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Abstract

Facial expression recognition is a topic of interest
both in industry and academia. Recent approaches to
facial expression recognition are based on mapping ex-
pressions to low dimensional manifolds. In this paper
we revisit various dimensionality reduction algorithms
using a graph-based paradigm. We compare eight di-
mensionality reduction algorithms on a facial expres-
sion recognition task. For this task, experimental results
show that altough Linear Discriminant Analysis (LDA)
is the simplest and oldest supervised approach, its re-
sults are comparable to more flexible recent algorithms.
LDA, on the other hand, is much simpler to tune, since
it only depends on one parameter.

1. Introduction

One of the open problems of computer science is to
make computers that interact with humans in a natu-
ral way. A key element in natural human computer
interaction is the recognition of human facial expres-
sions. Recently, much effort is being devoted within
the computer vision research comunity to processing
video sequences and modeling dymamic facial expres-
sions [2, 14]. One way to solve this problem is map-
ping facial expression to low dimensional manifolds
exhibiting separable distributions for different expres-
sions [2, 4, 9]. In this paper we compare the perfor-
mance of eight graph-based dimensionality reduction
algorithms on a facial expression recognition problem.

2. Face alignment and facial expression
recognition

Face images are located and tracked at video frame
rates using an efficient face aligment procedure [1]. The

Figure 1. Illumination rectified images.

tracker automatically crops the face and compensates il-
lumination changes, as shown in Fig. 1, where the first
row shows the original cropped images and the second
row the corresponding illumination rectified ones. PCA
projection of these sequences onto a 90-dimensional
space1 helps avoid the curse of dimensionality.

We aim to recognise Ekman’s six prototypic facial
expressions (joy, surprise, anger, sadness, fear, disgust).
To do so we adopt a model-based approach for facial
expression recognition. By tracking a set of 322 labeled
image sequences of 92 subjects from the Cohn-Kanade
data base [8], we build a user-and-illumination-inde-
pendent global representation of all facial expressions.
In this model, a face image is represented with a point
in the90-dimensional space of deformations. The vari-
ability of the classes of images associated to the pro-
totypic facial expressions are represented by the Kohn-
Kanade aligned images projected onto a lower dimen-
sional subspace embedded in the90-dimensional space
of deformations, termed thefacial expression mani-
fold. In this paper we compare the performance of eight
graph-based dimensionality reduction algorithms in the
construction of the facial expression manifold.

Finally, images representing similar expressions are
mapped to nearby points on the manifold. We use the
nearest-neighbour probabilistic procedure introduced
in [2], section 5, to combine the information provided
by the incoming image sequence with the information

1The dimension of this subspace was determined byparallel anal-
ysis[10].
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represented in the expression manifold to estimate the
posterior probability of a facial expression.

3. Graph-based Dimensionality Reduction

3.1. The Basic Idea

On the whole the graph-based dimensionality reduc-
tion algorithms reviewed here are all built on the basis
of a simple relationship (c.f. [5]):

∑

i,j

‖xi − xj‖
2Wi,j = 2trX⊤LX, (1)

wherexi ∈ R
n, i = 1, . . . , N , X = (x1, . . . ,xN )⊤,

W and L is the weight matrix and Laplacian matrix
of a given graph respectively2. Equation (1) represents
the scatterness of the given feature vectorsxi w.r.t. the
given graph. For example, the early Locality Preserving
Projection (LPP) algorithm [6] is unsupervised, which,
via a linear projectionPULPP, retains the neighborhood
information obtained from high-dimensional data by
choosingWi,j = 1 whenxi ∈ N (xj) or xj ∈ N (xi)
(N (x) denotes the neighbourhood ofx) andWi,j = 0
otherwise. The desiredPULPP minimizes

min
P

trP⊤X⊤LULPPXP s.t. P⊤X⊤DULPPXP = I,

wheretr denotes the trace of a matrix. Later, a super-
vised version of LPP [7] is developed. The proposed
graphGSLPP has an edge between each pair of samples
from different classes. Thus the desired projection will
push samples of different classes away from each other
and result in an increased Between Class Scatterness
(BCS), i.e.PSLPPsolves the following optimization

max
P

trP⊤X⊤LSLPPXP s.t. P⊤X⊤DSLPPXP = I.

3.2. PCA and LDA

The well-known Principal Component Analysis
(PCA) and LDA algorithms may also be described in
terms of (1) using a graph-view of the common co-
variance matrix,

X⊤(I −
1

N
11

⊤)X =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)⊤

=
N

∑

i,j=1

Wi,j(xi − xj)(xi − xj)
⊤,

2A graph G has several associated matrices, weight matrixW

whose elements inith row andjth column,Wi,j is the weight of
the edge betweenxi andxj and is zero when there’s no edge be-
tween the two vertices,D for a diagonal matrixdiag{d1, . . . , dN}

wheredi =
PN

j=1
Wi,j , and the Laplacian matrixL = D − W .

For different graphs, different sbscripts or supscripts are used.

whereWi,j = 1

N
. Inspired by this formulation, Local

Fisher Discriminant Criterion (LFDC) [11] rephrases
LDA and adds locality to the classical LDA algorithm
by modifying the original weights,

Sw =
1

2

N
∑

i=1

N
∑

j=1

Bi,jW
w
i,j(xi − xj)(xi − xj)

⊤

Sb =
1

2

N
∑

i=1

N
∑

j=1

Bi,jW
b
i,j(xi − xj)(xi − xj)

⊤

where

Ww
i,j =

{

1

Nyi

yi = yj

0 otherwise
W b

i,j =

{

1

N
− 1

Nyi

yi = yj

1

N
otherwise

are the original weights for the within class and between
class graphs implicitly used in LDA. LFDC imposes lo-
cality on these graphs by refraining the edges to only
near samples, i.e. by definingB as a neighborhood ma-
trix, that is,Bi,j = 1 iff xi andxj are neighbors to each
other, otherwiseBi,j = 0.

3.3. MFA, DNE and LSDA

Marginal Factor Analysis (MFA) [12], Discriminant
Neighborhood Embedding (DNE) [13] and Locality
Sensitive Discriminant Analysis (LSDA) [3] all build
two graphs from neighborhood relationships, one for
With-in Class Compactness (WCC), the other for BCS.
MFA has one graphGw

MFA whose edges are between
each sample and itsk1-nearest neighbors in the same
class, the otherGb

MFA whose edges are between each
sample and itsk2-nearest neighbors in all other classes.
It seeks the directionsvi, i = 1 . . . , d that maximizes

v
⊤

i X⊤Lb
MFAXvi

v
⊤

i X⊤Lw
MFAXvi

s.t. v
⊤

i X⊤Lw
MFAXvj = δi,j ,

whereδi,j is the Kronecker’s delta andj = 1, . . . , i.
DNE, on the other hand, minimizes the difference,

v
⊤

i X⊤(Lw
MFA − Lb

MFA)Xvi s.t. v
⊤

i vj = δi,j ,

wherej = 1, . . . , i. In [13], Zhang and et al. paraphrase
their idea with negative weights for the between class
edges. It’s easily seen that their Laplacian matrix for the
graph with negative weights is almostLw

DNE−Lb
DNE, ex-

cept the edge rules—in [13] there will be edges between
each sample and itsk nearest samples, with positive
weight if they are in the same class, otherwise negative
ones. LSDA goes a little further by explicitly introduc-
ing a balancing parameterα ∈ [0, 1], resulting in

max
vi

d
∑

i=1

v
⊤

i X⊤(αLb
MFA − (1 − α)Lw

MFA)Xvi

s.t. v
⊤

i X⊤WwXvj = δi,j
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Figure 2. A Comparison of DNE, MFA and
LSDA

or equivalently

max
vi

d
∑

i=1

v
⊤

i X⊤(αLb
MFA + (1 − α)Ww

MFA)Xvi

s.t. v
⊤

i X⊤WwXvj = δi,j

To have a clearer view of these algorithms, Fig. 2
shows a simple case: the ellipse-like curve shows the
pair of WCC and BCS when a unit vector rotates in
the plane. The MFA seeks for the line that intersects
the ellipse with maximum slope (the blue dashed line).
The DNE seeks for the line with slope1 that intersects
the ellipse and has largest intercept ony-axis (the red
dash-dot line). Different choices ofα for LSDA yield
different lines that is just tangent to the upper half of
the ellipse. If the embedding space is 1-dimensional,
LSDA is best since with enough trial ofα cross vali-
dation will ultimately picks a no worse projection than
DNE and MFA. But it’s not true for higher-dimensional
embeddings, sinceα is constant.

4. Experiments

In this section we compare the dimensionality reduc-
tion algorithms described above for the facial expres-
sion recognition task introduced in section 2. For our
comparison we used the Cohn-Kanade database, that
was also used for building the expression manifold.

To estimate the recognition rate, we employ a leave-
one-subject-out strategy for cross validation, in which
sequences of each subject are tested against the model
trained with all other sequences. Since all sequences
in the database start with a neutral expression, we have
verified that it is better to train the dimensionality reduc-
tion procedure with the last 6 images of each sequence.
Hence during the training for each fold, there are more
than 1500 images.
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Figure 3. The expressions manifold in the
PCA+LDA subspace (only the first 3 di-
mensions).

Cross validation also helps to obtain a model trained
with the best suitable configuration parameters. There
are several parameters that controls the behavior of
the algorithms introduced in Sec. 3. Also the classi-
fier has three parameters: a smoothing parameterh,
a neighbourhood sizek and η to avoid the veto ef-
fect [2]. In the experiments, we search for best com-
bination of the discriminant projection model and the
classifier. For the classifier,η is manually set to0.3, h
takes values in{1/6, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1} andk
in {21, 23, . . . , 59}.

In Tab. 1, we display the results of the experiments
conducted. Unsupervised algorithms such as PCA and
UnsLPP lead to low recognition rates. In our feature
space, images that are close to each other will not nec-
essarily be of the same expression. On the contrary, they
are more likely to be different expressions of the same
subject. Thus, for building a good discriminating pro-
jection, it is not adequate to preserve a neighborhood
based on pixel-level distance as UnsLPP does.

Surprisingly, LDA yields a competent recognition
rate compared with other complicated algorithms, al-
though it is the oldest and simplest supervised proce-
dure. As shown in Fig. 3, the expression manifold
contains one single cluster for each type of expres-
sion. Introducing locality into LDA, as LFDC does,
slightly enhances the performance. The LFDC model
in Tab. 1 is trained with a neighborhood size150, best
in {30, 40, 50, 80, 100, 150, 200}.

MFA is able to give result comparable to those of
LDA when k1 and k2 are sufficiently large. We set
k1 = k2 = 100 to obtain the reported result. Ac-
tually, a slightly worse result is obtained when setting
k1 = k2 = 50 or 150, 200. LSDA is more flexible
than DNE since it is feasible to tuneα and balance the
BCS and WCC. The configuration for LSDA in Tab. 1



Projection PCA LDA SLPP ULPP LFDC MFA DNE LSDA
Rate 76% 86% 85% 50% 86% 86% 84% 86%
Dimension 50 5 5 15 7 6 11 9
k 43 31 33 15 35 43 27 31
h 1/6 0.2 1/6 0.2 0.3 0.6 1/6 0.2

Table 1. Recognition rate for all eight dimensionality redu ction approaches.

is k1 = 100, k2 = 100 and α = 0. It’s interesting
to note that the recognition rate actually decreases asα
increases to1, which means it’s important to minimize
WCC instead of maximizing BCS. The DNE projection
in Tab. 1 is trained with a neighborhood size13.

These graph-based dimensionality reduction algo-
rithms give us more room for tuning. Even though the
data for facial expression recognition do not conform to
the clustering assumption which might be necessary for
designing them, they do work fine, perhaps even finer
than the traditional algorithms. But on the other hand,
with more choices of parameters, it takes much more
time than LDA to find a proper setting. It is even pos-
sible to get a higher recognition rate given more time to
search for other settings of LSDA. But anyway, now it
might be close to the limit the linear methods could get
to.

5. Conclusion

In this paper have revisited several dimensionality
reduction algorithms and compared their performance
on a facial expression recognition task. Unsupervised
approaches like PCA and UnsLPP have the lowest
recognition rates, since nearby images in our feature
space are more likely to be different expressions of
the same subject. Supervised approaches, on the other
hand, achieve the best performance. LDA represents the
best compromise between performace and complexity.
For this problem, the WCC measure dominates BCS
and consequently LSDA performs better than DNE.
LSDA is the algorithm with the best recognition rate.

Also, these experiments show that, for appearance-
based facial expression recognition tasks, we must build
a large enough neighborhood for each sample, since the
distance information in the feature space actually does
not help in building discriminant projection and thus a
small neighborhood would be misleading.
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