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Abstract. We introduce in this paper a notion of continuity in digital
spaces which extends the usual notion of digital continuity. Our approach
uses multivalued maps. We show how the multivalued approach provides
a better framework to define topological notions, like retractions, in a far
more realistic way than by using just single-valued digitally continuous
functions. In particular, we characterize the deletion of simple points,
one of the most important processing operations in digital topology, as
a particular kind of retraction.
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Introduction

The notion of continuous function is the fundamental concept in the study of
topological spaces. Therefore it should play also an important role in Digital
Topology.

There have been some attempts to define a reasonable notion of continuous
function in digital spaces. The first one goes back to A. Rosenfeld [13] in 1986.
He defined continuous function in a similar way as it is done for continuous maps
in R

n. It turned out that continuous functions agreed with functions taking 4-
adjacent points into 4-adjacent points. He proved, amongst other results, that a
function between digital spaces is continuous if and only it takes connected sets
into connected sets.

More results related with this type of continuity were proved by L. Boxer
in [1] and, more recently in [2,3,4]. In these papers, he introduces such notions
as homeomorphism, retracts and homotopies for digitally continuous functions,
applying these notions to define a digital fundamental group, digital homotopies
and to compute the fundamental group of sphere-like digital images. However, as
he recognizes in [3], there are some limitations with the homotopy equivalences
he get. For example, while all simple closed curves are homeomorphic and hence
homotopically equivalent with respect to the Euclidean topology, in the digital
case two simple closed curves can be homotopically equivalent only if they have
the same cardinality.

A different approach was suggested by V. Kovalevsky in [11], using multival-
ued maps. This seems reasonable, since an expansion as f(x) = 2x must take 1
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pixel to 2 pixels if the image of an interval has still to be connected. He calls a
multivalued function continuous if the pre-image of an open set is open. He con-
siders, however, that another important class of multivalued functions is what
he calls “connectivity preserving mappings”. By its proper definition, the image
of a point by a connectivity preserving mapping is a connected set. This is not
required for merely continuous functions. He finally asserts that the substitutes
for continuous functions in finite spaces are the simple connectivity preserving
maps, where a connectivity preserving map f is simple if for any x such that f(x)
has more than 1 element then f−1f(x) = {x}. However, in this case it would be
possible to map the center of a 3 × 3 square to the boundary of it leaving the
points of the boundary fixed, obtaining in this way a “continuous” retraction
from the square to its boundary, something impossible in the continuous realm.
The number of admissible function is reduced considering restrictions, as in its
notion of n-isomorphism, upon the diameter of the image of a point, although,
if we want f(x) = nx to be continuous, these restrictions should be dependent
of the function. Nevertheless, this kind of restrictions might be useful, since
allowing bigger images we gradually increase the class of allowable functions.

In [14], A. Rosenfeld and A. Nakamura introduce the notion of a local de-
formation of digital curves that, as they mention, “can be regarded as digitally
continuous in the sense that it takes neighboring pixels into neighboring pixels,
but it is not exactly the same as a digitally continuous mappings”. This is mainly
due to the fact that one point in a curve can be related to several points in the
other.

The multivalued approach to continuity in digital spaces has also been used
by R. Tsaur and M. Smyth in [15], where a notion of continuous multifunction
for discrete spaces is introduced: A multifunction is continuous if and only if it is
“strong” in the sense of taking neighbors into neighbors with respect to Hausdorff
metric. They use this approach to prove some results concerning the existence
of fixed points for multifunctions. However, although this approach allows more
flexibility in the digitization of continuous functions defined in continuous spaces,
it is still a bit restrictive, as shown by the fact that the multivalued function
used by them to illustrate the convenience of using multivalued functions is not
a strong continuous multifunction.

In this paper, we present a theory of continuity in digital spaces which extends
the one introduced by Rosenfeld. In particular, most of the results in [2,3,4] are
still valid in our context.

In section 1 we revise the basic notions on digital topology required throughout
the paper. In particular we recall the different adjacency relations used to model
digital spaces. In section 2 we introduce the notion of subdivision of a topological
space. This notion is next used to define continuity for multivalued functions and
to prove some basic properties concerning the behavior of digitally continuous
multivalued functions under restriction and composition. In section 3 we show
that the deletion of simple points can be completely characterized in terms of
digitally continuous multivalued functions. In particular, a point is simple if and
only if certain multivalued function is continuous. Section 4 is devoted to the
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definition and properties of multivalued retractions. We show that the behavior
of multivalued retractions in the digital plane is completely analogous to the
behavior of retractions in the continuous (real) plane, in contrast with what
happens with the existing notions of digital continuity. In the last section we
translate to the digital space the well known Hahn-Mazurkiewicz theorem which
characterizes locally connected continua as continuous images of the interval.

For information on Digital Topology we recommend the survey [9] and the
books by Kong and Rosenfeld [10], and by Klette and Rosenfeld [8].

We are grateful to the referees for their suggestions and remarks which have
helped to improve the final version of this paper.

1 Digital Spaces

We consider Z
n as model for digital spaces.

Two points in the digital line Z are adjacent if they are different but their
coordinates differ in at most a unit. Two points in the digital plane Z

2 are 8-
adjacent if they are different and their coordinates differ in at most a unit. They
are said 4-adjacent if they are 8-adjacent and differ in at most a coordinate.
Two points of the digital 3-space Z

3 are 26-adjacent if they are different and
their coordinates differ in at most a unit. They are said 18-adjacent if they are
26-adjacent and differ in at most two coordinates, and they are said 6-adjacent
if they are 26-adjacent and differ in at most a coordinate. In an analogous way,
adjacency relations are defined in Z

n for n ≥ 4, for example, in Z
4 there exist

4 different adjacency relations: 80-adjacency, 64-adjacency, 32-adjacency and 8-
adjacency.

Given p ∈ Z
2 we define N (p) as the set of points 8-adjacent to p, i.e. N (p) =

{p1, p2, . . . , p8}. This is also denoted as N 8(p). Analogously, N 4(p) is the set of
points 4-adjacent to p (with the above notation N 4(p) = {p2, p4, p6, p8}).
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p N 4(p)

Given p ∈ Z
3, N (p) will be the set of points 26-adjacent to p. In this case

there will exist three kinds of neighborhood: N 26(p), N 18(p) and N 6(p).
A k-path P in Z

n (where k corresponds to any of the possible adjacency
relations in Z

n) is a sequence P = {p0, p1, p2, . . . , pr} of points such that pi is
k-adjacent to pi+1, for every i ∈ {0, 1, 2, . . . , r − 1}. It is said then that P is a
k-path from p0 to pr. If p0 = pr then it is called a closed path.

A k-path {p0, p1, p2, . . . , pr} is called a k-arc if the only k-adjacent points are
consecutive points and, possibly, the end points (i.e., if 0 ≤ i < i + 1 < j < r or
0 < i < i + 1 < j ≤ r then pi is not k-adjacent to pj). Every k-path P contains
a k-arc with the same end points.
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A set S ⊂ Z
n is k-connected if for every pair of points of S there exists a k-path

contained in S joining them. A k-connected component of S is a k-connected
maximal set.

2 Continuous Multivalued Functions

Definition 1. Let f : X ⊂ Z
m −→ Z

n be a function between digital spaces
with adjacency relations k and k′. According to [13], f is (k, k′)-continuous if f
sends k-adjacent points to k′-adjacent points. When m = n and k = k′, f is said
to be just k-continuous.

We will say that f : X ⊂ Z
m −→ Z

n is continuous if it is (k, k′)-continuous
for some k and k′.

In the following definition we introduce the concept of subdivision of Z
n.

Definition 2. The first subdivision of Z
n is formed by the set

Z
n
1 =

{(z1

3
,
z2

3
, . . . ,

zn

3

)
| (z1, z2, . . . , zn) ∈ Z

n
}

and the 3n : 1 map i : Z
n
1 ↪→ Z

n given by i
(z1

3
,
z2

3
, . . . ,

zn

3

)
= (z′1, z′2, . . . , z′n)

where (z′1, z
′
2, . . . , z

′
n) is the point in Z

n closer to
(z1

3
,
z2

3
, . . . ,

zn

3

)
.

The r-th subdivision of Z
n is formed by the set

Z
n
r =

{(z1

3r
,
z2

3r
, . . . ,

zn

3r

)
| (z1, z2, . . . , zn) ∈ Z

n
}

and the 3nr : 1 map ir : Z
n
r ↪→ Z

n given by ir

(z1

3r
,
z2

3r
, . . . ,

zn

3r

)
= (z′1, z

′
2, . . . , z

′
n)

where (z′1, z′2, . . . , z′n) is the point in Z
n closer to

(z1

3r
,
z2

3r
, . . . ,

zn

3r

)
. Observe that

ir = i ◦ i ◦ · · · ◦ i.
Moreover, if we consider in Z

n a k-adjacency relation, we can consider in
Z

n
r , in an immediate way, the same adjacency relation, i.e.,

(z1

3r
,
z2

3r
, . . . ,

zn

3r

)

is k-adjacent to
(

z′1
3r

,
z′2
3r

, . . . ,
z′n
3r

)
if and only if (z1, z2, . . . , zn) is k-adjacent to

(z′1, z
′
2, . . . , z

′
n).

Proposition 1. ir is k-continuous as a function between digital spaces.

Definition 3. Given X ⊂ Z
n, the r-th subdivision of X is the set Xr = i−1

r (X).

Intuitively, if we consider X made of pixels (resp. voxels), the r-th subdivision
of X consists in replacing each pixel with 9r pixels (resp. 27r voxels) and the
map ir is the inclusion.

Remark 1. Given X, Y ⊂ Z
n, any function f : Xr −→ Y induces in an imme-

diate way a multivalued function F : X −→ Y where F (x) =
⋃

x′∈i−1
r (x)

f(x′).
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Definition 4. Consider X, Y ⊂ Z
n. A multivalued function F : X −→ Y is

said to be a (k, k′)-continuous multivalued function if it is induced by a (k, k′)-
continuous (single-valued) function from Xr to Y for some r ∈ N.

Remark 2. Let F : X −→ Y (X, Y ⊂ Z
n) be a (k, k′)-continuous multivalued

function. Then

i) F (x) is k′-connected, for every x ∈ X ,
ii) if x and y are k-adjacent points of X , then F (x) and F (y) are k′-adjacent

subsets of Y .
iii) F takes k-connected sets to k′-connected sets.

Note that (iii) implies, and is implied by, (i) and (ii).
On the other hand, not all multivalued functions satisfying (i), (ii) and (iii)

are induced by continuous single-valued functions. For example, the following
multivalued function F : N (p) ∪ {p} −→ N (p)

p1 p2 p3

p8 p p4

p7 p6 p5

�
��� ����

�

��	
���

given by

F (x) =
{

N (p) if x = p
{x} if x ∈ N (p)

Remark 3. It is immediate that any digitally continuous function in the sense
of Rosenfeld is also continuous as a multivalued function. In particular, any
single-valued constant map is continuous as a multivalued map.

On the other hand, “strong” continuous multivalued functions in [15] satisfy
(ii) above, although the image of a point does not need to be connected. Hence
strong multivalued continuity does not imply our notion of continuity. There
is even strong continuous multivalued function with the images of all points
connected, like the example in the previous remark, which are not continuous as
defined in this paper.

Conversely, the function in Example 1 in Section 4 is a continuous multivalued
function (as defined here) which is not a strong continuous multivalued function.

The following result is easy to prove.

Proposition 2. If F : X −→ Y (X, Y ⊂ Z
n) is a (k, k′)-continuous multivalued

function and X ′ ⊂ X then F |X′ : X ′ −→ Y is a (k, k′)-continuous multivalued
function.

If F : X −→ Y and G : Y −→ Z are continuous multivalued functions, then we
can consider the composition GF : X −→ Z. However, it is not straightforward
to prove that GF is continuous. We need first the following result.
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Lemma 1. Let f : X −→ Y (X ⊂ Z
m, Y ⊂ Z

n) be a (k, k′)-continuous
function. Then, for every r ∈ N, f induces a (k, k′)-continuous function fr :
Xr −→ Yr such that fr(i−1

r (x)) = i−1
r (f(x)) for every x ∈ X. This is equivalent

to the following diagram

X Y

Xr Yr

f

fr

ir ir

�

�

� �

being commutative.

To be precise, we should have denoted by (ir)X and (ir)Y the maps (ir)X :
Xr −→ X and (ir)Y : Yr −→ Y , respectively. In order not to complicate the
notation we have denoted both maps by ir.

Proof. It is simply an interpolation. For example, when m = n = 2 and r = 1,
then we have just to define f1(x, y) = f(x, y) if (x, y) ∈ Z

2, while if (x, y) 	∈ Z
2

then (x, y) =
2
3
(x′, y′) +

1
3
(x′′, y′′) with (x′, y′), (x′′, y′′) ∈ Z

2 adjacent points,

and we define f1(x, y) =
2
3
f(x′, y′) +

1
3
f(x′′, y′′).

Theorem 1. If F : X −→ Y is a (k, k′)-continuous multivalued function and
G : Y −→ Z is a (k′, k′′)-continuous multivalued functions, then GF : X −→ Z
is a (k, k′′)-continuous multivalued function.

Proof. Suppose that F is induced by f : Xr −→ Y and G is induced by g :
Ys −→ Z (observe that gf is not in general well defined).

Consider Xr+s the (r + s)-subdivision of X which is also the s-subdivision of
Xr. Then f induces, according to the above lemma, a (k, k′)-continuous function
fs : Xr+s −→ Ys. Then gfs : Xr+s −→ Z is a (k, k′′)-continuous function which
induces GF .

3 Continuous Multivalued Functions and Simple Points

It may seem that the family of continuous multivalued functions could be too
wide, therefore not having good properties. In this section we show that this
is not the case. We show, in particular, that the existence of a k-continuous
multivalued function from a set X to X \ {p} which leaves invariant X \ {p} is
closely related to p being a k-simple point of X .

Let X ⊂ Z
2 and p ∈ X . The point p is called k-simple (k = 4, 8) in X (see [9])

if the number of k-connected components of N (p) ∩ X which are k-adjacent to
p is equal to 1 and N k̄(p) ∩ Xc 	= ∅ (this last condition is equivalent to p being
a boundary point of X). Here k̄ = 4 if k = 8 and k̄ = 8 if k = 4.

Theorem 2. Let X ⊂ Z
2 and p ∈ X. Suppose there exists a k-continuous

multivalued function F : X −→ X \ {p} such that F (x) = {x} if x 	= p and
F (p) ⊂ N (p). Then p is a k-simple point.
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The converse is true if and only if p is not 8-interior to X (note that if p is
8-simple it can not be 8-interior, however there are 4-simple points which are
8-interior).

Proof. Suppose that F is induced by fr : Xr −→ X . Then fr(x) = ir(x) for
every x ∈ Xr such that ir(x) 	= p.

Suppose that p is not k-simple. We have two possibilities: p is a boundary
point with at least two different k-connected components of N (p)∩X which are
k-adjacent to p, or p is an interior point.

In the first case, let A and B be any two such components. Consider any
xr ∈ i−1

r (p) k-adjacent to i−1
r (A). Then x = fr(xr) must be k-adjacent to A

(since F (A) = A), and since A is a k-connected component of N (p) ∩ X , then
fr(xr) ∈ A. On the other hand, there exists also yr ∈ i−1

r (p) k-adjacent to
i−1
r (B) and, hence, fr(yr) = y ∈ B. Consider {z0 = xr, z1, z2 . . . , zm−1, zm =

yr} ⊂ i−1
r (p) such that zi is k-adjacent to zi−1 for every i = 1, 2, . . . , m. Then

{fr(z0) = x, fr(z1), fr(z2), . . . , fr(zm−1), fr(zm) = y} ⊂ N (p) ∩ X is a k-path in
N (p) ∩ X from x to y. Contradiction.

Suppose now that p is an interior point and that there exists a k-continuous
multivalued function F : X −→ X \ {p} such that F (pi) = {pi} for every
i = 1, 2, . . . , 8. Consider a subdivision Xr of X and a k-continuous map fr :
Xr −→ X which induces F .

We divide i−1
r (p) into concentric paths (the first path would be its boundary,

the next path would be the boundary of the interior, and so on). Then, by
continuity, for the outer path, there are points in it whose images are p2, p4, p6
and p8. Therefore F (p) ⊂ {p2, p4, p6, p8}. If we consider now the next concentric
paths of i−1

r (p), by the continuity of fr, in any of them there are points whose
images are p2, p4, p6 and p8. In particular, this will hold for the innermost
path, making impossible to define fr for the point in the center in a consistent
way.

To prove the converse statement, consider first the following situation, with
p ∈ X a k-simple point such that N (p) ∩ X = {p1, p3, p4, p5, p6, p7, p8}.

p1 p3

p8 p p4

p7 p6 p5

We are going to construct F as in the statement of the theorem. To do that we
consider the second subdivision X2 of X and we are going to construct a single-
valued function f : X2 −→ X which induces the desired F . Since F (x) = {x}
for every x ∈ N (p) ∩ X , then f(x′) = x for every x′ ∈ i−1

2 (x). In order to define
f(p′) for p′ ∈ i−1

2 (p) we divide i−1
2 (p) in groups and define f as shown by the

arrows in the following figure.
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p1 p3

p8 p p4

p7
p6

p5

�
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Then f : X2 −→ X is 4-continuous and 8-continuous. Therefore, if we define
F (p) = {p4, p5, p6, p7, p8}, F is a 8-continuous and 4-continuous multivalued
function.

If p is any other simple point in the hypothesis of the theorem then there
exists a point in N 4(p) which is not in X but one (or both) of the (clockwise)
next points in N (p) are in X . We may suppose, making, if necessary, a rotation
of X (by 90, 180 or 270 degrees) that p2 is that point.

The same groups in i−1
2 (p) can be used to define F (p) in any of these cases.

To show it, we label these groups as follows

p1 p3

p8 p4

p7
p6

p5

A B C D E

R S T

There are two possibilities: either N (p)∩X = {p3}, in which casewe define F (p) =
{p3}, or p4 ∈ X . In the second case we have again two possibilities: either p6 	∈ X ,
in which case N (p)∩X ⊂ {p3, p4, p5} and we define F (p) = {p4}, or {p4, p6} ⊂ X .
If {p4, p6} ⊂ X but p8 	∈ X , then N (p) ∩ X ⊂ {p3, p4, p5, p6, p7}. If p5 	∈ X we de-
fine F (E ∪T ) = p4 and F (A∪B ∪C ∪D ∪R ∪S) = p6, while if p5 ∈ X we define
F (E) = p4, F (D ∪ T ) = p5 and F (A ∪ B ∪ C ∪ R ∪ S) = p6.

Finally, if {p4, p6, p8} ⊂ X , we consider two cases. If {p5, p7} ⊂ X , we define
F (E) = p4, F (D ∪ T ) = p5, F (C ∪ S) = p6, F (B ∪ R) = p7 and F (A) = p8. On



Digitally Continuous Multivalued Functions 89

the other hand, if {p5, p7} 	⊂ X , then p can only be 8-simple (not 4-simple), and
we can define F (D ∪ E ∪ T ) = p4, F (C ∪ S) = p6, F (A ∪ B ∪ R) = p8.

We see finally that if p is 4-simple and 8-interior, then there is not a 4-
continuous multivalued function F : X −→ X \ {p} such that F (x) = {x} if
x 	= p and F (p) ⊂ N (p). To see this, observe first that N (p) ∩ X must be as
follows (or a rotation of it)

p1 p2

p8 p p4

p7 p6 p5

Suppose there exists a 4-continuous multivalued function F : X −→ X \ {p}
such that F (x) = {x} if x 	= p and F (p) ⊂ N (p)∩X . Suppose that F is induced
by fr : Xr −→ X . Then fr(x) = p2 for every x ∈ Xr such that ir(x) = p2 and
fr(x) = p4 for every x ∈ Xr such that ir(x) = p4. Then if we consider the upper
rightmost point x ∈ i−1

r (p), it is not possible to define fr(x) in such a way that
fr is 4-continuous.

Remark 4. F is not unique. For example, for N (p) ∩ X as follows,

p1 p3

p8 p p4

p7 p6 p5

if we define F (p) = {p1, p3, p4, p5, p6, p7, p8}, then F is still a 8-continuous
and 4-continuous multivalued function. The same is true if we define F (p) =
{p3, p4, p5, p6, p7, p8}. However, if we define F (p) = {p5, p6, p7, p8}, then F is nor
a 8-continuous neither a 4-continuous multivalued function, since (ii) in Remark
2 does not hold in this case (p3 and p are adjacent points of X , but F (p3) and
F (p) are not adjacent subsets of X).

Remark 5. It is easy to see that for N (p) ∩ X as in Remark 4, although p
is 4-simple and 8-simple, any single-valued function f : X −→ X \ {p}, such
that f(x) = x if x 	= p, can not be 4-continuous neither 8-continuous, hence
Theorema 2 does not hold for Rosenfeld’s digitally continuous functions.

Remark 6. There exist in the literature results characterizing simple points
in terms of properties of certain inclusion maps, in the spirit of our theorem.
For example, in [12] (see [5,6] for further and more recent results) simple surfels
(the equivalent for a digital surface X of simple points in the digital plane) are
characterized as points x such that the morphism i∗ : Πn

1 (X \ x) −→ Πn
1 (X) is

an isomorphism.
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4 Multivalued Digital Retractions

In the previous section we have characterized the deletion of a k-simple point
in Z

2 as a k-continuous multivalued function f : X −→ X \ {p} such that
f(x) = x if x 	= p. This is a particular case of a wider class of functions known
as multivalued retractions.

Definition 5. Consider Y ⊂ X ⊂ Z
n. A multivalued k-retraction from X to Y

is a k-continuous multivalued function F : X −→ Y such that f(y) = {y} for
every y ∈ Y .

Remark 7. If we look at the notion of simple connectivity preserving mapping
[11], it is clear that if a connectivity preserving mapping from X to a subset Y
has to leave Y fixed, then if it is simple it must be single-valued. Therefore, in
that case, retractions would agree with those in [1].

The next two results are the digital versions of two well known facts about
R

2, namely, that the boundary of a disk is not a retract of the whole disk, while
an annulus (or of a punctured disk) can be retracted to its outer boundary.

Proposition 3. The boundary ∂X of a square X is not a k-retract of X (k =
4, 8).

Proof. Let pN , pE , pS, pW be points in each of the four sides of ∂X , different
from the corner points. Suppose that there exists a k-continuous multivalued
function F : X −→ ∂X such that F (p) = {p} for every p ∈ ∂X . Consider a
subdivision Xr of X and a k-continuous map fr : Xr −→ X which induces F .

Divide i−1
r (X) into concentric paths. Then, by continuity, for the outer path

in X \ ∂X , there are points in it whose images by fr are, respectively pN , pE ,
pS and pW . If we successively consider the different concentric paths of i−1

r (p),
by the continuity of fr, in any of them there are points whose images are pN ,
pE , pS and pW . In particular, this will hold for the innermost path, making it
impossible to define fr for the point at the center in a consistent way.

Example 1. Let X be a squared annulus and consider F : X −→ X defined as
follows

p11 p12 p13 p14 p15

p21
p22 p23 p24

p25

p31 p32 p34 p35

p41
p42 p43 p44

p45

p51 p52 p53 p54 p55
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i.e. F is the identity on the outer boundary of the annulus, and for every p in
the inner boundary, F (p) is equal to three points in the outer boundary.

Then F is a multivalued k-retraction for k = 4 and k = 8.

Proof. F is induced by the following map f1 : X1 −→ X :

p11 p12 p13 p14 p15

p21 p25

p31 p35

p41 p45

p51 p52 p53 p54 p55
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������
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���
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where the rest of the images are completed symmetrically.

This result improves [1, Theorem 4.4]. There, it was proved that the boundary
of a filled square is not a retract of the whole square, but the same arguments
in the proof of that theorem shows that neither is the boundary of a squared
annulus a digital retract (according to Boxer’s definition) of it.

5 Digital Version of Hahn-Mazurkiewicz Theorem

By the well-known Hahn-Mazurkiewicz theorem (see, for example, [7]), any locally
connected continuum (compact and connected set) is the continuum image of the
interval [0, 1] and, conversely, any continuum image of the interval [0, 1] is a locally
connected continuum. We end the paper with a digital version of this result.

Theorem 3 (Digital version of Hahn-Mazurkiewicz theorem). Let X ⊂
Z

n.ConsiderI = {0, 1} thedigitalunit interval.Then,thereexistsasurjective(2, k)-
continuousmultivalued functionF : I −→ X if andonlyX is a boundedk-connected
set (where k correspond to any of the possible adjacency relations in Z

n).

Proof. Suppose there exists a surjective (2, k)-continuous multivalued function
F : I −→ X . Since any subdivision of I is a finite 2-connected set, then X = F (I)
must be finite and hence bounded and also k-connected (by Remark 2).

Suppose, on the other hand, that X is a bounded k-connected set. Then,
since it is also finite, there exists a k-path P = {p0, p1, p2, . . . , pn} which goes
through all the points in X (the path may go more than once through each
point). Consider Ir subdivision of I such that 2·3r ≥ n + 1. Then there exists
a k-continuous function f : Ir −→ P which induces a k-continuous multivalued
function F : I −→ X .
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Remark 8. In the general version of Hahn-Mazurkiewicz theorem, X is required
to be compact and locally connected. These conditions do not appear in the
digital version because all bounded digital sets satisfy these two properties.

Remark 9. The digital version of Hahn-Mazurkiewicz theorem can be stated
in a more surprising way as follows: X is a bounded k-connected set if and
only F : {p} −→ X given by F (p) = X is a k-continuous multivalued function.
This is a consequence of the existence of a k-continuous multivalued function
F : {p} −→ I defined in an obvious way.

As a consequence, since a single-valued constant map is continuous (as a
multivalued function), then, for every digital sets X and Y (Y k-connected and
bounded), the map F : X −→ Y , given by F (p) = Y for every p ∈ X , is a
surjective k-continuous multivalued function.
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