unless @/t + ¢ 8, = 0. In the same
way the term 3e(@,4 87 + @,72€7) can be neglected provided
204 Bie #0. Although some of first and second order co-
efficients have been calculated previously [5, 9, 12, 13], a
deduction of all of them, for completeness, can be found in
the appendix, 1t must be pinpoinied that @4, is non-zero if
cos (ff) #0. Perales [9] concluded that there was no cou-
pliag between 8, and ¢ in the stability limit, but there was
a mistake in his reasoning, which is only true if cos (f) =
0.

Concerning the relevant third order terms, they have
been calculated in the past. Vega and Perales (5] calcu-
lated that ¢, = —3/2 and Perafes [9] calculated that
3iee = — 72 and 3,y = —3(2r%). Thus, eq. (19) reads

h 3 : 3 3 1
2(5“ _ E) . E B;{’ cos Ur)'} 4= If,(B“ - E -"I) + U(i B" + ‘i-n" f!)

\ .3 3
+a(2f.+u)-—f:(-i—B‘:v}-ﬁe’)-—és-‘:(} (20}

where the underlined terms are in most of cuses, as already
stated, neghigible when compared with some other term in
the cquation,

In order (o get a sunple analytical expression for the
maximum stable slenderness. let us assume that 2(8, — /)
is not too small {when compared with the higher order
terms). In this case the first two underlined terms can be
neglected (otherwise the algebra is much mare involved)
and the maximum value ol 4 {the swhility limit, 2.7,
which is reached in the point where d2fde =0, is

. 3y b3 n
Aevig = (E) (B., ~ 7 B.e cos (ﬁ})

! m? 3
o - B et 21
2 477 T4g2 (2h)
or, using the original dimensioniess variables, to the order
here considered the maximum stable slenderness becomes

3 43 h 3 N3
Ay = ﬂ[l - (5) (Bd T B,e cos (ﬁ))

I ., 3
Obviously, eq. (22) is only of application to liquid bridge
configurations close enough to the reference one (8, =
By=h=¢=0,F=1), but allows us to deduce more gen-
eral conclusions concerning the influence of the perturba-
ltions under consideration on the stability limit, For
instance, within this approximation, there is no coupling
between the different effecis on the variation of the critical
slenderness but between B, and e and, when these two
effects are considered, another important leature pointed
out by eq. {22) is that A,,, does depend on the angle f
between the plane defined by the axes of the disks and the
direction of the lateral component ol microgravity. The
variation with the eccentricity ¢ and the angle # of the
parameter V¥ =V — ] - 2(A/{rn — 1), which can represent
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Fig. 2 Variation with the ecceniricity of the supporting disks, e, af
the reduced niinimunt volumne, V* =V — | ~ XA[n — 1}, of liguid
bridges between equal disks subjected to a lateral Bond nuniber
B, = 0.02

either the minimum stable volume or the maximum stable
slenderness, has been plotted in fig. 2 for liquid bridges with
B, =h =0and B, =0.02, Note that, for fixed B, and ¢, the
stability limit can dramatically change depending on the
angle f.

Another important charactenstic of the stability of lig-
uid bridges that must be remarked is that the combined
eflect of both lateral Bond number and eccentricity (the
term in Bye) can be a stabilizing factor for the figuid
column. Observe that, leaving apart the combined effect of
axial Bond number and unequal disks, which was already
analyzed by Meseguer [12), in the case of non-coaxial disks
the liquid bridge can be more stable if the acceleration has
both axial and lateral components than il enly one of them
is ucting on the liquid bridge.

Finaliy, let us analyze the importance of the two ne-
glected terms in eq. (20) when eq. {21} was obtained. As
already stated these two terms are of importance only when
the term powered to 2/3 in eq. (21) is very small and they
give an analytical explanation on the discrepancies previ-
ously observed between analytical [12, 14] and numerical
f15] results concerning the influence of both axial accelera-
tion and unequal size of the disks on the stability limits of
tiquid bridges. For the sake of simplicity, let us assume .
=08 =¢=0, 50 that ¢q. (20) becomes

/
2(8,, . —1) + i.(B,, _2;,) + 2 —'—gf:] =0 (235
n n 2

If the underlined term is neglected, the expression 4, =
(3/2)**(B, — hr)* is obtained (this last expression was
the one calculated by Meseguer [12]). Such expression has
been represenied for two different values of 4 in fig. 3
{(dashed linegs) and indicate that, up to this order, the
maximum slable slenderness will be A, = mat B, = hin no
maltler what the value of /r is, the maximum stable slender-
ness depending on {8, — 8, | Of course, this behaviour
changes when higher order terms are retained. The stability
limit which results when the full eq. (23} is used has been
represented also in fig. 3 {solid tines). Observe that retaining
higher order terms slightly changes the position of the cusp
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Fig. 3. Variation with the axial Bond number, B,, of the maxinmum
slenderness, A, =na(l =~ 2.0 of axispmmetric liguid bridges
(B, = ¢ = 0) between waequal disks (h # 0) having cylindrival volume
(v = 0} Dashed lies represent the siebitity lmits resulting when the
underfined term int eqg. (23) is neglected, whereas solid lines represent
those obtained when the Jull eq. (23) s vsed. The symbols represei
numerical results

{although the differences are Imperceptible al the used
scale) and that the range of stuble Bond numbers shifis to
larger values. To got an idea of the range of validity of
such anaiytical approximations, some numerical resuits ob-
tained by using a numerical method already published
elsewhere [ 15} have been also pletted in fig. 3 (black sym-
bols). '

3 Experimental Set-up and Experiimental Results

The experiments descgibed in the lollowing have been per-
formed in a miltimetrie liquid bridge facility consisting of a
three-axes table in which the liquid bridge is formed. The
upper disk can be displuaced along the r-axis by neans of a
micrometric screw whereas the Jower disk can be moved
along the xy-plane by means of two micrometric screws
which displace the lower disk along the x-uxis and the
y-axis, respectively. Both disks are equal in radius,
R, =035 mm, Fluid injection or removal is made through
a hole in the center of the lower disk which is conpected to
a calibrated syringe. The experimental set-up aiso includes a
CCD camera and a computer with an image processor. To
enhance the contour of the liquid bridge interface back-
ground uniform illumination was used, The liguid bridge
facility and the CCD camera are mounted on a platform
which can be oriented at any direction with respect to that
of the local gravity acceleration,

The experimental procedure was as follows. First of all,
with the disks in coaxial position and the liquid bridge axis
vertical, the upper disk is placed close to the lower disk.
Then a small amount of working liquid (distilled waler) is
injected and a small liquid bridge is formed. Once the initial
liguid bridge is established, the stenderness is increased by
moving upwards the upper disk while additional volume of
liquid is injected. The result of this preparation process is a
liquid bridge with the desired slenderness and a volume of
Jiquid close to V = | which is used as u reference to calcu-
{ate the valuc of the Bond number. The volume and the
Bond number are calculated by fitting theoretical expres-
sions for the liquid bridge equilibrium shapes to the mea-
sured shapes by a leasi square method similar so that
described in [14]. The calculated value of the bond number
was 8 = 0.020 £ G.001.
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Fig. 4. Minivnum volime of the liguid bridge. V, versus eccentricity.
e, of liguid bridges between equal disks subjecied to a vertival Bond
mimber B, = .02 The symbols represent experimenied  resnles
whereas solid fines correspond 1o theoreiical approxinwitions ab-
tained ax indicated in the text. White symbols (upper crree) corre-
spond o liquid bridges with A = 2.5 whervas Mack sypombals (fower
curve) correspond to figuid bridges with A = 2.0

In the case of liquid bridges placed vertically (8, # Q.
8, = 0}, experimental results are shown in fig. 4. [n this plot
the symbols represent experimental values whereas the
curves are theorclical estimations of the stability limits
obtained as explained below. As it can be observed there is
some scatlering in the experimental points, which is due 1o
the way in which the experiments have been done. In cfiect,
although eaperiments were carefully performed, the han-
dling of the experimental equipment requires the direwt
manipulation of the facility by the operator. This manipulu-
tion, together with the noisy vibrational ambient existing in
any Earth laboratory, is the source of uncontrolled pertur-
balions that explain the scatlering of the experimental re-
sults.

The curves shown in fig, 4 are theoretical estimations
according to eq. (22). After this expression, once the
slenderness is fixed, the variation with the eccentricity of
the minimum stable volume of a liquid bridge belween
equai disks, when subjected to an axial acceleration
(h=8,=0, 8, #0)can be expressed as ¥ = IV, + Je?/(2n°),
where ¥V, stands for the minimum volume stability limit
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Fig. 5. Minimum volume of the liquid bridge, V, versus eccentricity,
e, of fiquid bridges between egqual disks with sfenderness A = 2.0
subjected to a lateral Bond manber B, = 0.02. The symbols repre-
sents experimental vesufis, White (black ) symbols correspond to tie
caflwe =0 (f =r{2} of the angle betveen the direction in which
fateral gravity wcrs and the plune defined by the axes of the disks
whereas soltd lines corvespond to theoretical approximations ob-
tained us indicaced in the rexe

corresponding Lo £, =0.02 and ¢ = 0. Obviously, since eq.
(22) is only vulid close to the reference configuration
(A~m, V~101~0,8,~0,8~0,¢~0), we cannot ex-
pect that the values of ¥, resulting [rom this expression,
Vo=14+2(A}n— 1) + 2(3/2y*E7*, be a good approxima-
tion of the exauct values. This is why in fig. 4 the exact
theoretical values of , (the minimum volume stability
limits corresponding to i=8,=¢=0,8, =0,02) as re-
ported in [2,15] huve been used instead of those given by eq.
{22); these values are V, =0.580 at A = 2.0 and ¥, = 0.785
at A = 2.5,

Two main characteristics can be pointed out after the
resulls shown in fig. 4. The first is that the experimental
points seem 1o give higher values of the minimum volume
stability limits, even when ¢ ~ 0. This cun be explained by
taking into account, as wlready remarked, the different
sources of perturbations existing in an Earth laboratory,
that can cause the breaking of the very small liquid bridges
used in experiments when the configuration is close to the
stability limiit (note that s given perturbation will be more
and more important as the size of the liquid bridge de-
creases). The second aspect o be remarked is that the
agreement belween theoretical predictions and experimental
resulls is good enough lor small values of the eccentricity.
Obviously this agreement lails when the eccentricity is
large, out of the range_of validity of eq. (22).

To experimentally check the infuence of the angle 3 on
the stabiiity limits a second set of experiments was per-
formed. In this case the platform which supports the liquid
bridge facility and the CCI camera was rotated 1/2, so that
the liquid bridge was placed horizontally (B, =0, 8, =
0.02). Experimental results corresponding o0 f =0 and
B =nj2, as well as theoretical predictions as given by eq.
€22}, are shown in fig. § for liquid bridges with 4 = 2.0 and
in fig. 6 for liquid bridges with 4 =2.5. In this case the
above comment with respect to the value of ¥, still holds;
instead of the values ol V, given by eq, (22) the exact
numerical values corresponding 10 h=8, =8 =¢=10

& L e 2

Fig. 6. Mininun volume of the liguid bridge, V., versus ecceniricity,
e, of fiquid bridges between equal disks with stenderniess A = 2.3
subjected to a fateral Bond nmber B, = 0.02. The symbols repre-
seats experimenial resulis, Wiite (hlack) symboly correspond to the
vafue § =0 (f =xf2} of the angle between the direction in witich
fateral gravity wcts and the plane defined by the axes of the disks
whereas solid fines correspand o theoretical approXimations ob-
tained as indicated in the texi

(this is, V;=10.566 at 4 =2.0 and F,=0.693 a1 A =2.3}
have been used (2, 15]. Observe that experimental resubts
show a behaviour similar o thal predicted by eq. (223
liquid bridges are more unstable when lateral gravity acts in
a direction parallel to the plane defined by the uxes of the
disks {ff =@} than when lateral gravity is norma! to this
plane (f = n/2}. Another aspect to be pointed out is thal
the agreement between experimental and analytical resulis
increases as the slenderness increases, as one could expect.

4 Conclusions

A theoretical expression for the stability limit of long liquid
bridges with an almost cylindrical shape when subjected to
a wide varicty of perlurbations, either axisymmetric or’
non-axisymmelric, has been obtained, In addition, the de-
pendence of the stability limit on the eccentricity of the
supporting disks has been experimentaily studied by using
millimetrie liquid bridges.

It has been demonstrated bolh theoretically and experi-
memally that there is a coupling between the two non-
axisymmetric effects under consideration (iateral Bond
number, 8, and eccentricity of the supporling disks, ), the
magnitude of this coupling depending on the value of the
angle f8 between the direction defined by B, and the plune
formed by the axes of the disks. [t must be pointed oul that
this new term, B¢ cos{ff}, has an influence on the stability
of the liquid column similar to the influence due to axial
perturbalions like axial Bend number, 8,, or different sizes
of the disks, h. This result, samehow surprising, shows that
it is possible to stabilize axisymmetric perturbations, like &,
or I, by using combined non-axisymmetric effects like 8,
and e,

Appendix
The calculation of the coefficients ¢, @,;, ¢4 appearing in

eq. (19) requires to solve the problem defined by eq. (11)
plus conditions (7)—(10), once the asymptotic expansions



for g, ¢ and ¢ are introduced in the problem formulation.
In order to get more compact expressions for the different
problems to be solved, let us include the term & sin {x},
which corresponds 10 the solution of the linear probiem. in
the series expansion for g, so that the lerm &,g, will be
8,2, = e(§, +sin{x)). With this choice, eq. {11} reads
M+ +i+qg+ (1 +g)8,cos{0— 3 —d;(1 —)x +
@ sin {x) = 0, where the small parameters §, are as defined
in the text. Boundary conditions remain the same, except
the condition of volume preservation wiiuch, according to
the new definition of g,, becomes

n In
'[dx j(2g + g% dD =40,

-" o

Substitution of the asympiotic expansions for g, ¢, and ¢ in

the problem formulation gives the following sets of first and
second order problems:

First order problems
Eioy Vi TE T dcos (0~ —dsx + g+ @, 5m(x)=0
g xR 8= 14,4+ d,c0s{0)
g:x, ) =g, (x, 0 +2m)

n n

fdx v[gl dg = 21‘(211,-3

-n 0
where 4, stands for the Kronecker deita function (4, = 1 if
i=jand 4, =0ifi #}).
Second order problems
Lioi T i T 8+, + g, + 0, sin{x} =0
where

i !
Ay= -85+ 38085 ™ 3 8iokn T BiBj " Bin)

+ [{1 + Aa‘?)dgl‘gi‘-. + ( ]' + Aj!)d.flg;\_,]

1+ 4,
i
BT 30 {1+ di)deg, + (1 + ajﬁ)amg}]m(&_ﬁ)

|
+ 5 (lj,sljﬁ + Lj,-)'ﬁjs],\’
1,
g:'j[ tm 0) = a5 fj,-'lrdﬂ sin® (9)

g,{x, 0) = g,(x, 0 + 2n)

3 in
J dx J(ng,- +g.£)d0 =0
1]

—a

Observe that there are # =7 problems of fArst order and
that, because g;; = g,,, the number of different problems of
second order will be only nfn +1}/2=28 instead of
n? =49, Before pursuing further it must be pointed out that
since we are interested only in the coefficients ¢y, ;. ¢4,
most of the above second order problems have not to be
completely solved (obviously all first order problems must
be solved because their solutions appear as forcing terms in

the second order problems; and Lhe same happens with
some of the second order problems, namely those of order
et BE, e, eB, and e, because their solutions appear as part
of the lorcing terms in the relevant third order probiems).
In effect, let g stand for any of the functions g,, g, or g..:
it can be easily demonstrated that

[ 2
J sin {x} J(én + G + £) df {dx
1]

=v[[§(ﬂ, 0) ~g(—=, 0)) do (Al}

Therefore, since all differential equations, no matter what
the order is, can be written as g, + £ + § + H(x, 0} +
¢ + ¢ sin x = 0, the application of eq. (Al) yields

é= ——Z-QJJ[g'(n, 0) = (-, 0)) dg
I

"

- J sin {x)

pL
J’Qi’(x, 0) 40 [ du 3. (A2)
0

Note that lor il second order probliems gim) =
g.{~r, 0), so that, in this case eq, (A2) becomes

n in
i .
{p‘.j = —va}t—i ‘[Sln (,\f} jfﬂi’,;(x, 0) do {dx. (AS}
~-K o

The solution of the first order problems are

gl =49, @, =0,
glr_oi ‘P:'—_ 01
t
g;=5(1 + cos (x}), ¢y =10,
x 2
£s= —=c0s {x], Pa=~=,
T T
g5 = x{! +cos {x)), 0ne=2,
!
8=73 (n*—x*cos (0~ f), @,=0,
X
g;r:‘T‘ECOS (O)v ‘P;r=0v

whereas [or the second order problems the application of
eq. {A3) gives :

pi=1,
|
‘P13'—§,
3
Paa T
|
(PIS'_E,
1
‘PJ-:—E.



_3
@35*4,

3
Per = " cos (),

the remaining coeflicients being ¢, = 0, where most of these
zero values were already anticipated in the text after anal-
yzing the symmetries involved in the problem [lormul-
ation.
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