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ABSTRACT 

This paper shows how temporal parallelism has an 
important role in the power dissipation reduction in the 
FPGA field. Glitches propagation is blocked by the flip-
flops or registers in the pipeline. Several multiplication 
structures are implemented over modern FPGAs, StratixII 
and Virtex4, comparing their results with and without 
pipeline and hardware duplication. 

1. INTRODUCTION 

Portability is a very important topic in today applications 
even more in DSP field. Power consumption reduction is 
useful not only for extending the life of the batteries but for 
downsizing the heat dissipation mechanisms.  
 Design for Low Power, DfLP, can be applied to all the 
levels of the design.; approaches at the system level include 
the reduction of the power supply [1], disconnection of the 
system clock (gating clock) [1], low power operation modes 
[2] and managing which parts of the system must stay 
activated in each moment [3]. Algorithmic methods contain 
the use of alternative numeric systems [4], codification of 
the state machines, optimization of the memory accesses [5] 
and decrease of the number of transitions in each net of the 
circuit [6]; circuit level techniques comprise asynchronous 
implementations of self temporized circuits and glitches 
reduction [7]; transistor rearrangement [8] at physical level; 
and, finally, technology level [9] makes use of different 
implementations like dynamic threshold transistors 
MOSFET(DTMOS) [10].  
 At the same time, FPGA devices are becoming very 
important in the rapid prototyping methodology for DSP 
with high level synthesis. Last generation devices include 
specific circuitry to implement the DSP basic operations, 

like addition, multiplication and inner product 
(multiplication with accumulation). But, in this case, 
technology of implementation, power supply, transistor 
arrangement and signal temporization are fixed by the 
chosen FPGA. Moreover, all these parameters are not 
accessible in a high level synthesis environment because of 
its technology independence. So power dissipation 
reduction through parallelism increasing, as a high level 
affordable technique, is going to be tested over a typical 
DSP operation, multiplication. Pipelining [11][12], 
temporal parallelism, inserting pipeline registers, reduces 
glitch transmission in a FPGA. 

2. MULTIPLICATION STRUCTURES 

Tree multiplication structure, Fig. 1, follows the ideas 
proposed in [13][14][15] whose register transfer level, 
RTL, schema is shown in Fig. 1.  
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Fig. 1.  RTL schema of the tree structure. 
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 In the first stage, all the partial products are calculated 
using a modified version of Booth’s algorithm [16][17][18], 
Booth radix 4 or Booth2; there are techniques [19] that 
produce the same reduction in the number of partial 
products but starting from a different representation 
systems than two’s complement. The resulting n/2 partial 
products are in one’s complement and there are n/2 
correction bits that are going to be reduced with the partial 
products by means of a tree of signed digit adders, SDA 
[20][21]. At the end of the adders tree there are still two 
correction bits left, these ones are incorporated to the result 
by another SDA in stage that can be used as multiplication-
accumulation unit, MAC. Finally, the result is in signed 
binary representation and in converted to two’s complement 
by a normal adder.  
 Fig. 1 differs of the one proposed in [15] only in the 
black rectangles that represent the registers used to 
implement the pipeline. These can be synthesized or not 
depending on the desired way of operation, sequential or 
combinational, by a value in a high level generic port. The 
working frequency of the pipelined circuit is determined by 
the delay of the conversion adder. Latency grows in a 
logarithmic way due to the tree structure.  
 The second multiplication structure is based in the direct 
implementation of the traditional multiplication algorithm. 
Fig. 2 shows the RTL schema of the array structure 
composed by blocks called full adder, FA, and half adder, 
HA, that are able to sum three or two different bits 
respectively. 
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Fig. 2.  RTL schema of the array structure. 

 In this case there two differences from respect the one 
that appear in [14]. First, the black circles that are the flip-
flops needed for the pipeline; and second the three last 

rows, surrounded by a doted line, included in order 
achieving a one FA delay operation (n-1 rows must be 
added for a n-bit width multiplier). Again, if pipeline is not 
needed all the flip-flops can not be synthesized. Latency 
depends linearly on the number of bits of the multiplier. 
 

3. PHYSICAL DEVICES 

The multiplication structures are going to be synthesized on 
two different devices. From Xilinx, XC4VSX55-12 has 
been selected, with 49.152 LUTs, of the Virtex4 family. 
From Altera, EP2S60F1020C5 is the chosen device, 
belonging to the StratixII family, has 48.532 ALUTS. With 
this choice we have two physical devices with almost the 
same logical capacity, that’s important because smaller 
devices can provoke bad power dissipation results due to 
bad signal routing. As synthesis software is going to be 
used ISE 8.1 for Xilinx and Quartus II 6.0 for Altera. 
 Both device families, StratixII and Virtex4, contain a 
special circuitry to implement multiplication. So it’s 
possible to force the software synthesizer to use it by a 
specific VHDL code. The resulting multiplication structure 
uses an optimized hardware and transmission lines of the 
FPGA so they are going to be selected as a reference value. 
Power dissipation results are obtained by analyzing the 
netlist switching activity in a post place and route 
simulation of the multiplication structures. Since a FPGA is 
a physical device with fixed delays and power dissipation 
for each component we can expect close to real results. 
Simulation consists of 1000 different multiplications with 
just a 1% of multiplications by zero. The switching activity 
of the input operand bits from one operation to another is 
about 50% of them. Static power dissipation is constant for 
any design in the same device and I/O pin power 
dissipation depends on a higher power supply so both 
results aren’t going to be taking into account. 
 

4. SYNTHESIS RESULTS FOR TEMPORAL 
PARALELISM 

Fig. 3. shows the behavior of logic resources occupation in 
StratixII family. Although, theorically, pipeline insertion 
shouldn’t increase the logical resources occupation; 
pipelined circuits are bigger than their combinational 
versions. Pipeline registers form a barrier for the logical 
optimization so more logical blocks are needed. The 
difference between the tree structures is very small, about a 
5%, because pipeline stages separate very complex blocks 
such n-bits signed digit adders. In the other hand, resource 
occupation of the pipelined array structure increase in a 
50% with respect to the combinational one due to the low 
complexity of the full adders, FA. There is no possibility of 
logical optimization with 4-inputs ALUTs. 
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Fig. 3.  Logic resources occupation in Stratix II. 

Logic resources occupation for the Virtex4 device, Fig. 4., 
repeats the same behavior than the StratixII one. Pipelined 
versions need more logic resources than combinational ones 
and, practically, in the same proportion. Tree multiplication 
structure need less logic resources in the StratixII family 
than in the Virtex4 due its more complex logic blocks, 
ALUTs, which are able to implement functions of up to six 
inputs. However, this functionality is less useful in a design 
like the array multiplication structure that is composed by 
three inputs functions and its results are similar to the 
Virtex4 family.  
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Fig. 4.  Logic resources occupation in Virtex4. 

 Continuing with the delay improvement in the StratixII 
family, Fig. 5 shows that both multiplication structures, 
thanks to the pipeline, can achieve working frequencies as 

fast as the multiplication structure implemented with the 
special circuitry of the FPGA, HW. 
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Fig. 5.  Multiplication structures delay in StratixII. 

 Array structure gets the biggest reduction since its 
critical path is reduced to just one FA. The behaviour of the 
tree structure is practically the same with or without the 
pipeline because its critical path depends mainly on the 
final conversion adder that is inside of one pipeline stage. 
 Delay results for the Virtex4 family, Fig. 6, present 
practically the same graph that Fig. 5. Array multiplication 
structure is the slowest one, while the pipelined array 
structure becomes the fastest one approaching to the FPGA 
multiplication structure, HW. Again, tree structure doesn’t 
improve a lot. 
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Fig. 6.  Multiplication structures delay in Virtex4 
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Fig. 7 shows how the power dissipation reduction when the 
pipeline is introduced in the StratixII family. The array 
multiplication structure with pipeline, at a working 
frequency that produces a result within the initial delay, 
called Array-Pipe in the graph, becomes the best in power 
dissipation. When the array multiplication structure is 
pushed to the maximum working frequency allowed by the 
pipeline, Array-Pipe-max in the graph, it maintains 
behaviour close to rest of the low power dissipation 
structures. 
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Fig. 7.  Power dissipation on StratixII. 

 
 
 In the other hand, tree structure reduces too its power 
dissipation with the insertion of the pipeline, Tree-Pipe in 
the graph, with a position very close to the multiplication 
structure made by the FPGA blocks, HW. The graph called 
Tree-Pipe-max represents the pipelined tree structure 
working at the maximum frequency. In this case, there is 
just a small difference with the Tree-Pipe line due to the 
limitation of the working frequency of the pipeline as 
shown in Fig. 5 
 With the Virtex4 family, Fig. 8, we can see that, again, 
the structures with pipeline reduce mainly their power 
dissipation. Pipelined array is the one with less power 
dissipation when working at the initial frequency; but now 
there isn’t a very big difference when it is forced to the 
maximum frequency permitted by the pipeline. 
 The tree structure leaves the worst position and turns 
into the second best structure in power dissipation, better 
than multiplier structure of the FPGA. Increasing the 
working frequency to the maximum possible doesn’t 
produce a relevant change and the graph Tree-Pipe-max 
almost equals the Tree-Pipe graph. 
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Fig. 8.  Power dissipation on Virtex4. 

 The behaviour of the tree structure in both families is 
very similar there is an important reduction of the power 
dissipation thanks to the pipeline. However theorically there 
should be no power dissipation reduction. Taking into 
account that the dynamic power dissipation is usually 
calculated by the following equation: 

2fCVPDynamic α≈                          (1) 

where α is the average number of transitions, f is the 
working frequency, C is the capacitance of one transistor 
and V is the power supply. The tree structures with and 
without pipeline have the same C and V due to the physical 
device, α doesn’t change because there is no new added 
logic and they have the same working frequency. 
 So the power dissipation reduction comes from the 
elimination of the glitch transmission through the circuit 
due to the registers used to implement the pipeline. The 
way as FPGAs connect two logic blocks produces several 
glitches that are the cause of the power dissipation. 
 Glitch importance is more clearly shown in the array 
structure. Pipelined structure produces a big reduction in 
power dissipation. But the distance between the two 
pipelined array structure graphs is not as big as can be 
expected from the difference between the two working 
frequencies. 

5. CONCLUSION 

Pipelined logical multiplication structures can reach the 
same results in delay and power dissipation than a 
multiplication structure implemented by the optimized DSP 
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Table 1.  Temporal parallelism results. 
 StratixII Virtex4 

 Tree Array Tree Array 
Area 105% 150% 105% 150% 

Delay 85% 16% 80% 7,5% 

Dissipation 16% 7% 4,5% 1,5%
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