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Abstract—The stability of long liquid bridges under non-axisymmetric disturbances like a micro-
gravitational force acting perpendicular to the liquid bridge axis or a non-coaxiality of the disks is analyzed 
through an asymptotic method based on bifurcation techniques. Results obtained indicate that such 
non-axisymmetric effects are of higher order than those produced by axisymmetric perturbations. 

1. INTRODUCTION 

In the last 10 years, a significant number of the­
oretical and experimental papers dealing with the 
behavior of liquid bridges in a low gravity environ­
ment have been published. Such studies are inter­
esting because a liquid bridge is, under a strictly 
mechanical point of view, similar to the fluid 
configuration appearing in the crystal growth process 
known as the floating zone technique. In most of 
these papers (a short review of the literature in this 
field can be found in Meseguer and Sanz[l]) only 
axisymmetric liquid bridges under axisymmetric per­
turbations are considered, and only in a few of them 
non-axisymmetric effects like the C-mode[2,3] or 
gravitational forces acting perpendicular to the liquid 
bridge axis[4,5] have been treated. 

In each one of the two European missions of 
Spacelab (Spacelab-1 and Spacelab-Dl) an experi­
ment dealing with the stability of long liquid bridges 
under mechanical disturbances has been performed. 
One of the problems arising in the analysis of 
such experimental results is that experimental 
configurations were not exactly those foreseen be­
cause of a disalignment of the axes of the disks 
supporting the liquid column (Spacelab-1)[6]. The 
question to be answered is how this disalignment 
modifies the stability of the liquid bridge. 

Theoretical analysis and experiments performed on 
Earth seem to indicate that non-axisymmetric per­
turbations are less important than axisymmetric ones. 
For example, Coriell et al.[4] stated that the effect of 
a transversal microgravity on the stability limit of a 
slender liquid bridge is of the order of the square of 
the perturbation, whereas the effects produced by 
axisymmetric perturbations like small volume 
changes, axial microgravity or a small difference in 
disks diameter are of the order of the perturbation in 
the first case and of the order of the two-thirds power 
of the perturbation in the second two[7]. 

In this paper, the stability of long liquid bridges 
under non-axisymmetric perturbations is analyzed by 
using an asymptotic method based on the idea of the 
bifurcation equation, already used in the case of 
isorotating liquid bridges by Vega and Perales[3]. 
This method simplifies the calculation of the equi­
librium shapes (either stable or unstable) and stability 
limits, allowing the knowledge of the character of the 
branching points (sub- or supercritical). 

The main result here obtained is that non-
axisymmetric perturbations have a negligible effect 
on stability limit when compared with axisymmetric 
ones. An additional consequence of the analysis here 
presented is that, in most cases, the study of the 
symmetries appearing in the problem is sufficient to 
establish the order of the modification of the max­
imum stable length of a liquid bridge under a given 
perturbation, without solving the whole problem. 

2. PROBLEM FORMULATION 

Let us consider a slender liquid bridge as sketched 
in Fig. 1: a liquid column held by surface tension 
forces between two circular disks of radius R,, placed 
a distance L apart. Both disks are parallel but 
non-coaxial, 2E being the distance between both 
axes. The liquid bridge is subject to a transversal 
gravity g and its volume is equal to that of a 
cylindrical column held between two coaxial disks of 
radius R0 at a distance L(V = TrRjL). 

Let R = R(Z,0) the equation of the liquid bridge 
interface. If the fluid is at rest the equation governing 
the interface shape is obtained by expressing the 
equilibrium between the different pressure forces at 
the interface 

a (1/R, + 1/Rj) + P0 - P„ + pgR cos(0 + a) = 0, (1) 

where a is the angle between the plane defined by the 
axes of the disks and the direction of transversal 
microgravity, g the acceleration due to this gravity, a 
the surface tension, R, and R2 the principal radii of 
curvature, p the liquid density, P„ the ambient pres-



L/2 

Fig. 1. Geometry and coordinate system for the perturbed 
liquid bridge. 

sure and P0 a yet unknown constant giving the origin 
of pressures inside the liquid bridge. To calculate P0 

the condition that the volume of the liquid bridge 
remains equal to that of a cylinder must be imposed, 
that is 

L/2 

dZ 
-L/2 

R2(Z,0)d0 (2) 

The boundary conditions are 

R ( ± L / 2 , 0 ) = ± E c o s 0 

+ (R2, - E2 sin2 V/2 R(Z,0) = R(Z,0+27t), (3) 

which state that the liquid bridge remains anchored 
to the disk edges and has azimuthal periodicity, 
respectively. 

As it will be demonstrated later, within the approx­
imation of our study, the effects on stability limits 
of the considered non-axisymmetric perturbations 
(lateral microgravity and axes disalignment) are de­
coupled, that is, the stability limit variation is inde­
pendent of a. Therefore, from now on, only the case 
a = 0 will be considered. Observe that this implies 
that the microgravity direction is on the plane defined 
by disk axes. 

Introducing the following dimensionless variables 
and parameters 

A = L/2R0, E = E/R0, B = pgB&a, 

P = (P0-Pa)R0/<r, 

z = Z / R 0 , F(z,0) = R(Z,0)/Ro, (4) 

where A is the liquid bridge slenderness, E the 
dimensionless axes separation, B the gravitational 

Bond number and P the dimensionless reference 
pressure, the formulation of the problem becomes 

M[F} + P + BFcosO = 0 , (5) 
"A r2n 

dz F2{z,0)d0 = 4;r/l, (6) 
-A Jo 

F(±A,0)= ±EcosO +{l -E2sm20)1'2, 

F{z,0) = F(z,0 + 2n), (7) 

M [F] being the dimensionless local mean curvature, 
M[F] = R„(l/R, + 1/R2), which can be expressed 
as [8] 

M[F\ = {F{\+ Fl){FM -F) + FFz:(F
2 + F2) 

- 2F„(F0 + FFF0:)][F2(\ + F2
:) + F2}^'2. (8) 

3. CRITICAL POINTS 

Critical points are given by the solution of the 
linear problem. Since in the base B = 0, E = 0 the 
system (5)-(7) has the trivial solution F = 1, P = 1, 
let us expand these variables in the form 

F(z,0)=\+tf(z,0) + Q(e2), 

P = l+ep+Q(e2), (9) 

where £ « 1 is a small parameter standing for the 
interface deformation. 

After substituting these expressions in the system 
(5)-(7) the following linear problem results 

f+L+f00+P = o, (10) 

dz /(z,0)d0 =0 , (11) 
i Jo 

/(±/l,0) = O, f(z,0)=f(z, 0+2n). (12) 

At it is well-known[9] all solutions to this problem 
are axisymmetric, the expression of the interface 
depending on A. For A = kit (k = 1, 2 , . . . ) the inter­
face shape results 

/ ( z ,0 ) = sin 
knz 

/ > = 0 , 

whereas the case A = Ak 

Ak — tan Ak = 0) yields 

f(z,0)=-p(l- cos z 

cos A 

(13) 

(14) 

For B -> 0, E -> 0 the bifurcation to non-
cylindrical equilibrium shapes (although axisym­
metric) appears only near A = kit or A = Ak (Implicit 
Function Theorem [10]). Nevertheless, only the bifur­
cation near A = n, which is the smallest value of A, 
is significant in practice because this point represents 
the transition from stable to unstable shapes. The 
following bifurcation points cannot be reached be­
cause the liquid bridge will break before. 

Therefore, in the case B = 0, E = 0, the instability 



appears at A = n and the unstable equilibrium shapes 
are defined by 

/ ( z , 0 ) = sinz, p = 0 . (15) 

In conclusion, eqn (15) is the solution that must be 
perturbed to calculate the variation of the maximum 
stable slenderness when non-axisymmetric effects like 
transversal microgravity or non-coaxiality of the 
disks are present (B ^0, E # 0). 

4. BIFURCATION EQUATION 

Since non-axisymmetric effects decrease the slen­
derness at which the liquid bridge becomes unstable, 
let us introduce, as in Rivas and Meseguer[l 1] a new 
parameter X measuring the slenderness decrease due 
to the effect of transversal microgravity or disks 
offset, and a new variable x which normalizes bound­
ary conditions 

X=-
7t - A 

(16) 

To calculate the variation of the critical slenderness 
with B and E a standard bifurcation technique can be 
used[3], retaining higher order terms than those in the 
linear problem. Let g(x,9) and q the expressions 
representing these higher order terms in the expres­
sions of the interface shape and pressure, respectively. 
Then, by taking into account expressions (15) the 
interface shape and pressure can be written as 

F(x,0)=* l+e sinx+g(x,8), P = \+q. (17) 

Therefore, after substituting expressions (16) and 
(17) in eqns (5)-(7) the problem formulation becomes 

M[\ +e sinx +g(x,6)]+ 1 +q 

+ B[l +e sinx + g(x,8)]cos8 =0 , 

dx [1 + e sinx + g(x,8)]2dd = 4n2 

g(x,6)= g(x,8+2n), 

g{±n,6)= ±Ecos6 +(l-E2sm2eyn 

- 1 = ± £ c o s 0 -\E2sm26 +.. 

(18) 

(19) 

(20) 

One additional condition must be added to unique 
define the parameter e, 

dx g(x,0)sinxd9=0; 

observe that this condition defines e as 

f2* 
dx F(x,0)s inx dd 

.1 - » Jo 
£ 

(21) 

(22) 
dx sin2 x d9 

The problem (18H 2 1 ) provides e, g(x,9) and q in 
terms of B, E and X. As B -* 0, E -> 0 such functions 
can be calculated by means of standard perturbation 

techniques[12,13]. However, a direct use of this tech­
niques requires anticipation of certain properties of 
the solution. This may be avoided by using the idea 
of the bifurcation equation[14,3]. Instead of eqn (18) 
let us consider the following equation 

M[\ +£ sinx +g(x,6)]+ 1 +q + B[\ +e sinx 

4- g(x,6)]cos6 + 4> sinx = 0. (23) 

The Implicit Function Theorem[10] shows that 
expressions (19)—<21) and (23) uniquely define 

4>=<P(e,B,E,X), 

g=g(x,8;e,B,E,X), p = p (e,B,E,X), (24) 

at least when e, B, E, and X are sufficiently small. 
Such solutions correspond to the solution of eqns 

(18H21) if and only if e, B, E and X satisfy 

>(e,B,E,X) = 0, (25) 

which is called the bifurcation equation [observe that, 
in this case, eqn (23) is identical to eqn (18)]. 

5. BIFURCATION ORDER 

Before solving the problem (19>—(21) and (23) a 
study of the symmetries involved in the problem will 
allow us to anticipate some characteristics of the 
solution. Therefore, since the problem is invariant 
under the following set of symmetries 

x-* —x, e-+—e,E-*—E, <f> -* —<f>, (26) 

x -> — X, 0 -* 9 +1Z,£ - • — £, 

B-*-B,(j) -> -cf), (27) 

0-> 0+n,B-+ -B,E-+-E, (28) 

and its solution is unique, the function 4> must satisfy 

<t> (e,B,E,X) =-<t>(-e,B,-E,X), (29) 

(f>(e,B,E,X)= -4> {-(.,-B,E,X), (30) 

<t>{e,B,E,X) = (j>(c,-B,-E,X). (31) 

For the shake of clarity, from now on only the two 
simple cases 5 = 0 , E # 0 and 5 ^ 0 , E = 0 will be 
considered. Let us assume 4>{t,B,E,X), 
g{x,9\e,B,E,X) and q{e,B,E,X) to be expanded as 

M - 1 

g(x,6;£,B,E,X)= Y. t'B'E^'gyuixJ), (32) 

q(e,B,E,X)= £ e'B'EkX'q, ijkl-

Then, concerning <p(e,B,E,X), its Taylor expan­
sion can be simplified taking into account eqns 



(29H31)- Therefore, in the case 5 = 0 , E # 0 [eqns 
(29) and (30)] such Taylor expansion will be 

4>{e,0,E,X) = ect>\(e\E\k) 

= 3̂OOO£3 + 0IO2O£-£2 + ^IOOI^ + •• •> (33) 

whereas the case 5 # 0, £ = 0 [eqns (30) and (31)] 
yields 

0(£,5,O,A) = £02(<:2,52,/1) 

fle
J + < «£fl2 + 4>mleX +.... (34) 

Therefore, setting 0 = 0 , eqns (33) and (34) give 
the slenderness decrease A as a function of the 
interface deformation e, the non-axisymmetric per­
turbation E or B, respectively, and the corresponding 
coefficients "ijkl- For instance, in the case 5 = 0 , 
E =£ 0 such expression will be 

^ = -(<t>vml4>m\)i2 ~ (</)io2o/</'iooi)£2 + (35) 

This expression has been represented in Fig. 2. 
Since the maximum stable slenderness is reached 
when e = 0, it can be concluded that critical slender­
ness should vary in the form 

K = - W>io2o/</,iooi)£2 - (4>nwl $ioo\)82 + • •• -(36) 

Observe that, since non-axisymmetric effects de­
crease the critical slenderness both coefficients, 
</>io2o/0iooi a n d 0i2oo/0iooi. m u s t be negative. 

6. RESULTS AND CONCLUSIONS 

When Taylor expansions (32) are introduced into 
eqns (19)—(21) and (23) and the coefficient of each 
monomial c'BJEk2.'is set to zero, a recursive sequence 
of linear problems results, which allow calculation of 
Qijkh lijki ar"d giJki(x,8). Then, the following results are 
obtained 

g)<m(x,d) = sin x, 

ftooo(^0)=-1^i 

£oooi(*,0) = O, 

\ cos 2x, 

B*0\ \ 
£ * 0 \ \. 

— r - f 

Fig. 2. Bifurcation diagram. Liquid bridge deformation e vs 
slenderness A. This plot shows the influence of the dimen-
sionless transversal microgravity B or disk offset E in the 

bifurcation. 

oio(x>#) = - cosfl, 
71 

g\mo(x,0) = - cos 0 (1 + cos x), 
n 

goo2o(x,e) = — cos20 ( x2 + 1 -
cosh ̂ 3 * 

cosbu/37r 

goioo(x,0) = {(n2-x2)cos0, 

g\ioo(x,G)= ~(.x cosx + x - 3 sin x) cos 0, 

go2O0(x,0) = - ^ ( T I 2 - X2)2 + l(x2 + K2 COS X) 

^2 
-(1 + cos;t)-

cosh./3A' 

1 
-{n2-x2 

6 \ cosh^/^Tt 

+ - | ^ - 7 t 
2 cosh,y3.*:\ 

cosh,/37i/. 
cos 20; 

(37) 

•Mooo — 02ooo ~~ <Poooi — <Pooo2 — 0ooio — r i o io ~~ 0 , 

~~ "" ~~ ~~ "51100 = 00200 = 0, 

"3000 ' ; , 01001=2, 

^ooii — <rmio ~~ Voioo — Voioi 

3 

2 

3 

2 ^ ' 
(38) 

where most of these coefficients have been directly 
canceled, as resulting from the symmetries analysis 
presented in Section 5. Therefore, according to ex­
pressions (38) when non-axisymmetric effects are 
considered the critical slenderness decreases in the 
form 

; - 4 ^ 2 + T 5 2 + -
(39) 

which coincides with the result obtained by Coriell et 
al.[4] in the case B ^ 0, E = 0. 

An important characteristic to be pointed out is 
that the results here obtained do not depend on the 
angle between the plane defined by the axes of the 
disks and the direction of transversal microgravity 
(see Fig. 1), so that eqn (39) remains the same 
although this angle was not equal to zero. In con­
sequence, it must be noted that there is no coupling 
between the two considered non-axisymmetric per­
turbations, that is, the term of order BE is equal to 
zero. 

In conclusion, it has been demonstrated that, in the 
two cases analyzed, branching is subcritical, and that 
a cylindrical long liquid bridge will be stable when its 
slenderness is smaller than the critical slenderness 

Ac = n 
3 , n2 . 

E2--B2 + . 
An2 4 

(40) 



On the other hand, the expression for the stable 

equilibrium shapes is 

F{x,6) = 1 + Egmo(x,0) + E2
goo20(x,6) 

+ Bgom{x,6) + B2
g()2m(x,8) + ... (41) 

where the functions gijk, are given by the expressions 
(37). 
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