
A Benchmark Suite for Evaluating the Performance of
the WebODE Ontology Engineering Platform

Raúl García-Castro, Asunción Gómez-Pérez

Ontology Engineering Group, Laboratorio de Inteligencia Artificial.
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia,asun}@fi.upm.es

Abstract. Ontology tools play a key role in the development and maintenance
of the Semantic Web. Hence, we need in one hand to objectively evaluate these
tools, in order to analyse whether they can deal with actual and future
requirements, and in the other hand to develop benchmark suites for performing
these evaluations. In this paper, we describe the method we have followed to
design and implement a benchmark suite for evaluating the performance of the
WebODE ontology engineering workbench, along with the conclusions
obtained after using this benchmark suite for evaluating WebODE.

1. Introduction

In order for the Semantic Web to consolidate steadily, it needs the support of
technology that allows to create and to maintain it. The continuous development of
ontology editors and ontology tools for managing ontologies is an indication of this
fact. These tools implement different knowledge models with different underlying
knowledge representation paradigms, manage large upper level and general
ontologies, and range from standalone to web-based applications. To be able to
decide what ontology tools are needed for fulfilling actual and future requirements,
we need to objectively evaluate them with regard to their quality attributes.

Evaluation studies and benchmark suites for ontology technology are still a bit
scarce. For this reason, we think that there is a need to construct benchmark suites for
ontology tools, in order to be able to objectively assess their quality and to allow for a
better integration of this technology into other information systems.

The volume of ontologies and the amount of users that work concurrently with
ontology tools increases continuously. Therefore, the performance of these tools
emerges as one of the quality attributes to take care of.

As the development activity is one of the main ontology life cycle activities [1],
we will first deal with the appraisal of ontology development tools. In this work, we
focus on the WebODE ontology engineering workbench [2], evaluating its
performance in terms of execution efficiency [3]. WebODE’s global performance is
inferred from the performance of the methods of its ontology management API,
which allow managing the ontology components defined in the WebODE knowledge
model (concepts, relations, instances, axioms, constants, bibliographic references, and
imported terms).

The contents of this paper are the following:
Section 2 presents the state of the art in evaluating ontology development tools.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sections 3 to 7 describe the method that we have followed to design and
implement a benchmark suite for evaluating WebODE’s performance and the analysis
performed after executing it.

Section 8 presents the conclusions obtained and the related future work.

2. Related Work

Ontology technology has improved enormously since the creation of the first
environments in the mid-1990s. In general, ontology technology hasn't been the
object of evaluation studies but, as the use of this technology spreads, in the last few
years many studies involving ontology tools evaluation have been performed. Most of
these studies deal with the evaluation of ontology development tools.

Some authors have proposed a general framework for the evaluation of ontology
development tools. To this group belongs the work presented by: Duineveld and
colleagues [4], the deliverable 1.3 of the OntoWeb project [5], the experiments
performed in the First International Workshop on the Evaluation of Ontology-based
Tools (EON2002) [6], and Lambrix and colleagues [7].

Other authors have focused in specific criteria regarding ontology development
tools: Stojanovic and Motik [8] analyzed the ontology evolution requirements
fulfilled by the tools, Sofia Pinto and colleagues [9] evaluated the support provided
by the tools in ontology reuse processes, the experiments of the Second International
Workshop on Evaluation of Ontology-based Tools (EON2003) [10, 11, 12, 13, 14]
involved the interoperability of the tools, and Gómez-Pérez and Suárez-Figueroa [15]
evaluated the ability of the tools to detect taxonomic anomalies.

As a general comment, evaluation studies concerning ontology development tools
have been of qualitative nature. To be able to objectively assess and compare these
tools, evaluation criteria must be defined and benchmark suites must be developed in
order to perform formal experiments that deal with quantitative data.

3. Evaluating WebODE

WebODE is a scalable workbench for ontological engineering that provides services
for editing and browsing ontologies, importing and exporting ontologies to classical
and semantic web languages, evaluating ontologies, mapping ontologies, etc. [2].

Because of the lack of work that deals with evaluating the performance of
ontology development tools, the motivations for carrying out this study have been:
• To define a method for evaluating WebODE’s performance.
• To obtain a benchmark suite for evaluating WebODE.
• To evaluate WebODE using the benchmark suite.

All these motivations converge in a single long-term goal: to achieve a
continuous improvement in the platform’s quality.

The method we have used to evaluate the performance of WebODE is composed
of the following steps:
• To identify the evaluation goals, elements, and metrics.
• To design and implement the benchmark suite.
• To run the benchmark suite.

• To analyze the results obtained after running the benchmark suite.

4. Identification of the Evaluation Goals, Elements, and Metrics

In order to identify the elements and metrics that will be considered in the evaluation
we have chosen the Goal/Question/Metric (GQM) paradigm1 [16]. The idea beyond
the GQM paradigm is that any software measurement activity should be preceded by
the identification of a software engineering goal, which leads to questions, which in
turn lead to actual metrics.

The WebODE ontology management API provides methods to insert, update,
remove, and query the components of the WebODE knowledge model2. As the
services provided by WebODE use these methods for accessing WebODE ontologies,
the performance of these services strongly depends of the performance of the API
methods. Therefore, our goal is to evaluate the performance of the methods
provided by the WebODE ontology management API. Table 1 presents the
questions and the metrics derived from this goal according to the GQM paradigm.
The analysis of the results of executing the benchmark suite will provide answers to
these questions.

Table 1. Questions and metrics obtained through the GQM approach

Question Metric
Q1: Which is the actual performance of the
WebODE API methods?

Execution time of each method

Q2: Is the performance of the methods stable? Variance of the execution times of each method
Q3: Are there any anomalies in the performance
of the methods?

Percentage of execution times out of range in
each method’s sample

Q4: Do changes in a method’s input parameters
affect its performance?

Execution time with parameter A = Execution
time with parameter B

Q5: Does WebODE’s load affect the
performance of the methods?

WebODE’s load versus execution time
relationship

In summary, the elements to evaluate are the 72 methods of the WebODE

ontology management API, and the metric to use is the execution time of the
methods over incremental load states.

5. Design and Implementation of the Benchmark Suite

Several authors have enumerated the desirable properties of a benchmark suite [17,
18, 19]: generality, representativeness, transparency, interpretability, robustness,
scalability, portability, accessibility, and repeatability. These properties have been the
basis of the requirements definition for the benchmark suite.

1 Other approaches are Quality Function Deployment [20] and Software Quality Metrics [21].
2 http://kw.dia.fi.upm.es/wpbs/WebODE_API_methods.html

5.1. Requirements for the Benchmark Suite

In order to have a generic and representative benchmark suite, the benchmarks that
compose it use every WebODE API method, performing current operations over
WebODE ontologies.

To be able to compare each method’s execution time, the methods must be
executed under the same conditions. Therefore, we have defined the execution
environment and the load state of WebODE, having fixed both before running each
benchmark.

The benchmarks and their results must be transparent and interpretable. Each
benchmark executes just one method and stores the wall clock time elapsed while
running the method. The only other operation performed by a benchmark is to restore
the load state of WebODE in case it changed during the benchmark execution.

Furthermore, as each method has its input parameters, one or more benchmarks
have been defined for each method according to variations in these input parameters.
So, from the 72 API methods we got 128 benchmarks3.

As the benchmarks must be robust and scalable, they have been parameterized
according to two parameters:
• Load factor (X). The load factor of WebODE’s load state when executing a

benchmark.
• Number of iterations (N). The number of consecutive executions of a method in

a single benchmark. This parameter defines the number of sample measurements
obtained after executing a benchmark.
For example, from the method insertTerm(String ontology, String term, String

description), that inserts concepts in an ontology, we defined two benchmarks
regarding the different input values of the method. These benchmarks were
parameterized according to the load factor (X) and the number of executions (N):
• benchmark1_1_08. It inserts X concepts in an ontology. This is repeated N times.
• benchmark1_1_09. It inserts 1 concept in X ontologies. This is repeated N times.

In order to have a portable benchmark suite, the benchmarks have been
implemented in Java, using only standard libraries and with no graphical components.

The benchmark suite must also be accessible and repeatable, anyone should be
able to replicate the experiments and achieve the same conclusions. Therefore, the
benchmark suite source code and the results obtained in this evaluation are published
in a public web page4.

5.2. Definition of the Execution Environment

As the workload used in the evaluation must be characterized accurately [22], we
have defined the execution environment with the variables that influence the
execution time of a method: hardware configuration, software configuration,
computer’s load, and WebODE’s load.

The WebODE’s load variable has been the only one whose values have been
altered. As we are not interested in the other three variables’ effect in the execution
times, these variables have taken fixed values during the execution of the
benchmarks. Furthermore, in order to avoid other non-controlled variables that may

3 http://kw.dia.fi.upm.es/wpbs/WPBS_benchmark_list.html
4 http://kw.dia.fi.upm.es/wpbs/

affect the results, the computer used for executing the methods has been isolated:
without network connection nor user interaction. Next, we define these variables and
the values that they took when running the benchmarks.
• Hardware configuration. It is the hardware configuration of the computer

where WebODE is running. The computer was a Pentium 4 2.4 Ghz
monoprocessor with 256 Mb. of memory.

• Software configuration. It is the configuration of the operating system and of
the software needed to execute WebODE. It was the following, using each
system’s default configuration: Windows 2000 Professional Service Pack 4; SUN
Java 1.4.2_03 (the benchmarks were compiled with the default options); Oracle
version 8.1.7.0.0 (the Oracle instance’s memory configuration was changed to:
Shared pool 30 Mb., Buffer cache 80 Mb., Large pool 600 Kb., and Java pool 32
Kb.); Minerva version 1 build 4; and WebODE version 2 build 8.

• Computer’s load. It is the load of the computer where WebODE is running. This
load was the corresponding to the computer just powered on, with just the
programs and services needed to run the benchmarks.

• WebODE’s load. It is the underlying database’s load where WebODE
ontologies are stored. The generation of this load is explained in the next section.

5.3. Workload Generation

We mentioned before that WebODE’s load state must be the same for every
benchmark execution. This common load state must also allow to execute the
benchmarks with different load factors (X) and with no errors. Therefore, WebODE’s
initial load state has been worked out from each benchmark’s execution needs.

Each benchmark’s minimum load state has been defined as the minimum
ontology components that must exist in WebODE in order to execute the benchmark
with no errors. For example, considering the four benchmarks whose methods insert
and remove concepts in an ontology, Table 2 shows each of these benchmark’s
minimum load state, being X the load factor, and Table 3 shows the minimum load
state of the four benchmarks.

Table 2. Minimum load states of the benchmarks whose methods insert and remove concepts

Benchmark Operation Minimum load state
benchmark1_1_08 Inserts X concepts in an ontology 1 ontology
benchmark1_1_09 Inserts a concept in X ontologies X ontologies
benchmark1_3_20 Removes X concepts from an ontology 1 ontology with X concepts
benchmark1_3_21 Removes a concept from X ontologies X ontologies with one concept

Table 3. The minimum load state of the benchmarks shown in Table 2

Benchmarks Minimum load state
benchmark1_1_08, benchmark1_1_09,
benchmark1_3_20, and benchmark1_1_21

1 ontology with X concepts and
X ontologies with1 concept

Therefore, the benchmark suite initial load state5, used when executing all the

benchmarks, has been defined as the union of all the benchmarks’ minimum load
states, and is composed of all the ontology components that must exist in WebODE in
order to execute every benchmark with no errors.

5 http://kw.dia.fi.upm.es/wpbs/WPBS_workload_generation.html

6. Execution of the Benchmark Suite

The 128 benchmarks that compose the benchmark suite have been run ten times with
increasing load factors (X=500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and
5000) and with a number of iterations (N) of 400.

With the aim of checking that 400 iterations is a valid sample size, we have run
several benchmarks with higher and lower number of iterations and we have
confirmed that the results obtained are virtually equivalent. We haven’t used a higher
sample because the slight precision improvement would mean a much higher duration
of the benchmark suite execution.

As with a load factor (X) of 5000 we obtained enough data to be able to
determine the methods’ performance, the benchmarks haven’t been executed with
higher load factors.

The results of running a benchmark are N (in this case 400) measurements of the
execution time of the method used in a benchmark. These results are stored in a text
file in a hierarchical measurement data library, so as to access them easily.

7. Analysis of the Results

The conclusions obtained when analyzing the results of a benchmark suite execution
are usually temporarily limited [23]. As the API methods will undergo changes, the
results just inform about WebODE’s current performance, not its future one.

In order to obtain information that can be used to make decisions, we must apply
statistical analysis techniques to the execution results [24]. From the N measurements
of the execution time of a method in a benchmark we can obtain:
• Graphs that show the behavior of the execution time.
• Statistical values worked out from the sample of N measurements.

Observing the graphs of the execution times measured in a benchmark, we saw
that execution times are usually constant. One example of this can be seen in Figure
1, where the execution times of benchmark1_3_20 when running the method
removeTerm 400 times with a load factor of 5000 are shown.

Figure 1. Execution times of benchmark1_3_20 with X=5000 and N=400

The next issue was to find which statistical values could be used to describe the
execution times’ samples. First of all, we ran normality tests over the measurements
obtained after executing the benchmarks. As the distributions of the measurements
were non-normal, we could not rely on usual values like mean and standard deviation
for describing these measurements. Therefore, we used robust statistical values like

the median, the upper and lower quartiles, and the interquartile range (upper
minus lower quartile).

To obtain the number of measurements out of range, we calculated the
percentage of outliers in each sample. The traditional method is to consider as
potential outlier values the measurements beyond the upper and lower quartiles
adding and subtracting respectively 1.5 times the interquartile range [25]. As the Java
method used for measuring time (java.lang.System.currentTimeMillis()) in the
Windows platform has a precision of tens of milliseconds, in the results we frequently
encountered interquartile ranges of zero milliseconds. This caused to be considered as
outliers every determination that differed from the median. With the objective of
fixing this precision fault, we have augmented the interquartile range when
calculating the outliers to include half the minimal granularity (5 milliseconds) in
both boundaries.

An example of the statistical values obtained can be seen in Table 4. This table
shows the values obtained for the four benchmarks whose methods insert and remove
concepts in an ontology. All the statistical values and graphs can be looked up and
downloaded from the benchmark suite web page.

Table 4. Statistical values of the benchmarks whose methods insert and remove concepts

 Load N UQ LQ IQR Median % Outliers Function
benchmark1_1_08 5000 400 60 60 0 60 1,25 y=62,0-0,0090x
benchmark1_1_09 5000 400 912 901 11 911 1,75 y=910,25-0,0030x
benchmark1_3_20 5000 400 160 150 10 150 1,25 y=155,25-0,0030x
benchmark1_3_21 5000 400 160 150 10 151 0,25 y=154,96-0,0010x

Next, we show the conclusions drawn after analyzing the data, answering the

questions previously proposed in Table 1.

7.1. Finding out Methods’ Performance

In order to be able to clearly differentiate the execution times, we have analyzed the
data obtained from running the benchmarks with the maximum load factor used,
X=5000, and with a number of iterations (N) of 400. We use the median of the
execution times of a method in a benchmark as an indicator of its performance.

The medians of the execution times of all the API methods range from 0 to 1051
milliseconds. Figure 2 shows the histogram of these medians, where we clearly see a
group of values higher than the rest. The execution times of this group belong to 12
benchmarks that execute 8 methods (as different benchmarks have been defined for
each method). These 8 methods, with a median execution time higher than 800 ms.,
have been selected for the improvement recommendations. The rest of the methods
have median execution times lower than 511 ms., being most of them around 100 ms.

Bearing in mind the kind of operation that the methods carry out (inserting,
updating, removing, or selecting an ontology component), we did not find significant
differences between the performances of each kind of method.

Taking into account what kind of element of the knowledge model a method
manages (concepts, instances, class attributes, instance attributes, etc.), in the slowest
methods’ group are present almost every method that manages relations between
concepts. Methods that manage instance attributes also have high execution times,
and the rest of the methods behave similarly, only standing out the methods that
manage imported terms and references as being the ones with lower execution times.

Figure 2. Histogram of the medians of the

execution times

Figure 3. Histogram of the interquartile

ranges of the execution times

Figure 4. Histogram of the percentage of

outliers of the execution times

Figure 5. Evolution of the execution times

when increasing WebODE’s load

Regarding the spread of the execution times of the methods, we analyzed the

interquartile range (IQR) of the execution times of the methods. Figure 3 shows the
histogram of the IQRs of the execution times. Almost every method has an IQR from
0 to 11 ms. Having into account that the granularity of the measurements is of 10
milliseconds, we can state that the execution times have a low spread. The only
exceptions are removeTermRelation (benchmark1_3_09) with an IQR of 19,
addValueToClassAttribute (benchmark1_1_14) with an IQR of 30, and
getAvailableOntologies (benchmark1_4_01) with an IQR of 160. This last method
has been selected for the improvement recommendations due to its atypical IQR
value.

In order to detect anomalies, we generated the histogram of the percentage of
outliers in the execution times of the methods, shown in Figure 4. Most of the
benchmarks have from 0 to 3.75% of outliers. These values confirm the lack of
anomalies except the peaks in the execution times that can be seen in the graphs. The
only methods to emphasize are openOntology (benchmark2_01), with 11.5% of
outliers, and addValueToClassAttribute (benchmark1_1_15), with 7% of outliers.
These two methods have been selected for the improvement recommendations.

Studying whether changes in a method’s parameters affect its performance, we
have observed that in 21 methods the performance varies when changing its input
parameters. This variation is lower than 60 milliseconds except in five methods that
show a difference in their execution times when changing parameters from 101 to 851
ms., and have been selected for the improvement recommendations.

7.2. Establishing Load-Performance Relationship

To study WebODE’s load effect in performance, we analyzed the medians of the
execution times of the methods from a minimum load state (X=500) to a maximum
load state (X=5000), and with a number of iterations (N) of 400. We estimated the
function that these medians define by simple linear regression and considered its
slope in order to examine the relationship between the load and the execution time of
the methods.

Figure 5 shows the plot of every benchmark’s median execution time with the
different load factors. As can be seen, the 8 methods whose execution times are
higher than the rest are also the methods whose performance is more influenced by
the load. To be precise, the slope of these methods’ function is greater than 0.15, and
the slope of the rest of the methods’ function ranges from 0 to 0.1. As we stated
before, these methods have been selected for the improvement recommendations.

7.3. Development of Improvement Recommendations

Once the data has been analyzed, the next step is the development of the
improvement recommendations. These recommendations include those methods
whose execution times:
• Have a median execution time higher than 800 ms.
• Have an interquartile range greater than 150 ms.
• Have more than a 5% of outlier values.
• Vary more than 100 ms. when modifying its input parameters.
• Increase when augmenting load with a slope greater than 0.15.

Table 5 shows the 12 of the 72 WebODE’s API methods included in the
improvement recommendations, and the reasons for their inclusion.

Table 5. Methods in the improvement recommendations

 Execution
time >
800 ms.

Interquartile
range >
150 ms.

Outlier
values >
5%

Execution time
variation >
100 ms.

Slope when
increasing load
> 0.15

removeTermRelation X X
getInheritedTermRelations X X
insertTerm X X X
insertRelationInstance X X X
openOntology X X X
getAdHocTermRelations X X
getTermRelations X X
getAvailableOntologies X X X
addValueToClassAttribute X
insertConstant X
updateSynonym X
getInstances X

8. Conclusions and Future Work

In this paper we have set out the method we followed to develop a benchmark suite
for assessing the temporal performance of the WebODE ontology engineering

workbench. We have also stated how we executed this benchmark suite and the main
conclusions obtained after analyzing the collected results.

The main achievement obtained after performing this study is that we have
precisely determined WebODE’s performance, identifying:
• The slowest methods.
• The methods with high spreaded execution times.
• The methods with anomalies in their execution times.
• The effect of changing a method’s parameters in its performance.
• The link between WebODE’s load and its methods’ performance.

The analysis of the results showed that changes in a method’s input parameters
significantly affected its performance. This fact must be taken into account when
defining benchmark suites, either for WebODE or for other systems.

Besides being able to evaluate WebODE’s performance, the benchmark suite
that we have developed will allow us to:
• Monitor WebODE, being able to observe the performance of critical elements

and how changes in the platform affect its performance.
• Diagnose future problems in WebODE.

The benchmarks that compose the proposed suite just execute one method and
store its execution time. One way of improving the study could be making these
benchmarks execute different kinds of synthetic requests to WebODE, in order to
study not just the stability of the methods but the stability of the whole platform.

Once we know the performance of WebODE regarding its ontology management
API, we could work out the approximate performance of the services and applications
that use this API. This could be done either by empirically obtaining the frequency of
use of real services and applications or by defining use frequencies for each different
kind of application.

In this work we have just evaluated the execution efficiency of the WebODE API
methods. There are many other WebODE attributes that we would be interested in
measuring like reliability, usability, or functionality (to cite just a few samples); and
future studies will focus in them.

Although this benchmark suite has been designed specifically for WebODE, we
plan to extend it to other ontology engineering platforms (KAON, OntoEdit, Protégé-
2000, etc.). This could be done either by finding commonalities between the ontology
management APIs of the different platforms or by means of a common management
API such as OKBC [26].

Acknowledgments

This work is partially supported by the IST project KnowledgeWeb (IST-2004-
507482) and by the IST project Esperonto (IST-2001-34373).

References

1. [Fernández-López et al., 1997] M. Fernández-López, A. Gómez-Pérez, N. Juristo.
METHONTOLOGY: From Ontological Art Towards Ontological Engineering.
Spring Symposium on Ontological Engineering of AAAI. Stanford University,
California, 1997, pp 33-40.

2. [Arpírez et al., 2003] J.C. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-
Pérez. WebODE in a nutshell. AI Magazine. 24(3), Fall 2003, pp. 37-47.

3. [IEEE, 1991] IEEE-STD-610 ANSI/IEEE Std 610.12-1990. IEEE Standard Glossary
of Software Engineering Terminology. February 1991.

4. [Duineveld et al., 1999] A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, and
V.R. Benjamins. Wondertools? a comparative study of ontological engineering tools.
In Proceedings of the 12th International Workshop on Knowledge Acquisition,
Modeling and Management (KAW'99), Banff, Canada, 1999. Kluwer Academic
Publishers.

5. [Ontoweb, 2002] Ontoweb deliverable 1.3: A survey on ontology tools. Technical
report, IST OntoWeb Thematic Network, May 2002.

6. [Angele and Sure, 2002] J. Angele and Y. Sure (eds.). Evaluation of ontology-based
tools. In Proceedings of the 1st International Workshop EON2002, Sigüenza, Spain,
September 2002. CEUR-WS.

7. [Lambrix et al., 2003] P. Lambrix, M. Habbouche, and M. Pérez. Evaluation of
ontology development tools for bioinformatics. Bioinformatics, 19(12):1564-1571,
2003.

8. [Stojanovic and Motik, 2002] L. Stojanovic and B. Motik. Ontology evolution within
ontology editors. In Proceedings of the International Workshop on Evaluation of
Ontology-based Tools (EON2002), Sigüenza, Spain, October 2002.

9. [Sofia Pinto et al., 2002] H. Sofia Pinto, Duarte Nuno Peralta, and Nuno J. Mamede.
Using Protégé-2000 in reuse processes. In Proceedings of the International Workshop
on Evaluation of Ontology-based Tools (EON2002), Sigüenza, Spain, October 2002.

10. [Corcho et al., 2003] O. Corcho, A. Gómez-Pérez, D.J. Guerrero-Rodríguez, D.
Pérez-Rey, A. Ruiz-Cristina, T. Sastre-Toral, and M.C. Suárez-Figueroa. Evaluation
experiment of ontology tools' interoperability with the WebODE ontology
engineering workbench. In Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), Florida, USA, October 2003.

11. [Isaac et al., 2003] A. Isaac, R. Troncy, and V. Malais. Using XSLT for
interoperability: DOE and the travelling domain experiment. In Proceedings of the
2nd International Workshop on Evaluation of Ontology-based Tools (EON2003),
Florida, USA, October 2003.

12. [Calvo and Gennari, 2003] F. Calvo and J.H. Gennari. Interoperability of Protégé 2.0
beta and OilEd 3.5 in the domain knowledge of osteoporosis. In Proceedings of the
2nd International Workshop on Evaluation of Ontology-based Tools (EON2003),
Florida, USA, October 2003.

13. [Fillies, 2003] C. Fillies. Semtalk EON2003 semantic web export / import interface
test. In Proceedings of the 2nd International Workshop on Evaluation of Ontology-
based Tools (EON2003), Florida, USA, October 2003.

14. [Knublauch, 2003] H. Knublauch. Case study: Using Protégé to convert the travel
ontology to UML and OWL. In Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), Florida, USA, October 2003.

15. [Gómez-Pérez and Suárez-Figueroa, 2004] A. Gómez-Pérez and M.C. Suárez-
Figueroa. Evaluation of RDF(S) and DAML+OIL import/export services within
ontology platforms. In Proceedings of the Third Mexican International Conference
on Artificial Intelligence, pages 109-118, Mexico City, Mexico, April 2004.

16. [Basili et al., 1994] V.R. Basili, G. Caldiera, D.H. Rombach. The Goal Question
Metric Approach. Encyclopedia of Software Engineering, 2 Volume Set Willey,
1994, pp 528-532.

17. [Bull et al., 1999] J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, R.A. Davey. A
Methodology for Benchmarking Java Grande Applications. EPCC, June 1999.

18. [Shirazi et al., 1999] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B.
Yanamula, R. Brucks, E. Huh. DynBench: A Dynamic Benchmark Suite for
Distributed Real-Time Systems. IPDPS 1999 Workshop on Embedded HPC Systems
and Applications, San Juan, Puerto Rico, April 1999.

19. [Sim et al., 2003] S. Sim, S. Easterbrook, and R. Holt. Using benchmarking to
advance research: A challenge to software engineering. In Proceedings of the 25th
International Conference on Software Engineering (ICSE'03), pages 74-83, Portland,
OR, 2003.

20. [Dean, 1992] E.B. Dean. Quality Function Deployment for Large Systems.
Proceedings of the 1992 International Engineering Management Conference,
Eatontown NJ, October 1992, pp 317-321.

21. [Boehm et al., 1976] B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative
Evaluation of Software Quality. In Proceedings of the Second International
Conference on Software Engineering. San Francisco, 1976, pp 592-605.

22. [Dongarra et al., 1987] J. Dongarra, J.L. Martin, J. Worlton. Computer
benchmarking: paths and pitfalls. IEEE Spectrum, Vol. 24, N. 7, July 1987, pp 38-43.

23. [Gray, 1993] J. Gray. The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). Morgan Kaufmann, 1993.

24. [Fenton, 1991] N.E. Fenton. Software Metrics A Rigorous Approach. Chapman &
Hall, London, UK, 1991.

25. [Mendenhall and Sincich, 1995] W. Mendenhall and T. Sincich. Statistics for
Engineering and the Sciences, 4th Edition. Englewood Cliffs, NJ. Prentice Hall, 1995.

26. [Chaudri et al., 1997] V.K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, J.P. Rice.
The Generic Frame Protocol 2.0. Technical Report, Stanford University, 1997.

	Acknowledgments
	References

