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ABSTRACT 

An analytical model for predicting the outer shape evolution of a crystal grown by the floating zone 
technique is developed. The analysis is axisymmetric and linear in the departure from a cylindrical 
evolution, thus it only applies to crystal growth under negligible external force fields (e.g. under 
microgravity), when the seed and feed sizes do not differ too much, and when radial deformations are not 
pronounced. In spite of these limitations, the analytical model clearly shows that, depending on the 
slenderness of the molten bridge, the processing may give rise to steady growth (after some transients) or 
just to a breakage by capillary forces. 

INTRODUCTION 
In the floating zone technique of crystal growth, a molten zone is established between two rods: a 

charge or feed rod of polycrystalline material, and a seed rod (monocrystalline in the ideal case). The 
molten zone can be established in a variety of ways depending on the material to be crystallised; for 
example radio frequency induction heating using a single turn coil or radiation heating in mirror furnaces 
are commonly used with silicon, whereas electron beam melting is employed in the case of refractory 
metals (Crolletal. 1988). 

The equilibrium shapes and stability limits of the floating zone melt under the large variety of 
disturbances that could arise either accidentally or intentionally during the growing process is a matter of 
great concern. Its study involves a formidable task both because of the material characteristics of the melt, 
whose properties are strongly temperature dependent, and because of the complexities associated to the 
disturbances which could be imposed on the zone. Thence, several simplifications must be introduced in 
the model. The simplest approach consists in disregarding phase changes, considering an isothermal 
liquid zone held between two parallel solid disks, the so-called liquid bridge model of the floating zone 
process (Martinez and Croll, 1992). 

Of course there are many differences between isothermal liquid bridges and real floating zones. The 
behaviour of the melt in a real floating zone is driven by many effects (dynamics, convection, diffusion, 
phase changes, electric and magnetic effects, reactive processes,...) which are not accounted for in the 
liquid bridge problem. However, in spite that the real solid-liquid interfaces are rather different between 
liquid bridges (where supports are assumed to be flat) and floating zones (where protruding solid ends 
appear), it is of no importance at all for the mechanical stability of the melt. Thus, to a first 
approximation, assuming that the interest is focussed on the hydrostatic behaviour of the molten zone 
(equilibrium shapes and their stability), the above-mentioned effects can be considered negligible, valid 
results are obtained (Martinez and Eyer, 1986), and consequently its use has widespread. 
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Equilibrium shapes and stability limits of capillary liquid bridges have been extensively analysed 
from both the theoretical and the experimental point of view during the last decades, and as already said 
many papers dealing with such fluid configurations have been published (a review of the state of the art in 
the field can be found in Meseguer et al. (1999)). 

An analytical method to compute the temporal evolution of the molten zone and the melting and 
resolidifying solid boundary is devised in this paper. The model allows not only to predict the shape of the 
molten zone at any time and the shape of the grown crystal, but also to monitor the stability of the 
process. This way it is possible to select appropriate parameters to ensure a stable growing process. 

MODELLING 
Although the modelling might have been extended to account for many other details, to make it 

clearer we restrict it here to an initial circular solid rod (e.g. RQ=\0 mm) made of silicon, and a very 
simple heating law (not so simple to achieve in practice, however): the heating is such that the length of 
the molten zone is constant with time (e.g. L0=40 mm). 

Because only quasi-static evolutions in absence of gravity are considered, the density and surface 
tension values of the melt are irrelevant, i.e. no weight, no inertia, no convection (the surface tension 
value modifies the internal pressure in the melt but not its shape). Since the solid-liquid interface is 
assumed planar (Martinez and Croll, 1992), the only two material parameters in the model are the relative 
change in density from solid to liquid, Aplp (silicon shows an anomalous contraction of 8% in volume 
upon melting, similarly to water that contracts 9% when ice melts), and the growth angle, </> (the receding 
angle between the liquid slope and the solid slope when the crystal grows), that for silicon is 11° (13° for 
germanium). 

The linear analysis of the interface shapes of liquid bridges between circular supports and nearly-
cylindrical shapes is well documented in Meseguer et al. (1996), and it can be used to predict the molten 
shape when the initial solid bar of constant radius RQ melts in a length LQ. The axisymmetric liquid 
interface Rf{Z) spanning a length LQ has the shape (cylindrical, if not for the density change on melting): 

F ( Z ) = 1 + M A cos(z)-cos(A) ^ 
p 2 s in(A)-Acos(A) 

where Ap/p=-0.0& for silicon and sizes have been scaled with the initial rod radius, i.e. F=RF/RQ, 

A=L()/(2/?o) and Z=Z/RQ. The melt is considered in weightlessness. 
But the aim is to predict the sequence of shapes R/^Zj) spanning a length LQ from Z\{t) to Z\(t)+Lo 

during the float zoning. In order to go on using the linear analysis of the interface shapes as in Meseguer 
et al. (1996), a time-varying non-dimensionalisation is introduced in the following way. Let R\(i)=RF{Z\,t) 
and R2(f)=RhiZ2,t) be the radii at the ends (say 1 for the left and 2 for the right) of the molten zone at an 
instant t. We introduce the non-dimensional variables: 
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where now the melt shape F(z,t) extends from z=-A to z=A in the new coordinates centred midway in the 
melt, A is the slenderness of the molten zone (aspect ratio), h measures the inequality in radial sizes at the 
two ends, and v measures the excess volume relative to the cylindrical one with the mean radius (Vf is the 
molten volume in dimensional units). The target then is to find the functions h(t) and v(t) due to the 
growing process, since the shape F(z,t), in the linear approximation is just (Meseguer et al. 1996): 



A cos(z)-cos(A) , uswjz) 
F(z) = l + v + n . 

2 sin(A)-Acos(A) sin(A) 

- A < z < A (3) 

valid for v « l (small departures from the cylindrical volume) and h«\ (small relative difference in end 
radii). Neglected non-linear effects would be of order v ,vh or h . 

The evolution of the floating zone is modelled as follows. The seed or growing front (let say the left 
end, subscript 1) progresses in such a manner as to maintain the so called growth angle, <f>, constant, that 
in this linear analysis means (Figure 1): 

dR, 

dZ, 

dF_ 

dz 
(4) 

where the melt spans from z=-A to +A in the adapted coordinates. Substitution of Eq. (3) in Eq. (4) gives: 

dR, A sin(A) . cos(A) 

dZl 2 s in (A)- Acos(A) sin(A) 
(5) 

Fig. 1. Detail of growth angle geometry: 1) seed; 2) grown crystal; 3) melt. 

The feeding front radius doesn't change during the process. The volume of liquid in the molten zone, 
FF, assuming planar solid-liquid interfaces (what was demonstrated a good approximation in Martinez and 
Eyer (1986)), changes in spite of the molten length being kept constant, if the end radii are not equal in 
size. That is: 
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where the last parenthesis in Eq. (6) stands for the different in density of the two infinitesimal solid slices 
(the left one leaving and the right one entering) exchanged by the liquid volume in a time dt while the left-
hand end advances dZ\. 

LINEAR SOLUTION 
The solution to be found, in non-dimensional variables, is h(Q and v(£); i.e. how the growing radius 

(relative to the initial one) and the excess volume (relative to the cylindrical one) evolve with the axial 
position of the growing front, £ made dimensionless with the initial radius, i.e.: 
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If h(£) and v(£) were known, and taking into account that Rr=Ro all the time, one gets from the 
definitions in Eqs. (2) and retaining only linear terms: 
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which, upon substitution in Eq. (5) and Eq. (6) yield respectively: 
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The last equation more properly arranged stands: 
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Thus, we finally have the linear system, in matrix form: 
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that, completed with the appropriate initial conditions, i.e. /2(0)=0 (equal ends before processing) and 
v(0)=A/?//7=-0.08 (volume contraction for melting silicon), gives the solution sought in a linear 
differential form. The later can easily be integrated in terms of its eigenvectors, giving rise to exponential 
complex functions with the real part indicating exponential growth or decay of the functions. Here it is not 
even necessary to integrate the system to gain valuable insight to the problem of the stability of the crystal 
growth, as commented below. 

RESULTS 
The autonomous linear system corresponding to Eq. (12), once the material is fixed (e.g. silicon) has 

only one parameter, the slenderness of the molten bridge Ao. For small Ao the crystal growing first necks 
and then recovers the initial radius after a small overshooting. For a certain Ao that cancels the real part of 
the eigenvalues in Eq. (12) (Ao=2.25 for silicon), the system oscillates in a limit cycle (the crystal grown 
alternatively necks and bulges). For larger Ao the floating zone process becomes unstable by unbounded 
necking (until the molten bridge disrupts by mechanical instability). This behaviour is seen in the phase 
diagram for Eq. (12), shown in Figure 2, obtained by direct integration of Eq. (12). All growth processes 



start from the point (/z=0, v=-0.08) and progress as indicated by the arrow. Additionally the steady 
solutions to Eq. (12) (cancelling the derivatives) show that, for A0<2.25, the stable attractor is the point 
(/z=0, v=2#l/Ao-l/tan(Ao)]), e.g. (0, 0.4) for Ao=2, as can be seen in Figure 2. 

Fig. 2. Analytical results for the floating zone process of silicon crystal growth for three initial lengths of 
the melt (Ao, kept constant), showing the excess volume, v (relative to that of a cylinder) versus 
the relative difference in radii at both ends of the liquid, h, as the zoning progress (starting at h=0 
and v=-0.08, black point) in the direction of the arrow. 

These analytical results compare very well qualitatively to the non-linear numerical simulation 
developed in Martinez, Meseguer and Perales (2001) that is shown below (Figures 3 to 5) to place the 
analytical results in a better context. 

Fig. 3. Same as Figure 2 but corresponding to the non-linear numerical simulation. Note that although the 
start and end points are the same as in the linear analytical solution shown in Figure 2, there is not 
limit cycle here and the bounds on the radial deformation are nearly halved here. 
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Fig. 4. Grown crystal shape for silicon floating zone processing, obtained by non-linear numerical 
simulation. Non-dimensional radius, F, vs. non-dimensional axial coordinate, z, for three initial 
lengths of the melt, Ao (i.e. the aspect ratio, kept constant). 
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Fig. 5. Sequence of shapes during the floating zone processing of a silicon rod, obtained by non-linear 
numerical simulation: 1, crystal; 2, melt; 3, feed rod. The length of the molten bridge is A0=1.8 
assumed maintained constant by a suitable heating law. 
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