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Abstract—The results of an investigation on the stability of a doubly connected axisymmetric equilibrium free surface 
pinned to the edges of two coaxial disks are presented. The general boundary of the region where the interface is stable 
is constructed in the plane of the parameters determining the slenderness of a liquid bridge and its relative volume. 
Surface forces and arbitrary (not only axisymmetric) perturbations are taken into account. 
The general boundary of the stability region was calculated completely in the past only for a weightless fixed-contact-
line liquid bridge between equal disks. The influence of axially directed gravity, isorotation and disks inequality on 
the evolution of this boundary has been analyzed successively. As a result, the families of the stability boundaries have 
been obtained for fixed-contact-line liquid bridges between equal disks in a wide range of Bond numbers, for isorotating 
weightless bridges between equal disks, in a wide range of Weber numbers and for weightless fixed-contact-line liquid 
bridges when the disk radii ratio is varied. 
Basing on the solution of the bifurcation problem for the critical equilibrium states, the conclusion on the results of 
stability losing has been made for starting system of fixed-contact line weightless bridge between equal-disks. 
The stability of the melt during crystal growth using the floating zone technique can be considered as a special case 
of the presented results. 
Finally as an example, for a crystal growth system using the Stepanov's method the effect of free surface unconnectivity 
on the stability has been investigated under zero gravity conditions. 

1. INTRODUCTION 

The considered configuration is the following: an 
isothermal liquid mass is in equilibrium and forms an 
axisymmetric bridge between two coaxial disks 
which have radii r\ and r2 respectively, and are 
spaced a distance / apart. The free surface is pinned 
to the edges of the disks (Fig. 1). 

In a general case the equilibrium state of the sys­
tem is characterized by three geometric parameters: 
the slenderness, A, the relative volume, V, and the 
ratio of the disks radii, K, which are introduced as 
the following 

/ v r, 
A = , V= T- , K=~L<1 

2r0 xr0l r2 

Here r0 = {rx + r2)/2 is the mean radius of the disks, 
and v is the liquid volume. If for a given surface 
tension, a, an axial gravity, g, and an isorotation with 
angular velocity w are taken into account, then two 
additional parameters appear—the Bond number, B, 
and the Weber number, W. 
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The stability of this system is studied with respect to 
arbitrary (both axisymmetric and non-axisymmetric) 
perturbations using the method described in [6]. As 
a result, the boundary of the stability region is con­
structed in the (A,V)—plane. We will call it the 
«general boundary» because it determines the stabil­
ity or instability of a configuration for arbitrary val­
ues of A and V. 

The stability problem arising in the floating zone 
method is solved considering constraints of two 

types. For the first type the value of V is fixed and 
is close to unit; for the second type the value of the 
growing angle, a, is fixed. Since 

a y - / 3 I ( > 0 ) o r a = / 5 2 - Y ( > 0 ) , 

the last condition is equivalent to a fixed value of the 
angle of inclination, (5\ or /32, of a free surface at the 
smaller or at the larger disk (Fig. 1), according to 
which disk corresponds to the solidification front. 
For the above conditions, the stability results follow 
from an analysis of the general boundary as particu­
lar cases. Namely, they are the point of intersection 
of the general boundary with a horizontal line 
V = const and the point of intersection of the 
boundary with a level line f}\ = const or /?2 = const. 
We have constructed additionally a set of these level 
lines in the {A, V)—plane for all cases discussed 
below. 

We proceed from a known result [6,7] on the 
general boundary for a weightless liquid bridge at 
rest between equal disks (K = 1, B = W =0) . Here 
the boundary consists of two non-intersecting 
branches (Fig. 2). On the upper branch, AT\m, and 
on the left lower segment, ATiBC, of the lower 
boundary the bridge loses its stability with respect to 
non-axisymmetric perturbations and on the right part, 
CDEFn, of the lower branch with respect to axisym­
metric perturbations. Under certain conditions, de­
pending on the value of the wetting angle [6], the 
instability can be governed by the detachment of 
contact line from the edge of the disks. From this 
point of view, the zero wetting angle is the most 
favourable case from the stability point of view. Here 
and in the following, we are considering that the 
wetting angle equals zero. For the considered system, 
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Fig. I. Geometry and coordinate system lor the liquid bridge problem. 

the stability boundary' due to the detachment of con­
tact lines coincides with the left part of the lower 
boundary'. The presented theoretical boundary agree 
with the known experimental results [8-10]. 

For the considered system in equilibrium, the ef­
fect of gravity, isorotation and the disks radii in­
equality "on the presented boundary is crucial. The 
first results on the separate effect of gravity and 
isorotation on the whole boundary were obtained in 
[11]. We have carried out a comprehensive analysis 
in the case of isolated effects of all stated factors. 

Besides, the nature of the axisymmetric bridge 
stability losing is of interest. To obtain this be­
haviour, the bifurcation problem for the critical states 
should be solved. For the system considered initially 
(# = 1, B = W = 0), bifurcation patterns which are 
plausible for an explanation of the Plateau's experi­
mental results [8] were suggested in [12]. By now an 
exact solution of bifurcation problem is known 
[13, 14] only for a critical cylinder (the point F in 
Fig. 2). 

2. EFFECT OF GRAVITY (A' = 1, VI = 0, B > 0) 

When gravity is considered, the stability regions 
have been analyzed [1] for Bond numbers in the 
range 0.005 < B < 7 . In Fig. 3 the boundary for 
B =0.1 is shown together with the boundary for 
B = 0. The boundary becomes now closed. The 
shape of the represented boundary is typical for Bond 
numbers in the interval 0<B < 3.06. It consists of 
three parts. On the segment OABC the non-axisym-
metric perturbations are critical. This segment al-
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Fig. 2. Stability limits of a liquid bridge al rest between equal disks 
under zero-gravity conditions {K = 1, B = W = 0). Meaning of the 

different points is explained in the text. 

ways contains the point B where the maximum slen-
derness for a given Bond number is achieved. On the 
segment CD the axisymmctric perturbations are crit­
ical. This segment was well studied earlier for differ­
ent not-too-large Bond numbers [15-17], In the liter-
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Fig. 3. Typical stability diagram of liquid bridges between equal disks subjected to a small constant axial acceleration (measured by Bond 
numben: B =0.1 (solid line). B = 0 (dashed line). The sketches indicate the different types of instability appearing on the different pans 
of the stability curve. A . maximum ot volume; B, maximum of slendemess; C". transition between axisymmetric and non-axisymmetnc 
instabilities; D, /.ero angle at the top disk; E. local minimum in pressure; F, local minimum of the angle at the lop disk: G. local maximum 

of the angle at the top disk; H. local maximum of the pressure. 

ature it is known as a minimum volume stability 
limit. Finally, on the segment OD the instability oc­
curs due to the detachment of free surface from the 
edges of the top disk (gravity is downward-directed). 

in Fig. 4a the boundaries are plotted for rather 
small Bond numbers. Curve labeled .4 shows the 
locus of the points with a maximum volume for a 
given Bond number, curve B shows the locus of the 
points with a maximum slendemess and curve C the 
transition points between destabilizing non-axisym-
metric and destabilizing axisymmetric perturbations. 

A similar situation appears for not-too-smail Bond 
numbers (Fig. 4b). However, for B > 3.06 the 
boundary segment where the axisymmetric perturba­
tions are the destabilizing ones disappears. The 
boundary consists now of two parts. If V > 1, the 
non-axisymmetric instability takes place, and if 
V < 1 the detachment of the top contact line from the 
disk edges. 

In Fig. 5, as an example, the level lines ft\ - const 
for the critical states are plotted with solid lines; the 
dashed lines are the stabilitv boundaries. A similar 

diagram is obtained for the angle /% on the top disk. 
All these results allow us to estimate the validity of 
the particular results corresponding to the case \' = 1 
[6, 14. 18-21] or to a tiiven value of the arowina 
angle [6. 20-23]. 

The fundamental difference between our 
boundaries (the solid lines in Fig. 6) and the 
boundaries found in [16] (the solid lines continued 
by the dashed lines) is explained by the fact that the 
authors of [ 16] studied the stability only with respect 
to axisymmetric perturbations. Our results agree with 
the experimental results published in [24] (see 
Fig. 7). 

3. EFFECT OF ISOROTATTON (A' = 1, II = 0. W > 0) 

To study the effect of rotation we calculated [2] the 
stability boundaries for Weber numbers in the range 
0.01 < W < 10. Let first W < W„, where the value W„ 
is some value between 2.05 and 2.06. Then the 
boundary for W = 1 plotted in Fig. 8 with a solid line 



Fig. 4. Influence of the Bond number on the stability liinils of liquid bridges between equal disks. Numbers on the curves indicate the value 
of the Bond number. Curve labeled A shows the locus of the poinis with maximum volume for a given value of the Bond number, curve 
B shows the locus of the poinis with maximum slenderness for a given value of the Bond number and curve C the transition between 

axisvmmetrical breakage and non-axisvmmetric deformation. 
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Fig. 5. Values of Ihe angle in the bottom disk /'i, at the stability limit. Numbers on the dashed curves indicate the value of the Bond number. 
Curve A is the locus of minimum value of / j | for each Bond number. 
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Fig. 6. Influence of the Bond number on the .stability limits of liquid bridges between equal disks according to Martinez. Haynes and 
Langbein [16| (dashed lines) and according lo the present method. Numbers on Ihe curves indicate ihe value of the Bond number. 



Fig. 7. Comparison with ihe experimenuil stability limits of liquid bridges between equal disks reported by Be/.denejnykh. Meseguer and 
Perales [24]. The symbols indicate experimental results for the Bond numbers quoted in the legend. Numbers on the curves indicate the 

value of Bond number. 
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Fig. 8. Boundary of the region of stable i.sorotatmg liquid bridges for U' = 1. Axisymmetne and non-axisymmeiric penurhations have been 
considered. The relevant part of the boundary' is plotted with solid line. Meaning of the different labels is explained in the text. 



is typical. It consists of four pans. On the segments 
ABC and LF the bridge loses its stability with respect 
to non-axisymmetric perturbations, on the segment 
FEC with respect to axisymmetric perturbations and 
on the segment LA due to detachment of the contact 
lines from the edges. 

In Fig. 9 a set of the boundaries for different 
Weber numbers is presented. When the Weber num­
ber becomes slightly larger than one. the upper and 
lower boundary segments where the destabilizing 
perturbations are non-axisymmetric form a neck. As 
the Weber number increases the neck size decreases 
until the indicated segments touch each other for 
W - W„. The neck collapse leads to a jumplike con­
traction of the stability region. For W>W0, the 
boundary consists of two segments: the basic seg­
ment where non-axisymmetric perturbations are the 
destabilizing ones and a small segment of the lower 
boundary where the detachment from the disk edges 
occurs. The obtained results agree with the earlier 
published particular results for V = 1 and for typical 
values of the growing angle [21, 25, 26]. 

4. EFFECT OF DISK RADII INEQUALITY (B = W = 0, K < 1) 

The effect of the disk radii inequality was studied [3] 
for the values of AT in the interval 0.1 < K < 0.95. Fig. 
10 shows the stability boundaries for K = 1 (dot-
dashed line) and for K = 0.7 (solid line). The latter 
boundary is typical for K < 1. It consists of two 
non-intersecting branches (upper and lower). On the 
right segment of lower boundary the bridge loses its 
stability with respect to axisymmetric perturbations. 
The basic part of this segment for different values of 
K was constructed earlier in [27. 28]. We completely 
found this segment and, besides, determined the left 
segment of the lower boundary where the detach­
ment of the contact line from the edges of the larger 
disk takes place. The disk inequality radically 
changes the upper boundary. The critical volume 
tends to infinity not only as A tends to infinity but 
also as A tends to zero. 

A set of the lower boundaries for different K is 
shown in Fig. 11. Fig. 12 presents a set of the upper 
boundaries. If K > 0.307, the non-axisymmetric per­
turbations are critical along whole upper boundary. 
The smaller the value of K. the higher the position 
of upper boundary. This is not necessarily so if 
K < 0.307. The reason is that, for these values of K, 
the axisymmetric perturbations become critical on 
the left part of the, upper boundary. This part of the 
upper boundary expends as K decreases. 

Besides, we have analyzed the stability problems 
for values of V close to one {V = 0.9, 1, 1.1) and for 
typical values of the growing angle (a = 0, 10°, 15°). 

5. BIFURCATION PROBLEM 

By using Lyapunov-Schmidt method, we considered 
[4] the bifurcation problem for all critical states of 
the initial system (K = I, B =W =0) except those 
corresponding to the points T\, T2, 7'3, C and E on the 
boundary of stability region (Fig. 13). The bifurca­
tion was studied in the neighbourhood of this 
boundary. 

As a result, the first approximation for the shapes 

of the bifurcating equilibrium surfaces is found. The 
bifurcating surfaces have various shapes depending 
on the values of the parameters A and V and depend­
ing on the types of the perturbations causing the loss 
of stability of the axisymmetric states. 

Besides, the bifurcation structures arc determined 
and used to conclude on the stability or instability of 
the bifurcated equilibrium states. The obtained bifur­
cation diagrams, typical for various segments of the 
stability boundary, have been plotted schematically 
in Fig. 13. 

For the every interior point of the segment EFn, 
the bifurcated solutions are axisymmetric (but anti­
symmetric with respect to equatorial plane), lie in the 
subcritical region and are unstable. 

There are two branches of axisymmetric solutions 
with an equatorial symmetry plane that bifurcate 
from the critical equilibrium state corresponding to 
any point within the CDE segment. Both branches lie 
in the subcritical region. One of the branches consists 
of stable equilibrium states, and the other of unstable 
ones. For the critical state, the corresponding point 
on the bifurcation diagram is a fold (or limiting) 
point. 

Thus, we can conclude: if the exit from the stabil­
ity region takes place through the boundary segment 
CDEFn where the axisymmetric perturbations are 
critical, the bridge breaks. The same conclusion was 
early reached by the authors of [29] who studied the 
dynamic behaviour of an axisymmetric bridge when 
crossing this boundary segment. 

With regard to the boundary segment where non-
axisymmetric perturbations are critical, the bifurca­
tion may be either supercritical (the points within the 
segments T\in and TzBTj) or subcritical (the interior 
points of the segments T^ATi and TxC). The bifur-1 

cated non-axisymmetric equilibrium states are either 
stable or unstable, respectively. 

Thus, the loss of stability results in a continuous 
transition of critical axisymmetric bridge shapes to 
stable non-axisymmetric states if the exit from sta­
bility region takes place through the boundary seg­
ments T\in and T^BTy The possibility of appear­
ance of stable non-axisymmetric bridge shapes in 
the course of experiments was already described bv 
Plateau [8]. 

If the exit occurs through the boundary segments 
7V17"i and T$C, the loss of stability leads to a jump. 
Some experimental results described in [10] suggests 
that this jump is finite within tile segment AT*. Here 
a critical bridge jumplikely goes over to a finitc-dis-
tance-apart stable non-axisymmetric state. 

(,. EFFECT OF THE L'NCONNECTIVTTY 

OF FREE SURFACE 

So far, we considered only the connected free sur­
faces. In [5] we have considered two systems that 
appear during the growth of crystals by the 
Stepanov's method under zero-gravity conditions 
(Fig. 14). Here the free surface consists of two un­
connected parts: an axisymmetric surface F\ of a 
bridge pinned to the edges of the crystal and the 
shaper. and a spherical segment A resting at the 
lateral wall (system 1) or at the edge (system II) of 
a cylindrical container. The following general con­
clusions have been reached: 



Fie. 9. Boundaries of the region of .stable isorotating liquid bridges. Numbers on the curves indicate the value of the Weber number. The 
limit for no rotating {W =0) liquid bridges has also been plotted in dashed line. 
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Hg. 10. Upper and lower boundaries of stability region of liquid bridges a disk radii ralio (if K - 0.7 (solid lines) and K = 1 (dot-dash lines). 
The points A. C. IK /-'. ;ind F show relevant changes in the behaviour in the ease K = 1. 



Fig. 1 i. Lower boundaries of stability remon lor various values ot disk radii ratio. K, indicated bv the numbers on the curves. 
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Fig. 12. Upper boundaries of stability region for different values of disk radii ratio. K. Numbers on the curves indicate the values of K. 
The dotted line joins the points of minimum V for given K. 
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Fig. 13. Bifurcation structure in the stability limit for B = H' =0 , A' = 1. Stable branches have been plotted with continuous line whereas 
unstable ones with dashed line. 

Fig. 14. Geometry and parameters appearing in the tluid configuration modelling the crystal growth in the Stepanov's method. 



i) The axisymmetrie pertubations axe critical for 
both systems. 

ii) For the same values of the parameters, the 
system II is more stable than the system I owing to 
the different boundary conditions for the surface A . 

iii) Due to the property (i) the effect of the uncon-
nectivity is as follows. Compared with system pre­
sented in Fig. 1 and having only one connected sur­
face of a bridge, the system I is always less stable for 
the same values of the bridge parameters. Usually the 
system II is also less stable. However, there are cases 
when the stability of the system II and system pre­
sented in Fig. 1 is the same. 

For the systems I and II, we obtained the stability 
conditions depending on geometric parameters, the 
values of growing anele and boundary angle ip (Fig. 
14). 

Let, as an example, the bridge be cylindrical. It is 
well known that in this case, for the system corre­
sponding to Fig. 1. the critical values of slendemess 
is A* = n. However, for the system I, A* - JZ/2 and, 
for the system II, A, = n if 90° <if> < 162°, and 

— < / ! » < . T if 1 6 2 ° < v < 180°. 
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