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Abstract—The results of an investigation on the stability of a doubly connected axisymmetric equilibrium free surface
pinned to the edges of two coaxial disks are presented. The general boundary of the region where the interface is stable
is constructed in the plane of the parameters determining the slenderness of a liguid bridge and its relative volume.
Surface forces and arbirary (not only axisymmetnc) perturbations are taken into account.

The general boundary of the stability region was caleulated completely in the past only for a weightless fixed-contact-
line liquid bridge between equal disks. The influence of axially directed gravity, isorotation and disks {nequaiity on
the evolution of this boundary has been analyzed successively. As a result, the families of the stability boundaries have
been oblained for fixed-conact-line liquid bridges between equal disks in a wide range of Bond numbers, for isorotating
weightless bridges between equal disks, in a wide range of Weber numbers and for weightless fixed-contact-line liguid
bridges when the disk radii ratio is varied.

Basing on the solution of the bifurcation problem for the critical equilibrium states, the conciusion on the results of
stability losing has been made for starting sysiem of fixed-contact line weightess bridge between equal-disks.

The stability of the melt during crystal growih using the floating zone technigue can be considered a3 a special case
of the presenled results.

Finally as an example, for a crystal growth system using the Siepanov's method the effect of free surface unconnectivity
on the swability has been investigated under zero gravity conditions.

L. INTRODUCTION

The considered configuration is the following: an
isothermal liquid mass is in equilibrium and forms an
axisymmelric bridge between two coaxial disks
which have radii r) and r, respectively, and are
spaced a distance [ apart. The free surface is pinned
to the edges of the disks (Fig. I).

in a general case the equilibrium state of the sys-
tem is characterized by three geometric parameters:
the slenderness, /1, the relative volume, V, and the
ratic of the disks radii, X, which are introduced as
the following '
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Here r, = (r; + r2)/2 is the mean radius of the disks,
and v is the liquid voiume. If for a given surface
tension, ¢, an axial gravity, g, and an isorotation with
angular velocity « are taken into account, then two
additional parameters appear—the Bond number, B,
and the Weber number, W.
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The stability of this system is studied with respect 1o
arbitrary (both axisymmetric and non-axisyminetric)
perturbations using the method described in [6]. As
a resull, the boundary of the stability region is con-
" structed in the (A,V)—plane. We will call it the
«general boundary» because it determines the stabil-
ity or instability of a configuration for arbitrary val-
ues of /A and V.

The stability problem arising in the floating zone
method is solved considering constraints of two

types. For the first type the value of V is fixed and
is close to unit; for the second type the value of the
growing angle, a, is fixed. Since

J J '
a_z"'_ﬁl (z0) or a=ﬁz.—-2—(20},

the last condition is equivalent 1o a fixed value of the
angle of inclination, f3; or §;, of a free surface at the
smaller or at the larger disk (Fig. 1), according to
which disk correspends to the solidification fromt.
For the above conditions, the stability results follow
from an analysis of the general boundary as particu-
lar cases. Namely, they are the point of intersection
of the general boundary with a horizontal line
V = const and the point of intersection of the
boundary with a levet line 8; = const or 2 = const.
We have constructed additionally a set of these level
lines in the {A, V)—plane for all cases discussed
below,

We proceed from a known result [6,7] on the
general boundary for a weightless liquid bridge at
rest between equal disks (K =1, B =W =0). Here
the boundary consists of two non-intersecting
branches (Fig. 2). On the upper branch, AT, and
on the left lower segment, ATHBC, of the lower
boundary the bridge loses its stability with respect to
non-axisymmetric perturbations and on the right part,
CDEFn, of the lower branch with respect to axisym-
metric perturbations. Under certain conditions, de-
pending on the value of the wetting angle [6], the
instability can be governed by the detachment of
contact line from the edge of the disks. From this
point of view, the zero wetting angle is the most
favourable case from the stability point of view. Here
and in the following, we are considering that the
wetting angle equals zero. For the considered system,



r2 ]
|
o TS SIS LSS LN LSS S SIS /(l Bz
|
I -
| /P
(
! B4
1 — | A
R P N A
ﬁ -

Fig, |. Geometry and coardinale sy

the stubility boundary due to the detachment of con-
tact tines coincidex with the lefi part of the lower
boundary. The presented theoretical boundary agree
with the known experimental resuhs (8-10].

For the considered system in eqguilibrium, the ef-
fect of gravity, isorotation and the disks radii_in-
eqguality on the presented boundary is crucial. The
first results on the separate effect of gravity and
isorotation ou the whole boundary were obtained in
[11}. We have carried out a comprehensive analysis
in the casc of isolated effects of all stated factors.

Besides, the nature of the axisymmelric bridge
stability losing is of interest. To obtain this be-
haviour, the bifurcation problem for the ¢ritical states
shouid be solved. For the sysiem considered initially
(K =1, B =W =0). bifurcation patterns which are
plausible for an explanation of the Plaleau’s experi-
mentai results [8] were suggesied in [12]. By now an
exact sclution of bifurcation problem Is known
[13, 14] only for a critical eylinder (the point £
Fig. 2).

2. EFFECT OF GRAVITY (R =L, W =0, 8>0)

When gravity is considered, the stability regions
have been analyzed [1] for Bond numbers in the
range 0.005<B <7. In Fig. 3 the boundary for
B = 0.1 is shown 1wogether with the boundary for
B =0. The beundary becomes now closed. The
shape of the represented boundary is typical for Bond
numbers in the inlerval O < B <3.06. It consists ol
three parts. On the segment GASC the non-axisym-
metric perturbations are criical. This segmeni al-

spem Jor e Higuid bridge problem.
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Fig. % Stability limats of 2 Hquid bridge at rest between cyuul disks
under zere-gravity conduions (X = 1, B = W = 0). Meaming of the
differeni poinis is explamed in the text.

ways contains the point £ where the maximum slen-
demess for a given Bond number is achieved. On the
segment CD the axisymmelric perturbations are cril-
ical. This sepment was well swudied earlier for differ-
eni not-iee-Jarge Bond numbers [15-17). In the lier-
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ature it 15 known ax a minimum volume stability
limit. Finally, on the segment G0 the instability oc-
curs due o the detachment of free surface {rom the
edges of the top disk (gruvity is downward-direcied).

in Fig. 4a the boundaries are ploited for rather
smabll Bond numbers. Curve labeled A shows the
locus of the poims with o maximum volume for
given Bond number, curve B shows the locus of the
points with 2 maximum slendemess and curve C the
transition points between destabilizing non-uxisym-
metric and destabilizing axisymmetric perturbations.

A similar stwation appears Lor not-too-smali Bond
numbers (Fig, 4b). However, for 8 » 3.06 the
boundary segment where the axisymmetric perturba-
tions are the destabilizing ones disappears. The
boundary consists now of two parts, If V > 1, the

non-axisymmetric instability tukes place. and il

V < | the detachment of the lop contact line from the
disk edges.

In Fig. 5. as an example, the level lines f; = const
for the vritical states are ploued with solid lines; the
dashed lines arc the stability boundaries. A similar

dingram is obtained Tor the angle 3+ on the top disk,
All these results allow us 6 estimate the validity of
the particuiar resuits corresponding to the case V=1
[6. 14, 13-21] or to a given value of the srowing
angle [6. 2(-23],

The fundamenial differcnce berween our
boundaries {the solid hines in Fig. 6y and the
boundaries found in [16] tthe soiid lines continued
by the dashed lines) is explained by the fact that the
authors of [16] studicd the stability only with respect
10 axisynimelric perturbations. Qur results agree with
the experimental results published in [24) (see
Fig. 7).

L EFFECT OF ISORUTATION (& =i, B =0, W =0}

To swudy the efifeet of rotation we caleulated [2] the
stability boundaries for Weber nunbers in the range
0.01 £ W < W) Let first W < W, where the value W,

is some value between 2.05 and 2.06. Then the
boundary lfor ¥ =1 plotted in Fig. § with a solid line
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Fig. 4. Influence of e Bond sumber on the stability Timus of liguid biadges hetween equal disks, Numbers on the curves indicate i value

of the Bond number, Curve labeied A shows the locus of the points with maximum volume for o given value of the Bond number, curve

£ shows the focus of the poinis witll maxinen sfenderness for o given vadue of (he Bond number and curve € the rnsition between
wnsvmmetrical breakage and non-axisymmenic deromistaon
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Fiz. 5. Values of the angle in the bovom disk 4, a he stabibny limit. Numbers on the dashed curves indicate e value of the Bond number.
Curve i (he locus of minimum value of (Jy for each Bond aumber.

Fiz. 6. Influcnce of the Bond oumber on the stability lmis of liquid bridges between egual disks aceording 0 Maninez, Haypes and
Langbamn P10 dashedd Boesy and acenording 10 the present moetlieal, Numibers on e curves indicate the value of the Bond number,
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is typical. It consisis of four pans. On the scgments
ABC and LF the bridge loses its stabifity with respect
to non-aXisymmetric perturbations, on the segment
FEC willz respect te axisymmetric perturbations and
on the segment {4 due to detachment of (he contact
lines from the edges,

In Fig. 9 a set of the boundaries tor different
Weber numbers 15 presented. When the Weber num-
ber becomes slightly larger than one, the upper and
lower boundury segments where the destabilizing
perturbations are non-axisymmetric form a neck. As
the Weber number increases the neck size decreases
until the indicated segments touch each other for
W = W,. The neck collapse leads to a jumplike con-
traction of the stability region. For W > W,, the
boundary consisis of two segments: the basic seg-
ment where non-axisymmetric perturbations are the
destabilizing ones and a small segment of the lower
boundary where the detachment from the disk edges
occurs. The obtained results agree with the earfier
published particular results for ¥V = { ang for typical
values of the growing angle {21, 25, 26].

4. EFFECT OF DISK RADI INEQUALITY BA=W=0,A < D}
The effect of the disk radii inequality was studied [3]
for the values of K in the interval 0.1 = K < 0.95. Fig.
10 shows the stability boundartes for K =1 (dot-
dashed line) and for K = 0.7 (solid line). The latier
boundary is typical for K < 1. [t consists of two
non-intersecting branches (upper and lower), On the
right segment of lower boundary the bridge loses its
stability with respect to axisymmetric perturbations.
The basic part of this segment for ditferent values of
K was constructed earlier in [27. 28]. We completely
found this segment uand, besides. determined the lelt
segment of the lower boundury where the detach-
ment of the contact line from the edges of the larger
disk takes place. The disk inequality radically
changes the upper boundary. The critical volume
tends to infinity not only as #I tends 1o intinity but
also as A1 tends to zero.

A et of the lower boundaries for different K is
shown in Fig. L. Fig. 12 presens a set of the upper
boundaries. If K > 0.307, the non-axisymmetric per-
wrbations are critical along whole upper boundary.
The smaller the value of X, the higher the position
of upper boundary. This is not necessarily so if
K < {.307. The reason is that, for these values of K.
the axisymmetric perturbalions become critical on
the left part of the, upper boundary, This part of the
upper boundary expends as K decreases.

Besides. we have analyzed the stability problems
tor values of V close to one (V = 0.9, 1, 1.1} and tor
wpical values of the growing angle (¢ = 0, 107, 13°).

3. BIFURCATION PROBLEM

By using Lyapunov-Schmidt method. we considered
|4] the bifurcation problem for all critical states of
the initial system (K =1, B =W =0) except those
corresponding to the points T}, T2, T3, € and £ on the
boundary of stability region (Fig, 13). The bifurca-
tion was studied in the neighbourhood of this
boundary.

As a result, the first approximation for the shapes

ol the bifurcating equilibrium surtaces is found. The
bifurcating surfaces have various shapes depending
on the values of the parameters .| and V and depend-
ing on the types of the perturbations causing the loss
of stability of the axisymmetnc states.

Besides, the bifurcation structures are determined
and used te conclude on the stability or instability of
the bifurcated equilibrium states, The obtained bifur-
cation diagrams, typical for various segments of the
stability boundary, have been plotted schematically
in Fig, 13,

For the every intetior point of the segment EFn,
the bifurcated solutions are axisymmerric {but anti-
symmetric with respect to equatorial plane), lie in the
subcritical region and are unstable,

There are two branches of axisymmetde solutions
with an equatorial symmetry plane that bifurcare
from the cnitical equilibrium state comesponding to
any point within the CDE segment. Both branches lie
in the subcritical region, One of the branches consists
of stable equilibrium states, and the other of unstable
ones. For the critical stue, the corresponding point
on the bifurcation diagram is a fold {or limiting}
point.

Thus, we can conclude: if the exit from the stabil-
ity region takes place through the boundary sezment
CDEFn where the axisymmelric per‘iurbduons are
critical, the bridge breaks, The same conclusion was
early reached by the authors of {29] who studied the
dynamic behaviour of an axisymmetric bridge when
crossing this boundury segment.

With regard to the boundary segment where non-
axisymmetric perturbations are critical, the bifurca-
tion may be either supercritical (the points within the
segments Ty and T28T5) or subceritical (the interior
points of the segments T1AT> and T:C). The bifur-
cated non-axisymmetric equilibrivm states are 2ither
stable or unstable. respectively.

Thus. the Joss of stability results in 4 continuous
eransition of critical axisymimetric bridee shapes to
stuble non-axisymmetric states if the exit from sta-
bility region takes place through the boundary seg-
menis Ty and T-8T5. The possibility of appear-
ance of stable non-axisymmetric bridge shapes in
the course of cxperiments was alrcady described by
Plateau [8].

IF the exit occurs through the boundary segments
T1AT> and T5C, the loss of stability leads to a jump.
Some experinental results deseribed in [10] suggesis
that this jump is linite within the scgmenl AT, Here
a critical bridge jummplikely goes over to a tinite-dis-
tance-apart stable non-axisvmmetnc state.

o, DFFECT OF THE UNCONNECTIVITY
OF FREE SURFACE

So far, we constdered only the connected free sur-
taces. In [5] we have considered two systems that
appear Juring the growth of crystals by the
Stepanov's method under zero-gravity cenditions
(Fig. 14). Here the free surface consists of (wo un-
connected parts: an axisymmetric surface [ of a
bridge pinned to the edges of the crystal and the
shaper, and a spherical segment £ resting at the
lateral wall (system I) or au the edge (system (1) of
a cylindrical container. The following general con-
clusions have been reached:
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i) The axisymmetric pertubations are critical tor
both systems.

it) For the same values of the parameters, the
system IT is more siable than the system I owing (o
the different boundary conditions for the surface [

iii) Due to the property (i} the effect of the uncon-
nectivity is as follows. Compared with system pre-
sented in Fig. | and having only one connected sur-
face of a bridge. the system [ is always less stable for
the same values ol the bridge paramelers, Usualiy the
system 11 1s also less stable. However, there are cases
when the stabiiity of the system II and sysiem pre-
sented in Fig. | 13 the same.

For the systems T and II, we obtained the stability
conditions depending on geometric parameters, the
values of growing angle and boundary angle ¥ (Fig.
14}

Let, as an example, the bridge be cylindrical, It is
well known that in this case, for the system corre-
sponding to Fig. [. the criticad values of slendemess
is A = . However, for the system [, A« = 7/2 and,
for the system I, As =z if 90° <y < 162° and

fer
7</1# < if 162° <1 < 1807,
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