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Non Steady Phenomena in the Vibration of
Viscous, Cylindrical, Long Liquid Bridges'

This paper deals with the dynamic response of long eviindri-
cal viscous fguid bridges subjected to an oscilfutory micro-
gravity field whose frequency varies linearly with time. The
probleny has been solved by using a one-dimensional model
for the dyaamics, decived frein Cosserat theory for coniin-
wum, i which the axial velocity is considered to be constant
over each cross-section of the liquid column. The dynariic
response of the liguid bridge has been obtained by applying
the Laplace transform to the problem fornndation. The re-
sulty obtained show that a variable -frequency exciiation conld
give rise to erroneous measturements of the resonance fre-
gieneies of viscous Hguid bridges.

1 Introduction

The fluid configuration analyzed in this paper consists of a
column of liquid spanning between two coaxial selid disks
ol the same radius, R,, placed a distance L apart, as
sketched in fig. |. The liquid bridge is assumed to be
isothermal and the properties of both the liquid (density, g,
and viscosity, v) and the interface (surface tension, ¢} are
assumed to be uniform and constant, and the cffects of the
gas surrcunding the liguid bridge negligible. Additional
characteristics of the fluid configuration here apalyzed are
that the interface must remain anchored to the edges of the
disks and that the volume of liquid equals that of & cylinder
of radivs R, and length L.

tn the last decade a large number of papers dealing with
the dynamics of liquid bridges have been published, most of
them being devoted to the analysis of resonance phenom-
ena of such fuid configurations. Early studies [1, 2] were
related (o the analysis of the frequencies of resonance
(eigenlrequencies) whercas in the last years the attention
has been focused on the analysis of the response of the
fiquid bridge when subjected fo harmonic perturbations
[3-8], and only a few attempts have been made o analyze
non-harmonic perturbations {9-11). In one of these papers
[10} the dynamic response of long cylindrical liquid brnidges
when subjected to a small change in the value of the axial
acceleration acting on the liquid bridge was caiculated by
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using a ong-dimensional Cosserat model, widely used m
capillary jet problems as well as in liquid bridge problems.
Such a solution of the dynamics of the liquid bridge is
used here to analyze several aspects of the iquid bridge
dynamics which are of importance from the experimentai
point of view, namely the onset of the vibration of the
liquid bridge and the forced vibration of the liquid bridge
when the frequency of the perturbation varies with time.
In the foilowing all physical quantities are made di-
mensionless using the characteristic length R, and the char-
acteristic time, ¢, = (eR}/e)'?. The set of dimensionless
parameters defining the fluid configuration are the slender-
ness, A = LA2R,). the capillary number C =v(pfeR ),
the Bond number B = ggR2ja, g being the axial accelera-
tion, and the dimensionless volume of liquid, ¥ =2r4,
which has been made dimensionless with R},

2 Theoretical Background

Under the assumptions done, the set of nondimensional
differential equations and boundary conditiens for the
axisymmetric, non rotating, viscous flow, according to the
Cosseral model are [10]:
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In these expressions § = F? and O = SW, F(z, 1) being the
dimensionless equation of the liquid gas interface and
WAz, ) the dimensionless axial velocity which, in this
model, is uniform in each plane parallel to the disks.
Boundary conditions state that the interface must remain
anchored (o the disk edges, S(+., ) =1, and that the
axial velocity is zero at each one of the disks, Q{ + 4, ) =0,
whereas the initial conditions are that the liquid bridge is at
rest at ¢ =0, Oz, 0) =0, its shape being that of a cylinder,
Siz, 0y = 1, which implies B{fy =0 for + < 0.

In [10] it was assumed that the Bond number changes al
¢ =0 from the initial value B=0toa newone B=¢, ¢ « |,
that is B(f) = es(1), #°(r) being the Heaviside function
(=0 for t <0 and A =1 for 1 >0). In view of such
perturbation the variables were expanded as S=1+
ex,0z, O+ Og), Q =¢qlz, 1) + Os). The introduction of
these expressions in the problem formulation, neglecting
second order terms, and the elimination of the variable
5,(z, r) from the momentum equation by using the continu-
ity equation allows to formulate the problem in lerms only
of the variable ¢(=. 1):

Yoo — % Gorze T+ % q4.: + % Goozz + 'é' C‘!.«:.—.-.- '_BC(}I{:: = _'7(0! (5)
boeundary conditions being ¢(+A4,7) =0, g.{£ A, =0,
and initial conditions g(z, 0) =0, ¢.(z,0) = 0.

The application of the Laplace transform to the last
equation allows to calculale the liquid bridge response in
the Laplace domain as well as in the time domain by using
the Inversion Theorem, in such a way that the dependence
of the liquid bridge interface on the dimensionless time is
given by

_ A = Dz, )
5,(z, 0 = 2(, ~ i sin A) -y m exp (%, 1),

(6)

where

Dz, by =8, sinh 4 cosh 0,z — 8, sinh 0, A cosh 8,2, (7)
Doz, ) = 8,0,(sinh 8, A sinh &z — sinb 0, 4 sinh 0,2), (8)
and
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In these expressions A, are the roots of D(A, /) =0, which
in general are complex, /i, =y, +iw,; 0, and @, are related
to it and C throvgh the charactenistic equation

{
(I +Z;'1C)0‘+(1—i!ﬂ-ﬁhC‘){)3+2h2=0. (10)
Once the liquid bridge response (o a perturbation consisting

of a sudden change in the value of Bond number (B = ¢ )
is calculated, s,(z. 1), the response s(z, ¢) to any variation of

sz =%

Bond number B(r) = £b(s) can be calculated by applying the

Duhamel’s theorem

s(z, ) =8y, (o, 6) + fb{rj.f,,_(f ~r1jdr (i}
[¥]

and taking into account that s, (z, 0) = 0 finally results

Jb{r} exp [, (1t — 1)) d1, {12}
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3. Results

The considered perturbation has been b(r) = sin af7, that is,

the axial microgravity varies sinusoidaily with a frequency
that increases lingarly with the time (note that the instanta-
neous frequency is defined as w(f) = 2ar). Such a kind of
perturbation coutd be considered as an ideatization of the
one available in the Fluid Physics Moduie, one of the
multiuser experimental facilities provided by the European
Space Agency for fluid experimentation aboard space plat-
forms like Spacefad (this equipment has been fown in past
Spacelab missions and it will be flown in the next Spacefab-
D2 mission). In the Fluid Physics Module one of Lthe disks
supporting the liquid bridge can be vibrated at constant
amplitude with {requencies thal change linearly with time,
the minimum rate being 1/90 Hz s~'. Of course this kind of
perturbation is not exacily equal to a time variation of the
Bond number, the main difference being that, as stated
elsewhere [6] an oscillatory Bond number only excites non-
symmetric oscillation modes {in respect'to the middle plane
parallel to the supporting disks) whereas the vibration of
one of the disks excites both non-symmetric and symmetric
oscillation modes. However this difference is not relevant if
the interest is mainly focused on the measurement of the
Mrequency of resonance corresponding to the first oscillation
mode, so that in the following the analysis is kept within
this boundary,

Since there are a large number of parameters involved in
the theoretical model, it is convenient to fix the values of
some of them in order to limit the boundaries of the study.
Therefore, 1aking into account that silicone olls are nor-
mally used as working liquid for liquid bridge experi-
mentation either on Earth or in space laboratories, we
have selected the physical properties of these liquids
{g = 10°kgm~?, o=002Nm~', and viscosities ranging
from 10~¢*m?s~" to 10-3m? s ') to estimate the values of
the parameters involved. Then, assuming that the radius of
the disks is R, = 0.015 m, the value of the characteristic
time becomes ¢, 2 0.4 s whereas the parameter of viscosity
ranges from 107% to 1072 On the other hand, taking into
account the above mentioned value of the frequency ramp
in the Fluid Physics Module, one gets a = 0.005.

The introduction of the selected law for the time varia-
tion of Bond number ({7) =sinat?} in expression (12}
allows to calculated the time variation of the liquid bridge
interface, Unforwunately, for the selected perturbation the
integrals appearing in (12) must be computed numerically,



and some care is needed during such calculations in order
to avoid aliasing errors. To measure the response of the
liquid bridge to the imposed perturbation the adopted crite-
rion has been to calculate the variation with time of the
diameter of the interface at the section situated at a quarter
of the total length, s(A/2, 1); note that this section is close
to the one where the deformation of the liquid bridge
interface becomes maximum. As already stated, the atien-
tion has been mainly focused on the resenance correspond-
ing to the first oscillation mode.

The response of a liquid bridge with A =2 and € =0.05
to a perturbation characterized by the value @ =0.005 is
shown in fig. 2. In this plot, as well as in the following
figures, the abscissae are the dimensionless pulsation, @ =
2at instead of the dimensionless time. As it can be observed
the amplitude of the deformation of the liquid bridge inter-
face increases as the frequency grows until a relative maxi-
mum appears (which rougbly corresponds to the first
resonance), then the amplitude decreases and it will increase
again close to the next relative maximum (that correspond-
ing to the 1hird resonance, not shown in fig. 2, according to
the type of perturbation here considered) and so on,

For frequencies below the maximum of the interface
deformation, the liquid bridge response is a wave of
monotonically increasing amplitude and frequency, but the
behaviour is rather different for frequencies larger than the
resonance. The reason for this difference is that once the
resonance is excited the liquid bridge starts to oscillate with
its natural frequency (although, because of viscosity, the
amplitude of such oscillation decreases with timej and at
the same time the liquid bridge is subjected to a forced
oscillation whose frequency increases as the time grows
{such frequencies are greater than the one corresponding to
the resonance).
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Fig. 2 Variarion with dimensionless pulsation, w (er dimensionless
ume, § = w{la} of the deformation of the liguid bridge interface at
the section 2 = A12, s(A]2. 1) The results correspond o a figuid
bridge with slenderness A =2 and viscosity parameter C = 0.05
subjected to a perturbation whese frequency varies finearly with time
with a sweep a = 0.005
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Fig. 3. Variaion with dimensionless pulsation, o (or dimensionless

time, 1 =w{l2a) of the amplinele of the deformation of the liguid .
bridge interfuce at the section = = AJ2, A =nmax [(A]2, 1)l The

results correspond o fiquid bridges with slenderness A =2 and

different vaiues of the viscosity parameter C subjected 1o a perturba-

flon whose frequency varies fincarly with time with a sweep a.
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Fig. 4. Variation with the frequency sweep a and the parameter of
viscosity C of the dimensionlesy pulsution of resonance corresponding
to the first oscillation mode w,. The results correspond 1o a liguid
bridge with slendertiess A =2
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Another characteristic of the liquid bridge response to be
poinied out is that a criterion based on the maximum
interface deformation for the measurement of resonances
could lead to unacceptable errors in an experiment with a
procedure similar to the one here analyzed. In effect, if this
criterion were adopted to analyze the results shown n fig, 2,
the measured dimensionless resonance pulsation corre-
sponding to the first oscillation mode would be w, =0.90
instead of the correct value w, = .73 which results from a
harmonic excitation apalysis [6]. This shift on the appareat
lrequency of resonance depends on the viscosity of the
hquid as well as on the frequency sweep «, as shown in fig.
3, where the liquid bridge responses of the same fluid
configuration (A = 2} with different viscosities and different
frequency ramps have been represented. The curves shown
in fig. 3 are the locii of the maxima of the absolute value of
s(A[2, 1), so that they represent the variation with time of
the amplitude of the delormation of the radius at the
section © = Af2 (according to Lhe definition § =1 +4as =
Fi={l+e/) =1+2ef+ O?), so that, within this ap-
proximation s(z, 1) = 2(z, 1), f{z, 1) being the expanded de-
formation of the radius of the interface at section z). Note
that, in order to compare the effect of the frequency ramp
of the excitation, in the abscissae frequency instead of time
has been represenied, that means that, since 1 = w{2a, in
each of the plots each one of the curves has a different time
scale (depending on the value of a) as illustrated in the
insert.

Finally, the influence of both ¢ and C on the pulsation of
resonance, defined as the pulsation for which the interface
deformation is maximum, is shown in fig. 4. Note that the
differences between the measured frequencies and the real
frequency of resonance increases as the frequency ramp
increases, and that the contrary oceurs with the viscosity.
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