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Abstract—The stability of jong liquid bridges under non-axisymmetric disturbances like a micro-
graviiational force acting perpendicular to the liquid bridge axis or a non-coaxiality of the disks is analyzed
through an asymptotic method based on bifurcation techniques, Results obtained indicate that such
non-axisymmetric effects are of higher order than those produced by axisymmetric perturbaticns.

1. INTRODUCTION

In the last 10 years, a significant number of the-
oretical and expenmental papers dealing with the
behavior of liquid bridges in a low gravily environ-
ment bave been published. Such studies are inter-
esting because a liquid bridge is, under a strictly
mechanical point of view, similar 1o the fluid
configuration appearing in the crystal growth process
known as the floating zone technique. In most of
these papers {a short review of the literature in this
field can be found in Meseguer and Sanz{l]} only
axisymmetric liquid bridges under axisymmetric per-
turbations are considered, and only in a few of them
non-axisymmetric effects like the C-mode[2,3] or
gravitational forces acting perpendicular to the liguid
bridge axis[4,5] have been treated.

In each one of the two European missions of
Spacelab (Spacelab-1 and Spacelab-D1) an experi-
meni dealing with the stability of long liquid bridges
under mechanical disturbances has been performed.
One of the problems arising in the anaiysis of
such experimental results is that experimental
configurations were not exactly those foreseen be-
cause of a disalignment of the axes of the disks
supporting the liguid column (Spacelab-1){6]. The
question to be answered is how this disalignment
modifies the stability of the liquid bridge.

Theoretical analysis and experiments performed on
Earth seemn to indicate that non-axisymmetric per-
turbations are less important than axisymmetric ones.
For example, Coriell er al.[4] stated that the effect of
a transversal microgravity on the stability limit of a
slender liquid bridge is of the order of the square of
the perturbation, whereas the effects produced by
axisymmetric perturbations like small volume
changes, axial microgravity or a small difference in
disks diameter are of the order of the perturbation in
the first case and of the order of the two-thirds power
of the perturbation in the second two[7].

In this paper, the stability of long liquid bridges
under non-axisymmetric perturbalions is analyzed by
using an asymptotic method based on the idea of the
bifurcation equation, alrcady used in the case of
isorotating liquid bridges by Vega and Perales(3].
This method simplifies the calculation of the equi-
librium shapes (either stable or unstable) and stability
limits, allowing the knowiedge of the character of the
branching points (sub- or supercritical).

The main result here obtained is that
axisymmetric perturbations have a pegligible effect
on stability limit when compared with axisymmetric
ones. An additional consequence of the analysis here
presented is that, in most cases, the study of the
symmetries appearing in the problem is sufficient 1o
establish the order of the modification of the max-
imum stable length of a liquid bridge under a given
perturbation, without solving the whole problem.
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2. PROBLEM FORMULATION

Let us consider a slender liquid bridge as sketched
in Fig. 1: a liquid column held by surface tension
forces between two circular disks of radius R; placed
a distance L apart. Both disks are parallel but
non-coaxial, 2E being the distance between both
axes. The liquid bridge is subject to a transversal
gravity g and its volume is equal to that of a
cylindrical column held between two coaxial disks of
radius R, at a distance L(V = nRiL),

Let R =R(Z,8) the equation of the liquid bridge
interface. If the fluid is at rest the equation governing
the interface shape is obtained by expressing the
equilibrium between the different pressure forces at
the interface

a(/R, + 1/R;)+ Py — P, + pgRcos(@ +a) =0, (1)

where a is the angle between the plane defined by the
axes of the disks and the direction of trangversal
microgravity, g the acceleration due to this gravity, ¢
the surface tension, R; and R, the principal radii of
curvature, p the liquid density, P, the ambient pres-



Fig. i. Geomeltry and coordinate system for the perturbed
liquid bridge.

sure and P, a vet unknown constant giving the origin
of pressures inside the liquid bridge. To caleulate Py
the condition that the volume of the liguid bridge
remains equal to that of a cylinder must be imposed,
that is

Lid 1a
dzj R¥(Z,0)d0 = 2rnLR}. )
o
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The boundary cenditiens are

R(+L{%8)= +Ecos?
+(Ri—-Esin* @), R{Z.0)=R{(Z,0 4+ 2n), (3)

which state that the liquid bridge remains anchored
to the disk edges and has azimuthal periodicity,
respectively.

As it will be demonstrated later, within the approx-
imation of our study, the effects on stability limits
of the considered non-axisymmetric perturbations
(lateral microgravity and axes disalignment) are de-
coupled, that is, the stability limit variation is inde-
pendent of «. Therefore, from now on, only the case

=0 will be considered. Observe that this implies
that the microgravity direction is on the plane defined
by disk axes.

Introducing the following dimensioniess variables
and parameters

A=LP2R, E=ER, B=pgRia,
P = (P, - P,)Ry/s,
z=Z/R,, F(z2,0)=R(Z,0)/R,, ()

where A is the liquid bridge slenderness, E the
dimensionless axes separation, B the gravitational

Bond number and P the dimensionless reference
pressure, the formulation of the problem becomes

M[F]+ P+ BFcos =1, (5)

A 2
j d- j F(z,0hd@ = 4r A, (6)
- 3

F(L£A,0)=+Ecost? +{1 — Etsin? 0)'?,
FE0) =FE0 +20), (7)

M {F] being the dimensionless local mean cutvature,
M[f]=Ry(I/R, + |/R,}, which can be expressed
as [8)

MIF) = [F(l + FI(Fy— F) + FE(F + F})

— 2FAFy+ FERUF(L+ F) + FiI% (8)

3. CRITICAL POINTS

Critical points are given by the solution of the
linear problem. Since in the base 8 =10, E=0 the
system (5)}—(7) has the trivial solution F =1, P =1,
let ws expand these variables in the form

F(z,0) =14 ¢f (2,00 + 0(e?),
P=14eg+0H, 9

where e« 1 is u small parameter standing for the
interface delormation.

Alter substituling these expressions in the system
(5)-(7) the following linear problem results

fHletfutp=0, (10)
r dz f‘f{z,o)do =0, an
f(£A,8)=0, f(z0)=F(z, 0+2n). (12)

At it is well-known[9] all solutions to this problem
are axisymmetric, the expression of the interface
dependingon A. For A =kn {k =1, 2,...) the inter-
face shape results

knz
J(z,0)=sin (7) p=0, (13)
whereas the case A=, {where A, satisfics
A, —1an A, =0) yields
cos
50)=~ - 2
70 p(l CosA) (14)

For 8-0, £-0 the bifurcation tc non-
cylindrical equilibrium shapes ({although axisym-
metric) appears only near A = kx or A = A, (Implicit
Funetion Theorem [10]). Nevertheless, only the bifur-
cation near A = x, which is the smallest valug of A,
Is significant in practice because this point represents
the transition from stable to unstable shapes. The
following bifurcation points cannot be reached be-
cause the liquid bridge will break before. '

Therefore, in the case B = 0, E =0, the instability



appears at A = n and the unstable equilibrium shapes
are defined by

S(z,0)=sinz, (L5)

In conclusion, eqn (15) is the solution that must be
perturbed to calculate the variation of the maximum
stable slenderness when non-axisymmetric effects like
transversal microgravity or non-coaxiality of the
disks are present (B #0, E #0).

5 =0,

4. BIFURCATION EQUATION

Since non-axisymmetric effects decrease the slen-
derness at which the liguid bridge becomes unstable,
let vs introduce, as in Rivas and Meseguer[11) a new
parameter 1 measuring the slenderness decrease due
to the effect of transversal microgravity or disks
offset, and a new variable x which normalizes bound-
ary conditions

(16)

To calculate the variation of the crilical slenderness
with 8 and £ a standard bifurcation technique can be
used[3], retaining higher order terms than those in the
linear problem. Let g{x,8) and ¢ the expressions
representing these higher order terms in the expres-
sions of the interface shape and pressure, respectively.
Then, by taking into account expressions (15) the
interface shape and pressure can be written as

F,0)=1+esinx+g(x,0), P=1+g (U7

Therefore, after substituting expressions (16) and
(17) in egns (5)—(7) the problem formulation becomes

M tesinx+g(x0)]+14+4

+ B[} +esiny +g(x,M]cosd =0, (18}

n in
J de [l +esinx +g{x,8)Fdg =4z, (19)
—-r [

g{x,0)= g(x.8 +2n),
g(xmd) = +Ecos® + {1 — E*sin*@)"?
—1=+Ecosf —iL¥sin*0 +.... (20)

One additional condition must be added to unique
define the parameter ¢,

n In
j dxj g{x,f)sin x df = 0; (2t
- 0

observe that this condition defines ¢ as

x In
J dx f F{x,0)sinx df
LI L . (22)

€= n i
J dx J sin? x 4@
-7 Q

The problem (18)}(21) provides ¢, g (x,0) and ¢ in
terms of B, Eand 4. As B — @, £ — 0 such functions
can be calculated by means of standard perturbation

techniques|i2,13]. However, a direct use of this tech-
niques requires anticipation of certain properties of
the solution. This may be avoided by using the idea
of the bifurcation equation(i4,3]. Instead of eqn (18)
let us consider the following equation

M[1+esinx +g{x,0)]+1+q+B{l +esinx
23)

The Implicit Function Theorem{10] shows that
expressions (193-(21) and (23) uniguely define

¢ =¢(,B,E1),
g =gx8:¢,8E2),

+ g{x,8))cos® + ¢ sinx =0.

p=pEB8,EL), (4)

at least when ¢, B, E, and 1 are sufficiently small.

Such solutions correspond 1o the solution of eqns

{18)}21) if and only i ¢, B, E and A satisly
D, BEA) =0,

which is called the bifurcation equation [observe that,
in this case, eqn (23} is identical to eqn (18)].

(23)

5. BIFURCATION ORDER

Before solving the problemn (19(21} and (23) a
study of the symmetries involved in the problem will
allow us to anticipate some characteristics of the
solution. Therefore, since the problem is invariant
under the following set of symmetries

X—= —xt— =g E— —E ¢+ 0, (26)
X— —x,0+804+nmec— —¢

B——-B,¢ - -9, (27)
00—+ 8+78, 8-~ —-B FE - —FE, (28)

and its solution is unigue, the function ¢ must satisfy

e, B EAy=—¢(—¢, B, —FE i) 29)
(. B EA)=—d(~¢,—B,EDL), 30
¢, B EA)=¢(,—8B —FA). 31

For the shake of clarity, from now on only the two
simple cases B =10, £#0 and B #0, E=0 will be
considered. Let us assume ¢ (¢, B E L),
gix,0;¢,B,EA) and g{¢, B, E, 1) 10 be expanded as

¢ (B, EL) = _Zl EBE A B,
Wje
kim]

g(x,ﬂ;é, B,E,/{] = Z SIBJ.E*A.{&-I—“(X,G),
&)

32

g(e,B,E )=}, ¢BE'Aqg,,
!
Then, concerning ¢ (¢, 8, F,A), its Taylor expan-
sion can be simplified taking into account eqns



(29)=(31}. Therefore, in the case B =0, £+#0 [egns
(29) and (30)] such Taylor expansion will be

¢ {e,0,E,A) = e, (6% ELA)
= Bont + Prozt EL + rogmed + ..., (33)
whereas the case 8 # 0, £ =0 [eqns (30} and (31)]
yields
D6, B,0,4) = ey (e, B 2)
= Dot + P B + Proaed +...0 (34)

Therelore, setting ¢ =0, eqns (33) and (34} give
the slenderness decrease 4 as a function of the
interface deformation ¢, the non-axisymmetric per-
turbation E or B, respectively, and the corresponding
coefficients ¢, For instance, in the case B =0,
E # 1 such expression will be

A= —(¢3mf¢100|)~‘—2 - ((f‘mznfﬁblool)gz +....(35)

This expression has been represented in Fig. 2.
Since the maximum siable slenderness s reached
when ¢ = 0, it can be concluded that criticai siender-
ness should vary in the form

"1:: = —(ﬁi’]ozur‘[‘ﬁmm}Ez - (¢1sz¢mm)82 +....(36)

Observe that, since non-axisymmetric eflects de-
crease the critical slenderness both coeflicients,

21020/ P 1001 A0 P 200/ 1;, Must be negative.

6. RESULTS AND CONCLUSIONS

When Taylor expansions (32) are introduced into
eqns (1921) and (23) and the cocfiicient of each
monomial ¢’ B/ £*1'is set 1o zero, a recursive sequence
of linear problems results, which allow calculation of
@onns Gyue ANd g, (x,8). Then, the following results are
obtained

£i00(x,0) = sin x,
Eaooo (X, 0) = — il + ;,lcos 2x,

Eoona (x,0) =0,

Fig. 2. Bifurcatlion diagram. Liquid bridge deformation ¢ vs

slenderness A. This plot shows the influence of the dimen-

sicnless transversal microgravity B or disk offset £ in the
bifurcalion.

gnmo(x‘g) = E cos 6.}

1
Lol 0)= - cos (! +cos x),

. cosh ﬁr)
COSh.\ﬁﬂ

1
G (x,8) = —=cos 20 (x2 +
dn

l
T
Zuw(*.0) ={n? — xVcos 0,
Zno{X,0) = —{x cosx + x — 3 sin x) cos 0,

Zawo (%, 8) = —G(n? — XY + Hx? + n¥cos x)
-ff{l +cosx)+ e sy
7 16(31 — X}
]( cosh 3.\')
FESY i A
6 cosh\/gn
3
+ —(xz — rr"-—-————-COSh‘/Sx):' cos 28;

4 COSh\/E:'I

(37)

Drooo = DProve = Poost = Doz = Poor = Pro1w =0,

doont = Povas = Dorwe = Poior = ﬁbnuo = oo = 0,

3
drang = = 5» oo = 2,
3 2
Puw= =575 bnw= (8)

where most of these cocflicients have been directly
canceled, as resulting from the symmetries analysis
presented in Section 5. Therclore, according to ex-
pressions (38} when non-axisymmetric effects are
considered the critical slenderness decreases in the
form

_ 3 e T
b= SE B (39)
which coincides with the result oblained by Coriell et
al[4] in the case 8 %0, £E=0.

An important characteristic (o be pointed out is
that the results here obtained do not depend on the
angle between the plane defined by the axes of the
disks and the direction of transversal microgravity
(see Fig. 1), so that eqn (39) remains the same
although this angle was not equal {0 zero. In con-
sequence, it must be noted that there is no coupling
between the two considered non-axisymmetric per-
turbations, that is, the term of order BE is equal to
Zero.

In conclusion, it has been demonstrated that, wn the
two cases analyzed, branching is subecritical, and that
a ¢ylindrical long liquid bridge wili be stable when its
slenderness is smaller than the c¢ritical slenderness

Io,ow,
Acﬁa(lﬂmg—?3+,”) (40)



On the other hand, the expression for the stabie
equilibrium shapes is

F(x,0) =1+ Egon(x,0) + E’gon(x,0)
+ Bgow(x,0) + Blgunlx8)+ ... (A1)

where the functions g, are given by the expressions
(37).
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