
Design Forum. 2008 IV Southern Conference on Programmable Logic

PIPELINE-BASED POWER REDUCTION IN FPGA APPLICATIONS

Miguel A. Sacristán, Victoria Rodellar*

DATSI – Facultad de Informática
 Universidad Politécnica de Madrid

 Campus de Montegancedo S/N
28660 - Boadilla del Monte (SPAIN)

 email: masac@wanadoo.es,
Victoria@pino.datsi.fi.upm.es

Antonio Díaz *

ATC – Escuela de Informática
 Universidad Politécnica de Madrid

 Ctra. Valencia Km. 7
28031 – Madrid (SPAIN)

 email: andila@eui.upm.es

ABSTRACT

This paper shows how temporal parallelism has an
important role in the power dissipation reduction in the
FPGA field. Glitches propagation is blocked by the flip-
flops or registers in the pipeline. Several multiplication
structures are implemented over modern FPGAs, StratixII
and Virtex4, comparing their results with and without
pipeline and hardware duplication.

1. INTRODUCTION

Portability is a very important topic in today applications
even more in DSP field. Power consumption reduction is
useful not only for extending the life of the batteries but for
downsizing the heat dissipation mechanisms.
 Design for Low Power, DfLP, can be applied to all the
levels of the design.; approaches at the system level include
the reduction of the power supply [1], disconnection of the
system clock (gating clock) [1], low power operation modes
[2] and managing which parts of the system must stay
activated in each moment [3]. Algorithmic methods contain
the use of alternative numeric systems [4], codification of
the state machines, optimization of the memory accesses [5]
and decrease of the number of transitions in each net of the
circuit [6]; circuit level techniques comprise asynchronous
implementations of self temporized circuits and glitches
reduction [7]; transistor rearrangement [8] at physical level;
and, finally, technology level [9] makes use of different
implementations like dynamic threshold transistors
MOSFET(DTMOS) [10].
 At the same time, FPGA devices are becoming very
important in the rapid prototyping methodology for DSP
with high level synthesis. Last generation devices include
specific circuitry to implement the DSP basic operations,

like addition, multiplication and inner product
(multiplication with accumulation). But, in this case,
technology of implementation, power supply, transistor
arrangement and signal temporization are fixed by the
chosen FPGA. Moreover, all these parameters are not
accessible in a high level synthesis environment because of
its technology independence. So power dissipation
reduction through parallelism increasing, as a high level
affordable technique, is going to be tested over a typical
DSP operation, multiplication. Pipelining [11][12],
temporal parallelism, inserting pipeline registers, reduces
glitch transmission in a FPGA.

2. MULTIPLICATION STRUCTURES

Tree multiplication structure, Fig. 1, follows the ideas
proposed in [13][14][15] whose register transfer level,
RTL, schema is shown in Fig. 1.

ALGORTIMO DE BOOTH

SDA SDA SDA SDA

SDA

n/2

n/2

REGISTER

SDA

SDA

ADDER ‘1’

B A

* This work is funded by grant TEC2006-12887-C02-00 from
Plan Nacional de I+D+i, Ministry of Education and Science,
Project HESPERIA from the Programme CENIT, Centro para el
Desarrollo Tecnológico Industrial, Ministry of Industry, Spain
and Project IBIOL (CCG06-UPM/INF-28) from Autonomic
Government of Madrid, Spain.

Fig. 1. RTL schema of the tree structure.

SPL 2008 – ISBN: 978-84-612-2376-3 43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design Forum. 2008 IV Southern Conference on Programmable Logic

 In the first stage, all the partial products are calculated
using a modified version of Booth’s algorithm [16][17][18],
Booth radix 4 or Booth2; there are techniques [19] that
produce the same reduction in the number of partial
products but starting from a different representation
systems than two’s complement. The resulting n/2 partial
products are in one’s complement and there are n/2
correction bits that are going to be reduced with the partial
products by means of a tree of signed digit adders, SDA
[20][21]. At the end of the adders tree there are still two
correction bits left, these ones are incorporated to the result
by another SDA in stage that can be used as multiplication-
accumulation unit, MAC. Finally, the result is in signed
binary representation and in converted to two’s complement
by a normal adder.
 Fig. 1 differs of the one proposed in [15] only in the
black rectangles that represent the registers used to
implement the pipeline. These can be synthesized or not
depending on the desired way of operation, sequential or
combinational, by a value in a high level generic port. The
working frequency of the pipelined circuit is determined by
the delay of the conversion adder. Latency grows in a
logarithmic way due to the tree structure.
 The second multiplication structure is based in the direct
implementation of the traditional multiplication algorithm.
Fig. 2 shows the RTL schema of the array structure
composed by blocks called full adder, FA, and half adder,
HA, that are able to sum three or two different bits
respectively.

HA
A*b0

A*b1

A*b3

A*b2

FA

a1 a0 a2 a3

HA HA HA

FA FAFA

FA FA FA FA

FA FAFA FA

HA HA HA HA

HA HA HA

HA HA

HA

Fig. 2. RTL schema of the array structure.

 In this case there two differences from respect the one
that appear in [14]. First, the black circles that are the flip-
flops needed for the pipeline; and second the three last

rows, surrounded by a doted line, included in order
achieving a one FA delay operation (n-1 rows must be
added for a n-bit width multiplier). Again, if pipeline is not
needed all the flip-flops can not be synthesized. Latency
depends linearly on the number of bits of the multiplier.

3. PHYSICAL DEVICES

The multiplication structures are going to be synthesized on
two different devices. From Xilinx, XC4VSX55-12 has
been selected, with 49.152 LUTs, of the Virtex4 family.
From Altera, EP2S60F1020C5 is the chosen device,
belonging to the StratixII family, has 48.532 ALUTS. With
this choice we have two physical devices with almost the
same logical capacity, that’s important because smaller
devices can provoke bad power dissipation results due to
bad signal routing. As synthesis software is going to be
used ISE 8.1 for Xilinx and Quartus II 6.0 for Altera.
 Both device families, StratixII and Virtex4, contain a
special circuitry to implement multiplication. So it’s
possible to force the software synthesizer to use it by a
specific VHDL code. The resulting multiplication structure
uses an optimized hardware and transmission lines of the
FPGA so they are going to be selected as a reference value.
Power dissipation results are obtained by analyzing the
netlist switching activity in a post place and route
simulation of the multiplication structures. Since a FPGA is
a physical device with fixed delays and power dissipation
for each component we can expect close to real results.
Simulation consists of 1000 different multiplications with
just a 1% of multiplications by zero. The switching activity
of the input operand bits from one operation to another is
about 50% of them. Static power dissipation is constant for
any design in the same device and I/O pin power
dissipation depends on a higher power supply so both
results aren’t going to be taking into account.

4. SYNTHESIS RESULTS FOR TEMPORAL
PARALELISM

Fig. 3. shows the behavior of logic resources occupation in
StratixII family. Although, theorically, pipeline insertion
shouldn’t increase the logical resources occupation;
pipelined circuits are bigger than their combinational
versions. Pipeline registers form a barrier for the logical
optimization so more logical blocks are needed. The
difference between the tree structures is very small, about a
5%, because pipeline stages separate very complex blocks
such n-bits signed digit adders. In the other hand, resource
occupation of the pipelined array structure increase in a
50% with respect to the combinational one due to the low
complexity of the full adders, FA. There is no possibility of
logical optimization with 4-inputs ALUTs.

SPL 2008 – ISBN: 978-84-612-2376-3 44

Design Forum. 2008 IV Southern Conference on Programmable Logic

0

2500

5000

7500

10000

12500

15000

8 16 32 64

Bits of the operands

A
re

a
(A

LU
Ts

)

Tree Array
Tree-Pipe Array-Pipe

Fig. 3. Logic resources occupation in Stratix II.

Logic resources occupation for the Virtex4 device, Fig. 4.,
repeats the same behavior than the StratixII one. Pipelined
versions need more logic resources than combinational ones
and, practically, in the same proportion. Tree multiplication
structure need less logic resources in the StratixII family
than in the Virtex4 due its more complex logic blocks,
ALUTs, which are able to implement functions of up to six
inputs. However, this functionality is less useful in a design
like the array multiplication structure that is composed by
three inputs functions and its results are similar to the
Virtex4 family.

0

2500

5000

7500

10000

12500

15000

8 16 32 64

Bits of the operands

A
re

a
(L

U
Ts

)

Tree Array

Tree-Pipe Array-Pipe

Fig. 4. Logic resources occupation in Virtex4.

 Continuing with the delay improvement in the StratixII
family, Fig. 5 shows that both multiplication structures,
thanks to the pipeline, can achieve working frequencies as

fast as the multiplication structure implemented with the
special circuitry of the FPGA, HW.

0

40

80

120

160

200

8 16 32 64

Bits of the operands

D
el

ay
 (n

s)

Tree Array HW

Tree-Pipe Array-Pipe

Fig. 5. Multiplication structures delay in StratixII.

 Array structure gets the biggest reduction since its
critical path is reduced to just one FA. The behaviour of the
tree structure is practically the same with or without the
pipeline because its critical path depends mainly on the
final conversion adder that is inside of one pipeline stage.
 Delay results for the Virtex4 family, Fig. 6, present
practically the same graph that Fig. 5. Array multiplication
structure is the slowest one, while the pipelined array
structure becomes the fastest one approaching to the FPGA
multiplication structure, HW. Again, tree structure doesn’t
improve a lot.

0

40

80

120

160

200

8 16 32 64

Bits of the operands

D
el

ay
 (n

s)

Tree Array HW

Tree-Pipe Array-Pipe

Fig. 6. Multiplication structures delay in Virtex4

SPL 2008 – ISBN: 978-84-612-2376-3 45

Design Forum. 2008 IV Southern Conference on Programmable Logic

Fig. 7 shows how the power dissipation reduction when the
pipeline is introduced in the StratixII family. The array
multiplication structure with pipeline, at a working
frequency that produces a result within the initial delay,
called Array-Pipe in the graph, becomes the best in power
dissipation. When the array multiplication structure is
pushed to the maximum working frequency allowed by the
pipeline, Array-Pipe-max in the graph, it maintains
behaviour close to rest of the low power dissipation
structures.

0

1400

2800

4200

5600

7000

8 16 32 64

Bits of the operands

Po
w

er
 d

is
si

pa
tio

n
(m

W
)

Tree Array HW

Tree-Pipe Array-P ipe Serie6

Tree-Pipe-max Array-P ipe-max

Fig. 7. Power dissipation on StratixII.

 In the other hand, tree structure reduces too its power
dissipation with the insertion of the pipeline, Tree-Pipe in
the graph, with a position very close to the multiplication
structure made by the FPGA blocks, HW. The graph called
Tree-Pipe-max represents the pipelined tree structure
working at the maximum frequency. In this case, there is
just a small difference with the Tree-Pipe line due to the
limitation of the working frequency of the pipeline as
shown in Fig. 5
 With the Virtex4 family, Fig. 8, we can see that, again,
the structures with pipeline reduce mainly their power
dissipation. Pipelined array is the one with less power
dissipation when working at the initial frequency; but now
there isn’t a very big difference when it is forced to the
maximum frequency permitted by the pipeline.
 The tree structure leaves the worst position and turns
into the second best structure in power dissipation, better
than multiplier structure of the FPGA. Increasing the
working frequency to the maximum possible doesn’t
produce a relevant change and the graph Tree-Pipe-max
almost equals the Tree-Pipe graph.

0

1400

2800

4200

5600

7000

8 16 32 64

Bits of the operands

Po
w

er
 d

is
si

pa
tio

n
(m

W
)

Tree Array HW

Tree-Pipe Array-Pipe Serie6

Tree-Pipe-max Array-Pipe-max

Fig. 8. Power dissipation on Virtex4.

 The behaviour of the tree structure in both families is
very similar there is an important reduction of the power
dissipation thanks to the pipeline. However theorically there
should be no power dissipation reduction. Taking into
account that the dynamic power dissipation is usually
calculated by the following equation:

2fCVPDynamic α≈ (1)

where α is the average number of transitions, f is the
working frequency, C is the capacitance of one transistor
and V is the power supply. The tree structures with and
without pipeline have the same C and V due to the physical
device, α doesn’t change because there is no new added
logic and they have the same working frequency.
 So the power dissipation reduction comes from the
elimination of the glitch transmission through the circuit
due to the registers used to implement the pipeline. The
way as FPGAs connect two logic blocks produces several
glitches that are the cause of the power dissipation.
 Glitch importance is more clearly shown in the array
structure. Pipelined structure produces a big reduction in
power dissipation. But the distance between the two
pipelined array structure graphs is not as big as can be
expected from the difference between the two working
frequencies.

5. CONCLUSION

Pipelined logical multiplication structures can reach the
same results in delay and power dissipation than a
multiplication structure implemented by the optimized DSP

SPL 2008 – ISBN: 978-84-612-2376-3 46

Design Forum. 2008 IV Southern Conference on Programmable Logic

SPL 2008 – ISBN: 978-84-612-2376-3 47

Table 1. Temporal parallelism results.
 StratixII Virtex4

 Tree Array Tree Array
Area 105% 150% 105% 150%

Delay 85% 16% 80% 7,5%

Dissipation 16% 7% 4,5% 1,5%

[8] C. Cao, M. O’Nils and B. Oelmann, “Synthesis tool for low-
power finite-state machines with mixed
synchronous/asynchronous state memory”, IEE Proc.
Computers and Digital Techniques, vol. 153, no. 4, pp. 243-
348, July 2006.

[9] J.S. Yuan and J. Di, “Teaching low-power electronic design
in electrical and computer engineering”, IEEE Trans.
Education, vol. 48, no. 1, pp. 169-182, Febreaury 2005.

[10] Y.-Y. Sung and R.C.Chang, "A novel CMOS double-edge
triggered flip-flop for low-power applications", Proc. of Int.
Symp. on Circuits and Systems, vol. 2, pp. 665-668, May
2004.

blocks of the modern FPGAs, mainly StratixII and Virtex4.
Moreover, pipelining is very useful for glitch elimination
and, consequently, for power dissipation reduction. [11] E. Morifuji, T. Yoshida, M. Kanda, S. Matsuda, S. Yamada

and F. Matsouka, “Supply and threshold-voltage trends for
scaled logic and SRAM MOSFETs”, IEEE Trans. Electronic
Devices, vol. 53, no. 6, pp. 1427-1432, June 2006.

 Tree structure maintains its timing behavior in both
families while the array structure is able to reach very high
working frequencies.
 Finally, StratixII family seems to be more sensitive to
the glitches propagation than the Virtex4 one, specially in
the case of a structure in an array shape.

[12] E. Boemo, G. Gonzalez, S. Lopez-Buedo and J. Meneses,
“Some Notes on Power Management on FPGA-Based
Systems”, Lecture Notes in Computer Science, vol. 975, pp.
149-157, 1995.

6. REFERENCES [13] S.-W. Lee and J.-L. Gaudiot, “Throttling resource
management in high performance multithread”, IEEE Trans.
Computers, vol. 55, no. 9, pp. 1142-1152, September 2006. [1] M. Vratonjic, B.R. Zeydel and V.G. Oklobdzija, “Low and

ultra low-power arithmetic units: design and comparison,”
Proc. IEEE Int. Conf. on Computer Design: VLSI in
Computers and Processors , pp. 249–252, Oct. 2005.

[14] K.-S. Chong, B.-H. Gwee, and J. Chang, “A low power 16-
bit booth leapfrog array multiplier using dynamic adders,” in
Proc. IEEE Int. Symp. on Circuits and Systems, vol. 2, pp.
23–26, May 2004. [2] F. Carbognani, F. Buergin, N. Felber, H. Kaeslin and W.

Fichtner, “42% power savings through glitch-reducing
clocking strategy in a hearing aid application”, Proc. IEEE
Int. Symp. on Circuits and Systems, pp. 2941-2944, October,
2006.

[15] Y. Liao and D. Roberts, “A high-performance and low-
power 32-bit multiply-accumulate unit with Single-
Instruction-Multiple-Data (SIMD) feature,” IEEE Journal of
Solid-StateCircuits, vol. 37, no. 7, pp. 926–931, July 2002.

[3] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo,
A. Hashiguchi, H. Kawahara, K. Kumano and M. Shimura,
“Dynamic voltage and frequency management for a low-
power embedded microprocessor”, IEEE Jour. Of Solid-
State Circuits, vol. 40, no. 1, pp. 28-35, January 2005.

[16] M.A. Sacristan, V. Rodellar and A. Diaz, “Estructura
multiplicadora reusable para DSP sobre FPGAs”, Proc. of
Workshop on Reconfigurable Computing and Applications,
September 2006.

[17] J.-P. Deschamps, G.J.A. Bioul and G.D. Sutter, “Synthesis
of arithmetic circuits: FPGA, ASIC and embedded systems”,
Wiley Interscience, 2006.

[4] A. Rettberg and F.J. Ramming, “A new design partitioning
approach for low power high-level synthesis”, Proc. IEEE
Int. Workshop on Electronic Design, Test and Applications,
pp. 6, January 2006. [18] M. Ercegovac and T. Lang, “Digital Arithmetic”. Morgan

Kaufman Publishers, 2004. [5] R. Sanghamitra and B. Prith, “An algorithm for trading off
quantization error with hardware resources for MATLAB-
based FPGA design”, IEEE Trans. On Computers, vol. 54,
no. 7, pp. 886-896, July 2005.

[19] B. Parhami, “Computer arithmetic”. Oxford University
Press, 2000.

[20] W. Natter and B. Nowrouzian, “A novel multiplier recoding
technique and its application to the development of a high-
speed parallel online multiply-accumlate architecture,” in
Proc. of IEEE Int. Symp. on Circuits and Systems, pp. 713–
716 May 2001.

[6] D.-S. Lee and I.-C. Park, “Low power log-MAP decoding
based on reduced metric memory access”, IEEE Trans. On
Circuits and Systems I: Regular Papers, vol. 53, no. 6, pp.
1244-1253, June 2006.

[21] B.D. Andreev, E.L. Titlebaum and E.G. Friedman,
"Transformations of signed-binary number representations
for efficient VLSI arithmetic", Proc. of IEEE Int. Workshop
on System-on-Chip for Real-Time Applications, pp. 70-75,
2003.

[7] L. Zhong, and N.K. Jha, "Interconnect-aware low-power
high-level synthesis", IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 3,
2005, March, pp. 336-351.

	1. INTRODUCTION
	2. MULTIPLICATION STRUCTURES
	3. PHYSICAL DEVICES
	4. SYNTHESIS RESULTS FOR TEMPORAL PARALELISM
	5. CONCLUSION
	6. REFERENCES

