
1 http://www.businessrulesgroup.org

K-SITE RULES:
Integrating Business Rules in the mainstream software engineering practice

José L. Martínez-Fernández(2), José C. González(1,2), Pablo Suárez(2)
(1) DAEDALUS – Data, Decisions and Language, S.A., Avda. Albufera 321, Madrid, Spain

jmartinez@daedalus.es, jgonzalez@daedalus.es, psuarez@daedalus.es
(2) ETSI Telecomunicación, Universidad Politécnica de Madrid

Keywords: Business rules, rule engine, rule language, software development lifecycle models.

Abstract: The technology for business rule based systems faces two important challenges: standardization and
integration within conventional software development lifecycle models and tools. Despite the
standardization effort carried out by international organizations, commercial tools incorporate their own
flavours in rule languages, making difficult the migration among tools. On the other hand, although some
business rules systems vendors incorporate interfaces to encapsulate decision models as web services, it is
still difficult integrating business rules in traditional object-oriented analysis and design methodologies.
This is the rationale behind the development of K-Site Rules, a tool that facilitates the cooperation of
business people and software designers in business applications.

1 INTRODUCTION

A Business Rule (BR) can be seen as an expression
used to make explicit the knowledge about the
business present in an organization. According to the
Business Rules Group1 two definitions can be given
for the term business rule, depending on the point of
view adopted: from the business point of view,
where a business rule is “a directive, intended to
influence or guide business behaviour, in support of
business policy that has been formulated in response
to an opportunity, threat, strength, or weakness”,
from the Information Technology (IT) point of view
a BR can be defined as “a statement that defines or
constrains an aspect of the business. It is intended to
assert business structure, or to control or influence
the behaviour of the business”.

A Business Rules Engine (BRE) or Business
Rules System (BRS) is a software system in charge
of executing IT business rules. These systems
usually include tools to support the definition,
verification, validation and management of business
rules.
In the last few years, the use of business rules
systems is being widely adopted by companies to
encode business knowledge. But, why? What are the
benefits of using business rules? There are three
main reasons: First, the knowledge about the
business is stored in a somehow centralized, easily

accessible storage, and this knowledge can be
modified, updated and maintained in a quick and
simple way. Second, companies need ways to foster
their reaction to new business opportunities, and the
ability to adapt their IT systems to take benefit of
these opportunities becomes a definitive advantage.
Third, from the IT perspective, the use of business
rules allows a reduction of the effort needed to adapt
software systems to new requirements. The ideal
situation is one in which no code modifications are
needed to satisfy these new restrictions. Let’s try to
explain this fact with an example: suppose you are
managing a web site selling electronic devices and
you want to make a 10% special discount to
customers coming for their first time to the web site.
You can implement this restriction using an if-then
sentence in your code. Now, suppose you want to
extend the special discount to every customer for a
period of time. Then you should change your code
and recompile it to include this new restriction. On
the other hand, if you express the restriction as a
business rule, you only have to change the business
rule definition without changing the code of the
application, and with no need to recompile your
program.

Nowadays, there are a lot of commercial
products implementing business rules engines. Blaze
Advisor (Fair Isaac, 2007), ILOG JRules (ILOG
JRules, 2006) and JBoss Rules (Red Hat, 2007) are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

some of the most important ones. Of course, you
have to make a decision about which product you
are going to include in your IT architecture. Each
product uses its own language to define business
rules, so a standardization problem arises. Although
there are several efforts to define a standard rules
language such as RuleML, SWRL (Semantic Web
Rule Language) or RIF (Rules Interchange Format),
these languages are not implemented by commercial
products.

On the other hand, if business rules are going to
be used to implement software components in
companies, there should be a way to include them in
the software development lifecycle. For this
purpose, tools supporting the harvesting, definition
and implementation of business rules should be
provided, as well as their utilization in the
corresponding stages of the development lifecycle.

K-Site Rules is a tool that covers these two
main problems. The first one, by helping in the
standardization of business rules representations by
providing automatic translations among SWRL and
the languages interpreted by commercial products.
The second one, providing a simple way to assure
configuration management in the business rules
development process and development tools, which
can be easily integrated within standard software
development lifecycle models.

The reminder of this paper is structured as
follows: Section 2 describes key issues relating the
integration of BRSs in the development cycle.
Section 3 describes the architecture of the K-Site
Rules solution, focused in assuring the independence
of the commercial BRS selected to implement
business rules. Section 4 depicts a use case for K-
Site Rules and Section 5 includes some conclusions
extracted during the design and development of K-
Site Rules.

2 ROLES IN BUSINESS RULES
SYSTEMS DEVELOPMENT
AND INTEGRATION

As mentioned in the introduction, the development
of decision support systems based on business rules
must face two main problems: there is a great variety
of different rule engines supporting different rule
languages and it is difficult to foresee the point in
the development cycle where rules construction
should be carried out. In order to make business
rules application development independent of rule

engine and rule language selected for
implementation, three basic issues must be analyzed:

• The way in which applications can interact
with rule engines regardless of the rule
engine product selected

• How applications are going to transmit rule
definitions to rule engines regardless of the
product selected to implement business rules

• How the development of business rules is
going to be integrated in the development
lifecycle model for the rest of the application
being constructed.

The following three subsections are devoted to

each one of these main issues.

2.1 Rule Language Standardization
efforts

A lot of effort is being devoted to the definition of
standard rules languages to assure that a rule can be
defined once and implemented in different rule
engines. Among these efforts, it is worth
highlighting the following ones:

2.1.1 Simple Rule Markup Language (SRML)
and Business Rule Markup Language
(BRML)

SRML language (Thorpe&Ke, 2001) was an
initiative started by ILOG, a company specialized in
BRSs development. The main goal was to define a
generic XML based language with constructors from
several proprietary languages. In this way several
BRSs could share the same set of business rules.
This initiative has been substituted by the W3C
Rules Interchange Format (RIF) proposal.

On the other hand, BRML was a language
defined by IBM under the framework of an
eCommerce project. The idea was also to define a
language to interchange rules definitions and now it
has also been substituted by the RIF initiative
(described in 2.1.3).

2.1.2 RuleML

RuleML stands for Rule Markup Language (Boley et
al., 2005) to publish and share access to rule
databases across the web. It is inspired by SQL
(Structured Query Language) and Prolog and uses
XML to define the structure of the rule. This
structure is based in three main elements: a head for
the rule (the rule antecedent), a body (the
consequent) which are formed by atoms. An atom is

a relation among constant values. Rules engines
exist specifically built to interpret RuleML language,
such as JDrew and Mandarax.

2.1.3 Rule Interchange Format (RIF)

The W3C (World Wide Web Consortium) has
created a workgroup to develop a format to simplify
rules interchange. This format is called Rule
Interchange Format (RIF). The main goal of this
workgroup is to define a rule language and
necessary extensions to allow rules translation
among different BRSs. In this way, rules definitions
could be shared and reused by different engines. A
draft for a Core Condition Language (Boley&Kifer,
2007) has been the first step taken by this group
along with a set of use cases where the standard
could be applied.

2.1.4 Semantic Web Rule Language (SWRL)

During last years a great effort has been devoted to
the development of the so called Semantic Web, an
attempt to put meaning in the web in a way that
machines and applications are able to interpret. Of
course, the business rules world is not aside these
efforts and an expression of business rules using
Semantic Web approaches has already been built.
This effort is called Semantic Web Rule Language
(SWRL) (Horrocks et al., 2003) a rules language
combining OWL (Web Ontology Language) with
RuleML. For this purpose, SWRL includes an
abstract syntax for Horn clauses, with a knowledge
base expressed in OWL. The proposed rules are
defined as an implication between an antecedent (the
head of the rule) and a consequent (the body of the
rule) where both elements can be constituted by
atoms. Among other things, an atom can be some
condition over an OWL class or instance. In this
way, the elements considered to build the rule must
be found in the domain defined by an ontology.

2.2 JSR-94, a standard programming
interface for rule engines

JSR-94 (Toussaint, 2003) is the name given to the
standard JAVA application interface programming
(API) defined to make applications independent of
the rule engine product used to implement business
rules.

This specification states a set of basic
operations that every rule engine should provide.
This set of operations is selected based on the
assumption that all users of a rule engine needs an

execution of a cycle including the following steps:
rule analysis, inclusion of new objects to the engine,
firing rules and obtaining result objects from the
engine. This interface does not state the language in
which rules must be supplied, and neither gives
semantic to the rule execution cycle.

All rule engine products with relevance in the
market implement this standard, including: Blaze
Advisor, ILOG JRules, JBoss Rules and Jess.

2.3 Stages in the business rules
development process

There exists a methodology to harvest and develop
rules languages called PROTEUS (Ross, 2006). K-
Site Rules proposes a simplification of this
methodology and provides development tools to
support the stages in this reduced methodology.

2.3.1 PROTEUS Methodology

PROTEUS is a methodology providing a set of steps
and techniques defined to allow an easy capture,
expression and organization of business rules.

Among its main characteristics is worth
mentioning: the ability to express, organize and
exhaustively capture business rules; its business
orientation; the inclusion of a guide to facilitate the
requirement analysis; the possibility to build a
business model with the involvement of the user; the
harvesting of business rules from the products
delivered with the business model and the
development of a document where software
developers can get answers for questions about the
business. Although this methodology is business
oriented, an exhaustive list of requirements must be
obtained in order to allow software architects the
design and development of the rule based system.
This methodology defines a business rule as a
sentence (directive, business expression or formal
expression) about a specific theme. Every rule can
be classified, taking into account different aspects,
into four main classes: business category, referring
the basic function of the rule in the business
execution; functional category, according to the
main operation or effect (computation, exclusion,
projection) of the rule; abstraction level category,
taking into account how strict must the application
of the rule be and; finally, the system category,
which takes into account the objective of the
operations and actions related to the rule.

This exhaustive methodology has been taken as
the baseline for the development cycle of K-Site
Rules, described in the next section.

2.3.2 K-Site Rules development cycle

The development steps defined in K-Site Rules are a
simplification of the PROTEUS approach. Before
describing the methodology, some definitions must
be given according to the point of view considered
in K-Site Rules: a decision service is a set of atomic
business rules and actions (i.e.: operations included
in business objects); an atomic business rules is a
rule that can be expressed in one sentence.

Four basic steps are considered:
• Workflow definition

A flow must be defined among sets of atomic
rules, making easier to understand the
operations performed by the rule and
allowing the reuse of already defined atomic
rules and rulesets.

• Atomic rule definition
Definitions for atomic rules are supported in
different formats. In K-Site Rules an atomic
rule can be defined using natural language,
decision tables and decision trees. Concepts
and facts available to define rules are taken
from JAVA object models. Atomic business
rules are expressed in the standard SWRL
language.

• Decision service validation
Once atomic rules have been defined and
included in the decision service workflow
and this decision service is complete,
validation tasks must be done. The main goal
is to test if the functional behaviour of the
decision service is correct or not. In order to
perform this validation, a target rule engine
must be selected and K-Site Rules will
automatically translate the decision service to
the selected engine, performing predefined
validations. Mechanisms to provide data for
these validations are, of course, supported by
the tool.

• Decision service publication
A version control system is also integrated in
K-Site Rules, to manage different versions of
business rules and also to publish or
deploying rule definitions.

These developments steps are exemplified in a
use case in section 4.

The PROTEUS methodology considers an
initial phase to build the business model for the
organization. In a first version of K-Site Rules, this
business model is inherited from the organization, so
valid concepts and facts are going to be those

already defined in the target organization and
included in some kind of JAVA business objects
repository.

3 A COMPREHENSIVE
ARCHITECTURE FOR BR
SYSTEMS DEVELOPMENT
AND INTEGRATION

Most of Rule-Based Systems offer an architecture
similar to the one showed in Figure 1.

Figure 1: Rule-Based System general architecture

The user interacts with the Rule-Based system
through a User Interface. It allows access to a
Knowledge Editor that supports the creation or
modification of new rules, possibly using natural
language. These rules are stored in a repository
which constitutes the Knowledge Data element in
Figure 1. Along this process, the Knowledge Editor
could make use of previous data stored in this
Knowledge Data repository. Rules stored in this
repository are typically structured in form of if-then-
else logical propositions. On the other hand, the
Inference Engine or Rules Engine obtains inferences
starting from the Knowledge Data and the Specific
Data. Obviously, the Inference Engine can use
intermediate data generated in successive steps
along the inference process.

K-Site Rules implements a layer allowing the
integration of Rule-Based Systems, and the
architecture of the tool was thought in accordance
with the following objectives:

• Make rules development independent from
rules engines, allowing the integration with
several different engines (view Figure 2).

• Develop and maintain rules in a simple and
intuitive way.

• Coordinate all the processes involved in
rules definition for making easier the reuse
of the rules.

• Control access to rules according to the
user profile.

Figure 2: A global vision of K-Site Rules Integration

With the aim of reaching all these objectives, the
basic architecture of K-Site Rules is depicted in
Figure 3.

Figure 3: K-Site Rules Architecture

The most important elements of this architecture are
the next ones:

3.1 Rule Editors

K-Site Rules offers an editor for each different role.
In particular, we include in our architecture a
Business Analyst Editor and a Developer Editor.
The Developer Editor was developed as a plug-in in
an eclipse-based IDE. This plug-in allows the
integration of the editor in a modelling tool for the
definition of business rules. The Business Analyst
Editor was developed as a friendly web tool
allowing access to the system through a standard
browser. It can also be integrated with the corporate

access control system. Both editors allow the user to
create atomic if-then-else rules in three different
ways: through guided natural language, decision
tables or decision trees. The editors generate
Knowledge Data in an intermediate standard
language known as SWRL. Some data (.dae) must
also be stored in the Knowledge Data repository in
order to reproduce graphic representation of rules
and rule flows. The editors are also integrated with
the Configuration Manager (Figure 3).

3.2 Rules translator

Independence among the rules development and the
rules engines in K-Site Rules makes necessary the
incorporation of a translator in the architecture. It
performs the translation of the intermediate SWRL
files to the specific Rule Engine files (Figure 4).
These languages are those provided by rule engines
like ILOG JRules (IRL) or JBoss Rules (DRL). The
interpreter is also integrated with the Configuration
Manager (Figure 3).

Figure 4: Translation process

3.3 Configuration Manager

The Configuration Manager facilitates the reuse of
Business Rules, validates the deployment of
Business Rules, audits changes in the Rules and
controls and maintains historic data about Business
Rules versions. In addition to these features, the
Configuration Manager communicates all involved
user roles (business analyst, developer and
administrator) in a transparent way, so that the
changes carried out by a role will be visible for the
other. It controls the access permissions to rules for
each user too, and makes it possible the integration
with the corporate configuration manager. K-Site
Rules provides support for different configuration
servers, like Subversion (Collins-Sussman et al.,
2007) or Clear Case (IBM, 2007).

3.4 Administrator tool

In addition to these elements, K-Site Rules
incorporates an Administrator Web Tool that

permits access, through a standard browser, to
configuration and control parameters of all
components constituting K-Site Rules. It allows the
definition and configuration of all necessary
repositories in the Configuration Manager System.
Moreover, it allows the management of users with
access to K-Site Rules, including access and
deployment permissions of Business Rules.

Finally, the dashed line in Figure 3 represents the
separation between the elements involved in the
development or execution procedures respectively.

The main features of K-Site Rules are summarized
in this couple of definition equations:

Figure 5: K-Site Rules definition equations

4 USE CASE

We will pay now attention to the process followed
by a developer, a Business Analyst or an
Administrator to make use of K-Site Rules.

4.1 Developer use case

For the developer, K-Site Rules will be offered, as
said before, as a plug-in integrated in a modelling
tool. The developer will start from a UML model
that represents all the business objects included into
the Business Model, its attributes and methods, and
all relations among them. Related to this model,
there will be a kind of elements stereotyped as
“Decision Service”, with only an associated method.
The right button click of mouse over one element of
this type will launch the K-Site Rules plug-in. Login
and password will be required and then, associated
rules information will be downloaded from the tool’s
repository. If there is some rule information
associated to the corresponding Decision Service
(Business Rule), all this information will be
downloaded. Then, a tab control will be shown in
the plug-in view, with a flow diagram that represents
the Decision Service.

This flow diagram represents the Business Rule or
Decision Service itself. It is represented as a
conventional rule flow, with a start point, a sequence
of rule sets and flow packages connected through
arrows and an end point. Clicking over a flow
package, we can see a new flow diagram with the
same features mentioned. The flow screen will offer
options related to the business rule publication, i.e.,
options as commit, update, and so. Besides, options
related to business rules validation, that allow a
business rules proof by means of tables that permit
the introduction of the needed information, will be
shown. All these options are related to the complete
Business Rule or Decision Service. From this screen
we can see the properties associated to the Decision
Service too.

When we double click over a rule set element in the
flow diagram, the plug-in will open the atomic rules
editor. This editor will show all the atomic rules
(including decision tables and decision trees)
associated to the selected rule set. From this Rules
Editor we can create, modify or delete atomic rules
associated to this rule set by means of three different
tools: a natural language editor, a decision table and
a decision tree. All of them allow access to the
properties associated to each atomic rule. In
addition, all of them allow for version control
options referred to the atomic rule (commit, update,
etc.) The natural language editor permits to guide the
rule creation process in business language. In the
decision table, the atomic rules are introduced
through a table form. Finally, in the decision tree a
tree form of data introduction is enabled. All these
atomic rules are automatically translated to the
SWRL standard language as was said before.

Finally, the plug-in offers a panel that enables the
translation of standard SWRL files associated to the
atomic rules to the specific inference engine files
(view Figure 5). It represents the implementation of
the Translator of our architecture (view Figure 3 and
Figure 4). This panel allows the developer to select a
rule set or a set of them and a concrete destination
Rule Engine, and translate all SWRL of the
associated atomic rules to the destination Rule
Engine language. The Translation panel also allows
navigation trough the original SWRL files and the
translated ones as a comparison utility. Other
options offered by the Translation panel are: 1) the
possibility to export the generated files to an
adequate directory when the tool detects the
presence of projects characteristic of a certain Rule
Engine (present through other plug-ins offered by

third parties in the Modelling Tool); 2) access to the
rules debugging tools of the destination Rule
Engine.

Figure 6: Translator screen

4.2 Business Analyst use case

The Business Analyst tool was thought as a web
application that can be connected trough a common
standard browser. This tool is devoted to allow
business analysts, usually not having technological
knowledge, the definition and validation of business
rules without the intervention of developers. To
access this tool, a user and password is required.
Then, a rules screen is offered to the user. In the left
part of this screen, the user can select the Decision
Service (Business Rule) required through a combo
box. In the centre and right part of the screen, a table
with all versions of the selected Decision Service
and its components is offered. When the business
analyst selects a version and click on the Edit button,
the web tool opens a flow diagram screen. This
screen is similar to that explained in the developer
tool, with identical options and identical access to
the Rules Editor screen. The Rules Editor is similar
too, and, as in the other case, it allows the creation
of rules through natural business language, decision
tables and decision trees. For more details, the
reader should see the developer use case.

4.3 Administrator use case

The Administrator tool was thought as a web
application that can be accessed trough a common
standard browser. A user and password is also
required, like in the Business Analyst Tool. The
Administrator tool offers three main options through
a tab panel:

• A screen that allows the administrator to
manage the user accounts and groups and
the associated permissions.

• A screen allowing the administrator to
configure the different repositories required
by the tool.

• A console mode screen, allowing the
administrator the management of system
scripts to simplify administrative tasks such
as rule deployment.

5 CONCLUSIONS

This paper presents K-Site Rules, a tool and a
methodology for business rules integration and
deployment. The main issue addressed by K-Site
Rules is the effective cooperation of business people
and software engineers in the design of software
components, specially in the case of components
incorporating declarative business knowledge in the
form of business rules. In this sense, the main
contribution of this work to the state of the art is the
possibility of collaboration between business experts
and software developers in a typical Integrated
Development Environment (IDE), addressing key
issues as configuration management.

K-Site Rules does not incorporate its own inference
engine. It relies on commercial or open source
software for the debugging and execution of
business rules. Instead, it permits the specification of
decision processes in the standard SWRL language,
translating business rules to the proprietary
languages of commercial rule engines.

ACKNOWLEDGEMENTS

This work has been partially supported by the
Spanish Center for Industry Technological
Develpoment (CDTI, Ministry of Industry, Tourism
and Trade), through the project ITECBAN
(Architecture for Core Banking Information
Systems), INGENIO 2010 Programme. Other
partners in ITECBAN are INDRA Sistemas,
CajaMadrid, Sun Microsystems and Grid Systems.
Special mention to our colleagues at INDRA must
be done for their involvement in the specification of
K-Site Rules: Fernando Alcántara, Pablo Leal, Juan
Carlos Macho and Gonzalo Pando (in alphabetical
order).

REFERENCES

Boley, H., Grosof, B., Tabet, S., 2005. RuleML Tutorial,
Draft. Available at http://www.ruleml.org, last visit:
3/12/2007

Boley, H., Kifer, M., 2007. RIF Core Design. W3C
Working Draft 30 March 2007, W3C Consortium.
Available at http://www.w3.org/TR/2007/WD-rif-
core-20070330/, last visit: 3/12/2007

Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.,2007.
Version Control with Subversion: For Subversion 1.5,
Avalilable at http://svnbook.red-bean.com/nightly/en/
svn-book.pdf, last visit: 3/12/2007

Fair Isaac, 2007. Blaze Advisor Business Rules
Management System: How it works. Fair Isaac
Corporation

Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B.
Grosof, M. Dean, 2003. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, draft 0.5.
Available at http://www.daml.org/2003/11/swrl/

IBM, 2007, IBM Rational ClearCase, Available at
ftp://ftp.software.ibm.com/software/rational/web/datas
heets/clearcase.pdf, last visit: 3/12/2007

ILOG JRules, 2006. Business Rule Management (BRM)
with ILOG JRules 6. BRMS without compromise.
ILOG Inc.

Moore, R., Lopes, J., 1999. Paper templates. In
TEMPLATE’06, 1st International Conference on
Template Production. INSTICC Press.

Red Hat, 2007. JBoss Rules Fact Sheet. Red Hat Inc.Ross
G., Ronald, 2006, Business Rule Concepts. Getting to
the point of knowledge, Business Rules Solutions
LLC.

Smith, J., 1998. The book, The publishing company.
London, 2nd edition.

M. Thorpe, C. Ke, 2001. Simple Rule Markup Language
(SRML): A General XML Rule Representation for
Forward-chaining Rules, from
http://xml.coverpages.org/srml.html

Toussaint, 2003. Java Rule Engine API Specification JSR-
94, Draft 1.0, Available at
http://jcp.org/en/jsr/detail?id=94

