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Abstract

The irradiance �uctuations and the subsequent variability of the power output of a PV system
are analysed with some mathematical tools based on the wavelet transform. It can be shown that
the irradiance and power time series are nonstationary process whose behaviour resembles that
of a long memory process. Besides, the long memory spectral exponent α is a useful indicator
of the �uctuation level of a irradiance time series. On the other side, a time series of global
irradiance on the horizontal plane can be simulated by means of the wavestrapping technique
on the clearness index and the �uctuation behaviour of this simulated time series correctly
resembles the original series. Moreover, a time series of global irradiance on the inclined plane
can be simulated with the wavestrapping procedure applied over a signal previously detrended by
a partial reconstruction with a wavelet multiresolution analysis, and, once again, the �uctuation
behaviour of this simulated time series is correct. This procedure is a suitable tool for the
simulation of irradiance incident over a group of distant PV plants. Finally, a wavelet variance
analysis and the long memory spectral exponent show that a PV plant behaves as a low-pass
�lter.

Keywords: irradiance �uctuations, power �uctuations, wavelet analysis, wavestrapping,
nonstationary, long memory process.

Nomenclature

ACVS Autocovariance sequence.

α Spectral exponent of a long memory process.

B Backward shift operator.

β Wavelet variance exponent of a long memory process.

Bo(0) Extra-atmospheric irradiance on the horizontal plane.

CDF Cumulative distribution function.

∆t Sampling time of a signal.

D̃j jth level detail of an MRA with a MODWT.
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Dj jth level detail of an MRA with a DWT.

DWT Discrete wavelet transform.

G(0) Global irradiance on the horizontal plane.

Gef E�ective global irradiance incident on the generator.

GBef Wavestrapped e�ective global irradiance time series.

GDef Detrended e�ective global irradiance time series.

GD,Bef Wavestrapped version of a detrended e�ective global irradiance time series.

GTef Trend of a e�ective global irradiance time series.

Gef (f) Fourier transform of a irradiance time series.

H(f) Fourier transform of the transfer function of a �lter.

H̃Dj The squared gain function associated with the wavelet �lter at scale j.

kt Clearness index.

λJ0 Scale J0 of a WT.

MODWT Maximal overlap discrete wavelet transform.

MRA Multiresolution analysis

ν2X,j Wavelet variance of the scale τj .

ν2G(τj) Wavelet variance at the j scale of the irradiance time series.

ν2P (τj) Wavelet variance at the j scale of the power time series.

P(f) Fourier transform of a power time series.

SDF Spectral density function.

SG,j(f) Average SDF at the j scale of the irradiance time series.

σ2
X Variance of the time series Xt.

S̃J0
J0th level smooth of an MRA with a MODWT.

SJ0
J0th level smooth of an MRA with a DWT.

Sj(f) Spectral density function of a time series of the MODWT coe�cients at scale j.

SP,j(f) Average SDF at the j scale of the power time series.

SX(f) Spectral density function of a time series Xt.

τj Scale j of a WT.

ṼJ0
Vector of MODWT scaling coe�cients associated with the scale λJ0

.
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VJ0 Vector of DWT scaling coe�cients associated with the scale λJ0 .

W̃ N dimensional vector of MODWT coe�cients.

W N dimensional vector of DWT coe�cients

W̃ N ×N real-valued matrix de�ning the MODWT.

W N ×N real-valued matrix de�ning the DWT.

W̃j Vector of MODWT coe�cients associated with the scale τj .

Wj Vector of DWT coe�cients associated with the scale τj .

WT Wavelet transform

X N dimensional vector containing a real-valued time series.

Xt Real-valued time series.

1. Introduction

The integration of large PV plants in the conventional electrical grid must cope with several
problems [1]. One of the most important is the variability of the power output of the system due
to the irradiance �uctuations. This variability could force the grid operator to take decisions in
order to guarantee the stability of the electrical system. Therefore it is important to quantify
the intensity, duration and probability of occurrence of power �uctuations. This issue has been
previously analysed in [2�5] with some important results:

• The power �uctuation level of a PV system depends on its size. A PV system smooths the
�uctuation in a manner inversely proportional to the square root of its area.

• Moreover, the power �uctuation level in a zone where a group of PV systems are connected
depends on the number of plants of the set, following a decreasing exponential relation.

These smoothing e�ects depend on the characteristics of the group of PV systems (size of the
individual systems and geographical relations) but also on the meteorology of the location. The
irradiance pro�les incident on the PV plant of the set evolve di�erently due to the movement
and transformation of clouds. It is plausible to assume that these di�erent pro�les own the same
statistical properties if they are not too far from one another. Thus, a tool for the simulation of
collections of time series of irradiance may be valuable in order to analyse the power �uctuations
from a hypothetic group of PV systems.

Several procedures have been proposed for the synthesis of daily time series of irradiation
[6]. These procedures are mainly based on the premises of stationarity and short memory of the
clearness index [7]. However, these conditions do not hold for clearness index with short sampling
times. If the simulation procedure is constructed with classical methods of time series analysis
(AR, MA, or ARMA models, for example) it is necessary to constrain the analysis to temporal
windows where the process can be regarded as stationary. Thus, the �rst step of the desired
procedure of simulation is to cut the day in suitable periods where the stationary conditions are
valid. Moreover, as it will be shown later, the instantaneous clearness index is a long memory
process, so several previous samples are needed in the regression formula for the estimation of a
new sample.
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On the other hand, a non-parametric analysis with the wavelet transform (WT) do not impose
such restrictions. The WT carries out a multiresolution analysis (MRA) of an time series, where
each of the decompositions of the analysis is a representation of the original signal with a di�erent
temporal scale. Besides, the combination of bootstrap methods with the wavelet decomposition
is a powerful procedure to obtain new replicas of a original irradiance signal with the same
statistical properties.

This paper is organised as follows: a summary of WT and its application to irradiance time
series analysis is included in section 2.1; the wavelet variance and its relation with spectral
analysis is explained in section 2.2; the long memory processes and their application to the
irradiance time series are shown in section 2.3; the wavestrapping technique (combination of
bootstrap with the WT) is explained in section 2.4; �nally, a procedure for the simulation of
time series of irradiance on the horizontal plane (section 3.1) and on the inclined plane (section
3.2) is developed. Conclusions and future actions are summarised in section 4.

The irradiance and power output data analysed in this paper belongs to the Milagro PV plant
located at Navarra, Spain. This PV system, installed by Acciona Solar, was started up in 2007. It
is composed of more than 800 azimuthal trackers summing a generator power of 9,5 MWp2. The
database comprises a year of time series of irradiance, power output, wind speed, temperature
and some other variables with one sample per second.

2. Wavelets for irradiance time series

The analysis of meteorological time series with the wavelet transform can be easily found in
a variety of research papers. One of the �rst comprehensive analysis was published in 1995 [8].
Later, a practical guide was proposed in 1998 [9], with more recent review papers published in
2005 [10, 11]. The wavelet transform has also been applied to the analysis of solar irradiance,
for example in [3, 12�14].

The theoretical development of the next section follows the book of Percival and Walden [15].

2.1. The Wavelet Transform

LetX be an N dimensional vector containing the real-valued time series Xt : t = 0, . . . , N − 1.
The discrete wavelet transform (DWT) of level J0 (with N = 2J0 to obtain a full transform)
of X is an orthonormal transform given by W = WX, where W is an N dimensional vector
of DWT coe�cients, and W is an N ×N real-valued matrix de�ning the DWT.Both the DWT
coe�cients and matrix can be partitioned such that Wj = WjX and VJ0

= VJ0
X. Here Wj

is an Nj ≡ N/2 dimensional vector of wavelet coe�cients associated with changes on the scale
τj ≡ 2j−1 and VJ0

is an NJ0
dimensional vector of scaling coe�cients associated with averages

on the scale λJ0 ≡ 2J0 . The vector X can be synthesised from W with an additive decomposition
in terms of the vectors Dj ≡ WT

j Wj and SJ0 ≡ VTJ0
VJ0 , the jth level detail and the J0th level

smooth respectively.
However, the DWT is sensitive to the starting position of the time series and depends on

whether a given event resides within a wavelet averaging window. In other words, the DWT
is not translation-invariant, so it is not best suited for the analysis of time series. A modi�ed
version of the DWT is better adapted to this task. This modi�ed version has received several
names such as undecimated or stationary DWT. However, we will follow [15, 16] using the term
�maximal overlap DWT� (MODWT).

2More information is available at http://www.acciona-energia.es/secciones/000109/es/0507_informe_

milagro.pdf
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The MODWT of X is a transform given by W̃ = W̃X. It is similar to the DWT in that both
are linear �ltering operations producing a set of time-dependent wavelet and scaling coe�cients
which are related to variations over a set of scales. The MODWT di�ers from the DWT in that
is a highly redundant, nonortoghonal transform:

• The MODWT retains downsampled values at each level of the decomposition that would
be otherwise discarded by the DWT. Thus, while the DWT restricts the sample size of the
series to an integer multiple of 2J0 , the MODWT is well de�ned for any sample size (with
the consequent computational cost increment). Now, the wavelet and scaling coe�cients

(W̃j and ṼJ0 , respectively), and the details and smooth (D̃j and S̃J0 , respectively) are N
dimensional vectors.

• In contrast to the DWT, the details and smooth of the MODWT are shifted by a corre-
sponding amount if the time series is shifted. Moreover, the MODWT details and smooths
are easily lined up in an MRA with the original time series.

• The MODWT wavelet and scaling coe�cients can be used to form an energy decompo-
sition of X. However, the MODWT is not an orthonormal transform, and this energy
decomposition is not true for the MODWT details and smooths.

The time series X can be recovered from the MOWDT with a multiresolution analysis:

X = W̃TW̃ =

J0∑
j=1

W̃T
j W̃j + ṼTJ0

ṼJ0 ≡
J0∑
j=1

D̃j + S̃J0 (1)

Besides, the energy decomposition of X can now be de�ned only in terms of the wavelet and
scaling coe�cients:

‖X‖2 = ‖W̃‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2 (2)

This property will be detailed in the next section with the de�nition of the wavelet variance.
As an illustrative example, a MODWT is applied to the irradiance time series registered in the

Milagro PV plant on the 13th of October 2009. A suitable graphical structure for the display of
the MRA is the horizon graph. This kind of graphics comprises the vertical information (Y-axis)
encoding di�erences in magnitude as di�erences in colour intensity, which we naturally perceive
quantitatively (darker is greater and lighter is less) and encoding positive or negative values with
di�erent colour hues. Thus, with the technique of �small multiples� described in [17], a horizon
plot allows spotting extraordinary behaviours and predominant patterns, view changes, analyse
each of the series independently from the others and making comparisons between the series
[18, 19].

For example, �gure 1 uses blue for positive values and red for negative values. The irradiance
�uctuation near the sunrise (around 8:00h) is clearly detected in the physical scales of 1m20s,
2m40s and 5m20s, the irradiance �uctuation before the midday (around 11:00h) is most impor-
tant in physical scales of 10m40s and 21m20s, while the �uctuation at midday is mainly detected
in physical scales of 20 and 40 seconds.

2.2. The wavelet variance and the spectral density function

The spectral analysis with the spectral density function, designed to work with stationary
processes, cannot be directly used on nonstationary processes [20]. As an alternative, the wavelet
variance, de�ned both for stationary and nonstationary processes with dth order stationary
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Figure 1: Horizon plot of the wavelet multiresolution analysis of the irradiance registered in the Milagro PV plant
on the 13rd of October of 2009. Each row includes a di�erent detail of the MRA while the last row shows the
original irradiance time series with its smooth decomposition. The y-axis (not shown) encodes irradiance values.
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backward di�erences, provides a consistent summary of the information contained in the spectral
density function (SDF) on a octave band basis [15, 21]. This tool will be useful for the analysis
of irradiance and power time series since they are nonstationary processes.

Using the energy decomposition of the MODWT (equation 2), the contribution of each

scale to the variance of the time series Xt, σ
2
X = ‖X‖2 − X2

can be determined with3 σ2
X =

1
N

∑J0

j=1 ‖W̃X
j ‖2, where ‖ṼX

J0
‖2 ' X2

.

Suppose that Xt is a stochastic process whose dth order backward di�erence, Yt = (1−B)dXt,
is a stationary process (where d is a nonnegative integer and B is the backward shift operator4

de�ned by BXt = Xt−1 and BkXt = Xt−k). Then, the result of the MODWT of Xt, if an

adequate wavelet �lter is used5, is a set of coe�cients time series, W̃j,t, which can be regarded
as stationary processes whose SDF can be de�ned by:

Sj(f) = H̃Dj (f)SX(f) (3)

where H̃Dj is the squared gain function associated with the wavelet �lter at scale j [15]. If we

denote with ν2X,j the wavelet variance of the scale τj , since the variance of a stationary process
is equal to the integral of its SDF, then:

ν2X,j =

∫ 1/2

−1/2

Sj(f)df =

∫ 1/2

−1/2

H̃Dj SX(f)df (4)

Therefore, the variance of X is

σ2
X =

J0∑
j=1

ν2X,j (5)

The wavelet variance of each scale represents the contribution to the SDF in the correspondent
octave. The width of the octave of the scale τj is 1/(2j+1∆t), where ∆t is the sampling time of
the signal, and the frequency band of this scale is 1/(2j+1∆t) ≤ f ≤ 1/(2j∆t). The average
value of SDF over this interval is:

SX,j = 2j+1∆t

∫ 1

2j∆t

1

2j+1∆t

SX(f)df (6)

Thus, the wavelet variance can be used as an estimator of the average value of the SDF
[15, 21]:

ν2X,j =
SX,j
2j∆t

(7)

For example, we calculate and compare the wavelet variance of irradiance time series of
several consecutive days of October 2009. Previously, a moving average of 5 seconds is applied.
Moreover, the time series are scaled subtracting the daily mean and dividing with the STC

3The limits of this sum must be corrected to include only those coe�cients which are not subject to to re�ection
conditions and then obtain an unbiased estimator of the variance. However, for ease of exposition, the equation
we are showing includes the whole set of coe�cients.

4Although B is commonly used to denote the direct component of irradiance, in the context of this investigation
the risk of confusion is nonexistent, so we chose to follow the nomenclature conventions of the time series analysis
literature.

5For example, a Daubechies wavelet �lter whose width L ful�lls the condition L ≥ 2d
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irradiance value. Finally, the wavelet variance is calculated for each day with the Daubechies

least asymmetric LA(8) (or symmlet S(8)) �lters6 . The �gure 2 shows the time evolution of
the irradiance and power and the �gure 3 displays their wavelet variances with their con�dence
intervals. For example, the higher �uctuation levels of the 14th day are converted to higher
variance values over the whole set of scales.

2.3. Long memory process

Suppose now that Xt is an stationary process with a SDF denoted by SX . Xt is an stationary
long memory process if SX(f) ' CS |f |α, where CS and α are constants such that CS > 0
and −1 < α < 0, with the approximation improving as f approaches zero. Therefore, the
autocovariance sequence (ACVS) sX,τ of this process is sX,τ ' Csτβ where β = −α−1. Standard
time series models such as stationary autoregressive processes have ACVSs such that sX,τ ' Cφτ .
In both cases sX,τ → 0 as τ → ∞, but the rate of decay toward zero is much slower for a
long memory process, implying that current observations retain memory of the distant past
[15, 22]. Under this model, the process has inertia and it is less likely to show abrupt changes.
This description is consistent with the formulation of the probability of �uctuation level with a
decaying exponential model published in [2].

When α ≤ −1, Xt can be interpreted as a nonstationary pure power law process that can be
turned into a stationary process, Yt, through an appropriate di�erencing operation, Yt = (1 −
B)dXt. It is interesting to note that wavelet variance plots can help to assess when a time series
is adequately modelled as a nonstationary process with stationary backward di�erences. The
approximation SX(f) ∝ |f |α is equivalent to ν2X(τj) ∝ τβj . When log(ν2X(τj)) is plotted versus
log(τj) the exponents become slopes, with β = −1− α ≥ 0 corresponding to nonstationarity.

The markedly positive slopes of the �rst two days of �gure 3 for the lowest scales show that
the irradiance is a nonstationary long memory process. The value of the slopes are di�erent
for each day due to their �uctuation behaviour. The value of β (α) is 2.16 (-3.16) for the 13th
October and 1.77(-2.77) for 14th October, while it decreases (increases) to -0.017 (-0.98) for 15th
October and 0.66 (-1.66) for 16th October.

Thus, the value of the β (or α) exponent may be a useful indicator of the �uctuation level
in lower scales. Only one number could be enough to summarise the information of a whole
day, and form the basis for a clustering analysis of a irradiance database or for prediction of
�uctuation levels. Besides, there is a variety of models for nonstationary long memory processes
such as the pure power law process or the fractional di�erenced process [15, 22], which could be
useful for the simulation of irradiance time series.

2.4. Wavestrapping

Bootstrapping is the practice of estimating properties of an estimator by measuring those
properties when sampling from an approximating distribution. One standard choice for an ap-
proximating distribution is the empirical distribution of the observed data. In the case where a
set of observations can be assumed to be from an independent and identically distributed popu-
lation, this can be implemented by constructing a number of resamples of the observed dataset
(and of equal size to the observed dataset), each of which is obtained by random sampling with
replacement from the original dataset. The combination of the bootstrap with the WT is called
wavestrapping [23]. The idea behind wavestrapping is that for stationary processes, the DWT
acts as a decorrelating transform for time series, so the wavelet coe�cients can be regarded as

6The length of a LA(8) �lter is 8, so it is able to handle adequately a nonstationary process with 4th order
stationary backward di�erences

8



Time

09:0
0
12:0

0
15:0

0

13th Oct

09:0
0
12:0

0
15:0

0

14th Oct

09:0
0
12:0

0
15:0

0

15th Oct

09:0
0
12:0

0
15:0

0

16th Oct

Gef
P

Figure 2: Time evolution of the e�ective irradiance and power output of several consecutive days of October 2009.
Both time series have been centred and scaled for ease of comparison (y-axis is not shown).
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uncorrelated and suitable for bootstrapping techniques. The clear advantage of this method is
that it allows the synthesis of a time series in a non-parametric way if stationary criteria apply.

Although the irradiance is a nonstationary process, the next sections will propose how to
extract information with a quasi-stationary behaviour from the original time series. This quasi-
stationary process will be the source for the wavestrapping methods.

3. Synthesis of temporal series of irradiance

The solar irradiance incident on a surface outside the terrestrial atmosphere, denoted as
the extra-atmospheric irradiance, can be assumed as a deterministic time process and can be
estimated by means of geometric considerations. However, the complex process of re�ection,
attenuation and dispersion due to the components of the atmosphere transforms the extra-
atmospheric irradiance into an stochastic process, the global irradiance incident on a surface.

3.1. Irradiance on the horizontal plane

The global irradiance on the horizontal plane, G(0) is commonly described as a deterministic
process (the extra-atmospheric irradiance on the horizontal plane, Bo(0)) modi�ed with a multi-
plicative stochastic e�ect (the well-known clearness index, kt) summarising the behaviour of the
atmosphere. For the time series analysis, it is recommended to remove the seasonal and trend
component of the series [24]. This is one of the advantages of using the clearness index, since the
diurnal trend due to the terrestrial movement is e�ectively removed. Although the instantaneous
clearness index is not strictly stationary, the departure from stationarity is small enough to use
the wavestrapping technique.

From the data collected at the Milagro PV plant, the clearness index is calculated and a new
time series of clearness index is simulated with the wavestrapping procedure. Finally, a new
time series of global irradiance on the horizontal plane is obtained multiplying the simulated
clearness index with the calculated extra-atmospheric irradiance. The result is shown in �gure
4, where the original and the simulated irradiance time series corresponding to the 13/10/2009
are displayed together.

The main objective of this generator is to reproduce the �uctuations of the original time
series. This result can be assessed comparing the cumulative distribution function (CDF) of the
�uctuations of both time series. This �uctuation has been calculated with the �rst-order back-
ward di�erences, (1−B)Gt(0) = Gt(0)−Gt−1(0). Figure 5 shows that the wavestrapped series
contains a higher probability of �uctuation, but this method imitates accurately the �uctuation
behaviour of the original series.

This same procedure has been tested with di�erent days obtaining similar satisfactory results.

3.2. Irradiance on the inclined plane

The same conceptual approach could be suitable for the global irradiance incident on the
plane of the PV generator, Gef (I). Again, the extra-atmospheric irradiance on the inclined plane,
Bo(I) can be calculated with only geometric considerations. A new clearness index on the inclined
plane is de�ned as the ratio kt(I) = Gef (I)/Bo(I). However, this clearness index does exhibit
a trend possibly due to the anisotropic behaviour of the sky (the PV generator is not receiving
energy from the whole sky). When its WT is resampled with the wavestrapping technique and
the series is reconstructed, this diurnal trend is severely transformed. The global irradiance
obtained multiplying this simulated clearness index by the extra-atmospheric irradiance is now
incoherent with the original one.

Another approach is to take advantage of the �ltering process of the WT, since the diurnal
trend can be safely removed with a multiresolution analysis including the details from a subset
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of scales. For example, for a sampling time of 1 second, this trend is adequately captured if the
scales 1 to 9 are taken away from the MRA. Therefore, the trend is:

GTef =

J0∑
i=10

Di + S (8)

and the detrended signal is

GDef =

9∑
i=1

Di (9)

This detrended signal is approximately stationary and it is now possible to obtain a new
wavestrapped version of it, GD,Bef . This wavestrapped signal is added to the trend to get a
simulated irradiance time series containing the same �uctuation behaviour as the original one.

GBef = GTef +GD,Bef (10)

The evolution of the irradiance on the inclined plane with both the trend and the detrended
signal is included in the �gure 6. Moreover, the wavestrapped simulation of the detrended signal
and the resulting simulated irradiance time series are shown for comparison.

Once again, the CDF evaluates the performance of this procedure for reproducing the �uc-
tuation behaviour. The satisfactory results are shown in �gure 7.

This procedure is useful for the simulation of irradiance series incident in a group of distant
PV plants. It is likely that the geographic relation between them and the climatic conditions
will determine the number of scales which are to wavestrapped. For example, if the plants are
distant from one another, the sky appearance is likely to vary also in higher scales, and therefore
the subset of scales to be wavestrapped should be larger than for near PV plants. The analysis
of a database which includes several PV plants will help to adequately choose this subset. This
analysis is postponed for future works.

3.3. Power output of a group of PV systems

The �gure 3 shows the wavelet variance of the power output of the Milagro PV plant (previ-
ously normalised with the power output of the generator). Again, the power time series behaves
as a long memory process for the �rst set of scales. The slope of the curve of the power output is
higher than the curve of irradiance, con�rming the low-pass �lter behaviour of the system: the
value of β (α) is 2.94 (-3.94) for the 13th October and 3.11(-4.11) for the 14th October, while it
decreases (increases) to 1.13 (-2.13) for the 15th October and 1.02 (-2.02) for the 16th October.

A possible approach is to analyse the attenuation in the frequency domain through the SDFs
of the input and output signals. If both processes were stationary their SDFs would be directly
related through the squared gain of the transfer function of the system. However, the irradiance
and power are nonstationary time processes, so this relation is not valid unless some conditions
are ful�lled [20].

On the other hand, since their dth order backward di�erence are stationary processes, their
wavelet variances are well de�ned (section 2.2). The comparison between them represents the
behaviour of the PV plant on a scale basis. If SG,j(f) and SP,j(f) stand for the average SDFs at
the j scale of the irradiance and power time series, respectively, while ν2G(τj) and ν

2
P (τj) denote

the wavelet variance of scale j of these processes, then using equation (7):

ν2P,j
ν2G,j

=
SP,j

SG,j
(11)
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The �gure 8 shows this ratio for the same four consecutive days of �gure 3. The plant
behaves as a low-pass �lter with a similar slope during the lower scales for the four days. On
higher scales (τj∆t ≥ 160s), the response is almost �at during the days whose �uctuation level
is higher, and steep during the days with a low �uctuation level. It is important to note that,
due to the con�dence intervals over these scales (�gure 3), it is advisable to be cautious about
the comparisons on these octaves.

A provisional explanation of this behaviour is proposed. The output of a photovoltaic system
depends on the incident irradiance through the equation:

P (t) = ηs ·Gef (t) (12)

where P (t) is the power at the DC/AC inverter power, ηs is the system e�ciency and Gef (t)
is the e�ective irradiance incident on the PV generator plane. This equation works under the
assumption that the incident irradiance is the same simultaneously over the whole PV generator
plane. As the reference [2] has shown, this supposition is not true for large PV generators. A
plausible approximation is to model the behaviour of the plant around two assumptions:

• The response of the PV system is invariable with time. In other words, the e�ciency ηs
has no time dependence7.

• The irradiance incident on a point of the system in a instant is received with approximately
no changes in another point located at a certain distance after a time interval. The length of
this interval depends on the size of the plant and on the meteorological conditions, (mainly
on the wind speed [3]).

Under such ideal circumstances, the PV plant carries out a moving average of the irradiance
time series, and thus behaves as a low-pass �lter. The impulse response, h(t), of the equivalent
�lter, is characterised by its amplitude and length. The amplitude is the value of the system
e�ciency and its length, T , depends on, as previously stated, the size of the plant and the wind
conditions. The output power is the convolution of this response with the irradiance time series.

P (t) = h(t) ∗Gef (t) (13)

The transfer function of an ideal low-pass �lter is the sinc(x) function, so the Fourier transform
of h(t) is:

H(f) = ηs ·
sin(πfT )

πf
(14)

Therefore, P(f) = H(f)Gef (f), where P(f) and G(f) stand for the Fourier transforms of the
power and irradiance time series, respectively.

The time length of h(t) is the time spent by a irradiance pro�le to run across the PV plant
in a longitudinal or transversal direction. If the plant is supposed to be a square whose side is
L, and a constant wind speed v, this time is T = L/v. Thus, the larger the size of the plant
(or the lower the wind speed), the wider the length of the time window (and the narrower the
central lobe of the transfer function). Under this model, the irradiance �uctuations are likely to
be attenuated when the combination between plant size and wind speed results in a time window
wide enough (or, equivalently, in a narrow transfer function).

7This assumption implies that the e�ciencies of the PV generator and inverter are independent of the irradiance
level. Although this approximation is not acceptable for energy calculations, it is admissible for a simpli�ed
explanation of the �uctuations behaviour.
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As an example, for the 14th October 2009 the ratio between the variances of the power and
irradiance (equation (11)) has been calculated and normalised. This ratio is compared with
moving averages of di�erent widths (35 to 55 seconds), as it is shown in �gure 9. From this
�gure, it is clear that the intrinsic variations of the PV plant, and the departure of its real
behaviour from our ideal supposition, smooth the impulse response of the system and alter the
ideal transfer function.

4. Conclusions

The irradiance �uctuations and the subsequent variability of the power output of a PV system
have been analysed with some mathematical tools based on the wavelet transform. The most
important �ndings and proposals are:

• The irradiance and power time series are nonstationary process whose behaviour resembles
a long memory process.

• The long memory spectral exponent α is a useful indicator of the �uctuation level of a
irradiance time series.

• A time series of global irradiance on the horizontal plane can be simulated by means of
the wavestrapping technique on the clearness index. The �uctuation behaviour of this
simulated time series correctly resembles the original series.

• A time series of global irradiance on the inclined plane can be simulated with the waves-
trapping procedure applied over a signal previously detrended by a partial reconstruction
with a wavelet multiresolution analysis. Once again, the �uctuation behaviour of this simu-
lated time series is correct. This procedure is proposed as a suitable tool for the simulation
of irradiance incident over a group of distant PV plants.

• A wavelet variance analysis and the long memory spectral exponent show that a PV plant
behaves as a low-pass �lter.

From this knowledge, there are several steps to follow:

• The long memory spectral exponent, as a summary of the �uctuation behaviour of a irradi-
ance or power time series, could serve as an index for the classi�cation of days according to
its �uctuation level. Therefore, a irradiance/power database can be sorted with this index.
Moreover, clustering techniques can take advantage of this summary, while the results of
the classi�cation methods may be useful for developing prediction procedures.

• The behaviour of a PV plant is determined by its size and the meteorology conditions of
its location. The wavelet analysis of both irradiance and wind speed may help to obtain
an accurate model of this performance in order to obtain power �uctuation levels from the
irradiance �uctuation levels.

• Geostatistics and wavelet time series analysis may serve as a useful combination for the
study of irradiance and power series of a group of PV plants and inside a large PV plant.
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Software tools

The calculation procedures has been implemented with R, a free software environment for
statistical computing and graphics [25]. The package wmtsa [26] includes the tools for the wavelet
analysis, and the packages solaR [27] and zoo [28] provide with the functions for the solar and
time series calculations, respectively. Finally the packages lattice [29] and latticeExtra [30]
include a complete set of graphical utilities for the production of the set of �gures of this paper.

The code implemented for this paper is available at http://procomun.wordpress.com/

documentos/articulos/.
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