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Abstract— This paper presents a nonlinear approach for
time-frequency representations (TFR) data analysis, based on
a statistical learning methodology - support vector regression
(SVR), that being a nonlinear framework, matches recent
findings on the underlying dynamics of cardiac mechanic activ-
ity and phonocardiographic (PCG) recordings. The proposed
methodology aims to model the estimated TFRs, and extract
relevant features to perform classification between normal and
pathologic PCG recordings (with murmur). Modeling of TFR is
done by means of SVR, and the distance between regressions is
calculated through dissimilarity measures based on dot product.
Finally, a k-nn classifier is used for the classification stage,
obtaining a validation performance of 97.85%.

I. INTRODUCTION

Cardiac mechanical activity is appraised by auscultation
and processing of heart sound records (known as phono-
cardiographic signals - PCG), being an inexpensive and
non-invasive procedure. Although the importance of clas-
sic auscultation methods has decreased due to its inherent
restrictions (performance of human ear with its physical
limitations, subjectivity of the examiner, etc), the PCG has
preserved its importance in pediatric cardiology, cardiology,
and internal diseases, evaluating congenital cardiac defects
[1], and in primary home health care, where an intelligent
stethoscope with decision support abilities would be of a
great value [1].

In recent years computer-based PCG analysis methods
have been the subject of considerable effort. Indeed, the
automatic detection of cardiac murmurs strongly depends on
the appropriate features (data representation), which mostly
are related to timing, morphology and spectral properties of
heart sounds. Cardiac murmurs are non-stationary signals
and exhibit sudden frequency changes and transients, but
it is common to assume linearity of the feature sets ex-
tracted from heart sounds (time and spectral characteristics,
frequency representation with time resolution, and parametric
modeling). In the analysis of biomedical data, such as PCG,
time frequency representations (TFR) have been proposed
to investigate the dynamic properties of spectral parame-
ters during transient physiological or pathological episodes.
Moreover, TFR not only distinguishes murmurs of different
kinds intuitively, but also offers quantitative data [2].
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In [3] the Choi-Williams distribution (CWD) was found
to be an adequate representation to the description, feature
extraction and classification of a significant data set of PCG
signals in order to evaluate valvular pathologies.

Furthermore, given the detailed time and frequency resolu-
tion of time-frequency distribution, trainable automatic clas-
sifiers can easily be overwhelmed by the complexity of this
input representation. An ultimate goal of the time-frequency
or time-scale signal analysis is to have the best possible
representation for the subsequent automatic classification of
signals. Unfortunately, many of the highest resolution time-
frequency techniques produce a high degree of detail in all
regions of the time-frequency plane without regard to the
need for such minutia in each region. This is because the
signal to be classified has been globally over-parameterized
by the time-frequency representation and thus the model
would be severely under-trained [4]. In this way, we use
SVR to model the TFR, as was suggested in [5], where
SVR is used to model an optimization surface oriented to
the detection of murmurs in PCG signals.

Our goal in this paper is to apply the time-frequency
representation in PCG signals and use the SVR for modeling
the surfaces, in order to reduce the amount of data in the
original TFR. With the obtained support vectors, it is possible
to employ dissimilarity measures based on dot products in
order to obtain an estimation of distance between models of
TFRs and therefore calculate the features that will be useful
in the classification stage with a k-nn classifier.

This paper is organized as follows: Section II explains the
background methods supporting the proposed methodology,
namely, support vector regression (SVR) and dissimilar-
ity based classification; section III explains our proposed
dissimilarity measure between regression models, tests and
experimental conditions, and finally, results and conclusions
are presented in sections IV and V, respectively.

II. BACKGROUND METHODS

A. Statistical Learning by Support Vector Regression

The Support Vector Regression (SVR), which is grounded
on Structural Risk Minimization theory [6], is based on
the computation of a linear regression function in a high
dimensional feature space where the input data are mapped
via a nonlinear function. Given N input sample sets, xi ∈
Rn, i = 1, 2, ..., N , and N corresponding scalar output
values, yi ∈ R, i = 1, 2, ..., N , the aim is to find a regression
function of the form:

y = f(x) = 〈w,x〉 + b (1)
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This can be achieved by introducing the so called ε-
insensitive loss function:

|y − f(x)|ε := max{0, |y − f(x)| − ε} (2)

which does not penalize errors below some ε ≥ 0.
The training process of the SVR is to find an optimal vector
w by solving the convex optimization problem [6]:

Minimize 1
2‖w‖2 + C

∑m
i=1(ξi + ξ∗i )

Subject to

⎧⎪⎪⎨
⎪⎪⎩

yi − 〈w,xi〉 − b ≤ ε + ξi

〈w,xi〉 + b − yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

(3)

Preselected constants, ε > 0 and C > 0, are the insensitivity
value and the tradeoff between the smoothness of the SVR
function and the total training error, respectively.
Solving (3) results in the so called support vector expansion:

f(x) =
N∑

i=1

αi〈xi,x〉 + b (4)

showing that w can be completely described as a linear
combination of the training patterns xi, with αi, i = 1, ..., N
being the Lagrange multipliers introduced for solving the
problem.
When the approximation function can not be linearly re-
gressed, it is necessary to introduce a mapping function
from the input space to a high dimensional feature space
Φ : x �→ Φ(x), in such a way that the function f(·)
between the output and the mapped input data points can
now be linearly regressed in the feature space. This can
be done implicitly through the use of a kernel function
k(x,y) = 〈Φ(x), Φ(y)〉 for replacing the dot products in
(4):

f(x) =
N∑

i=1

αik(xi,x) + b (5)

Kernel functions are characterized by Mercer conditions, and
a commonly used one is the Gaussian radial basis function
(RBF) [7]:

k(x, y) = exp(−γ‖x− y‖2) (6)

with the parameter γ being a pre-selected constant.

B. Dissimilarity-based Classification

Suppose a set of prototype objects

R := {p1, p2, ..., pr} (7)

called the representation set, and suppose a dissimilarity
measure d(·, ·), computed or derived from the objects. Such
a dissimilarity measure must be nonnegative and to obey the
reflexivity condition, d(x, x) = 0, but it might be non-metric.
An object x is represented as a vector of the dissimilarities
computed between x and the prototypes from R:

D(x,R) = [d(x, p1), d(x, p2), ..., d(x, pr)] (8)

Then, for a training set T of m objects, a classifier can be
built on the m× r dissimilarity matrix D(T ,R) relating all

training objects to all prototypes [8].

There exists a number of ways to select the representation
set R. One method that has achieved good results is Linear
Programming (LP). In this method, the selection of proto-
types is done automatically by training a properly formulated
separating hyperplane

f(D(x,R)) =
r∑

j=1

wjd(x, pj)+w0 = wT D(x,R)+w0 (9)

in a dissimilarity space D(T,R). In this approach, a sparse
solution w is obtained, which means that many weights wj

become zero. The objects from the initial set R (R = T , for
instance), corresponding to nonzero weights are the selected
prototypes, so the representation set RLP .

III. EXPERIMENTAL OUTLINE

A. Dissimilarity measure between regressions

Given two modeled TFRs, the next step is the calculus of
some dissimilarity measure between regression functions. In
this case, a distance measure is proposed as follows. First,
the dot product between functions is computed:

〈f1(·), f2(·)〉 = 〈
N∑

i=1

αik(xi, ·),
N∑

j=1

βjk(xj , ·)〉 (10)

(10) can be expressed as [9]:

〈f1, f2〉 =
N∑

i=1

N∑
j=1

αiβjk(xi,xj) (11)

Leading to the matrix form:

〈f1, f2〉 = αTKβ (12)

where α and β are column vectors containing the αi, i =
1, ..., N and βi, i = 1, ..., N coefficients, and K is the kernel
matrix, a positive semidefinite and symmetric matrix such
that its entries are Kij = k(xi,xj).
Now, it is possible to derive a distance function between
regressions, as:

d(f1, f2) = (〈f1 − f2, f1 − f2〉)1/2

= αTKα − 2αTKβ + βTKβ (13)

Although the calculus of the entire kernel matrix is a high
demanding computational task, it is clear that the α and β
vectors are sparse, so just a few entries of the kernel matrix
have to be computed.

B. Database

The database used in this work is made up with 22 de-
identified adult subjects (16 normals and 6 with murmur).
Eight recordings were taken from each patient, correspond-
ing to the four traditional focuses of auscultation (mitral,
tricuspid, aortic and pulmonary areas) in the phase of post-
expiratory and post-inspiratory apnea. An electronic stetho-
scope (WelchAllyn R© Meditron model) was used to
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acquire the heart sounds simultaneously with a standard 3-
lead ECG. Both signals were digitized at 44.1 kHz with 16-
bits per sample.

Furthermore, in order to select beats without artifacts and
another type of noise that can degrade the performance of
the algorithms, a visual and audible inspection was carried
out by cardiologists, and 402 individual beats were extracted,
201 for each class, using a R-peak detector.

C. Time-frequency representation

Time-frequency representations of PCGs were obtained
using two methods: Short Time Fourier Transform (STFT)
and Choi-Williams distribution (CWD). Both representations
map the signal energy into the time-frequency plane. STFT
is easy to compute, but it has resolution problems, caused by
the uncertainty principle, when the signal is windowed. On
the other hand, CWD provides better resolution than STFT
and it would be able to improve the characterization of PCG
signals.

Both STFT and CWD belong to the general class of
time-frequency distributions (Cohen class), and they can
be computed using the expression (14). To calculate the
different distributions, it is only necessary to change the
kernel φ(θ, τ).

P (t, ω) =
1

4π2

∫ ∫ ∫
e−jθt−jτω+jθuφ(θ, τ)

· s∗
(

u − 1
2
τ

)
s

(
u +

1
2
τ

)
dudτdθ (14)

where s(u) is the signal to be analyzed, τ is the time delay
and θ is the frequency lag.

The kernels to compute the TFRs are shown in (15), (15a)
is used to compute STFT, and (15b) for CWD. In (15a), h(u)
is the windowing function. On the other hand, in (15b) σ
is a positive parameter controlling the kernel concentration
around the origin of the time and frequency lag plane and,
hence, the overall amount of smoothing.

φSTFT (θ, τ) =
∫

h∗(u − 1
2
τ)h(u +

1
2
τ)e−jθudu (15a)

φCWD(θ, τ) = e−θ2τ2/σ (15b)

In the implementation of TFRs, PCG signals were down-
sampled to 4000Hz in order to reduce the amount of data
to analyze and were length-normalized and zero padded to
4800 points.

After preprocessing, the TFR for each beat was computed.
The STFT was estimated using a Hamming window whose
length was 50ms or 200 points with overlap of 50% and
256 point in frequency domain. The CWD was calculated
using the fast algorithm proposed in [10], with the kernel
parameter σ = 2 and 256 points in frequency. The CWD of
two PCG signals (normal and pathologic) is shown in Figure
1.

As a result, in STFT a matrix with 256 rows and 47
columns was obtained; whereas in CWD the size of the
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Fig. 1. Examples of Choi-Williams distributions of different PCG signals.

obtained matrix was 256×4800. Finally, the amount of data
was reduced again by using 2-D down-sampling, obtaining
matrices of 64 rows and 47 columns for STFT, and 64×192
for CWD.

D. Regression model selection

The parameters ε (insensitive width) and C (error penal-
ization) were adjusted by using the approximations given in
[11]:

ε = 3σnoise

√
ln N/N (16)

C = max |ȳ + 3σy|, |ȳ + 3σy| (17)

where σnoise is some estimation of the noise standard
deviation, N is the number of training instances, ȳ and
σy are the mean and standard deviation of training targets,
respectively.
For adjusting the γ parameter of RBF kernel (6), the method-
ology proposed in [7] was used. It can be demonstrated that
the generalization capacity of the SVR is a convex function
depending on γ, so the optimal γ can be found by minimizing
the generalization error with some optimization method for
quasi convex functions.

E. Dissimilarity based classification

In order to design the dissimilarity based classifier, an
initial representation set R of 200 signals (100 of each
class) was extracted from the database. Then, the distances
among all objects in the representation set were calculated,
constructing the 200 × 200 dissimilarity matrix D(R,R).
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TABLE I

CONFUSION MATRIX WITH STFT REPRESENTATION

Machine
With murmur Normal

Label With murmur 151 5
Normal 5 150

TABLE II

CONFUSION MATRIX WITH CWD REPRESENTATION

Machine
With murmur Normal

Label With murmur 159 4
Normal 3 160

The linear programming method described in section II-B
was then applied over the dissimilarity space, obtaining a
final representation set RLP of 91 prototypes for STFT y
76 prototypes for CWD. The remaining objects in each case
were returned to the training sets for the classification stage.

IV. CLASSIFICATION RESULTS

Using the dissimilarity matrices D(T ,RLP ), a 1 − nn
classifier was trained and validated using the leave one out
schema. The confusion matrices for each TFR case are shown
in tables I and II:
It is remarkable that the number of samples in the STFT case
was of 311, while for the CWD case was of 326 because the
number of selected prototypes was different.

Table III shows the classification accuracy with specificity
and sensitivity for each case.

Table III shows that with CWD representation, the clas-
sification results are slightly better that with STFT repre-
sentation. However, for STFT 15 prototypes more than for
CWD were selected, i. e. for each sample 15 more distances
have to be computed. This two facts confirms that CWD
representation provides a better way of extracting the time-
frequency information for PCG signals.

V. CONCLUSIONS

The results showed that the proposed methodology, based
on SVR and dissimilarity measures, is able to characterize
successfully the TFRs. Moreover, it is posible to classify
PCG signals (normals and murmurs) using the features ex-
tracted from the TFRs, obtaining remarkable results: 97.85%
of classification success over the used database.

It is difficult to compare the results obtained in this work
with respect to the results of previous works, because there is
no available standard databases of PCG recordings in order
to evaluate the performance of the algorithms. However, the
results of this work showed better performance than the
results obtained with other techniques based mainly in the
application of neural networks to perform the classification
with an accuracy between 85% and 95% [12], [13].

The results show that CWD representation provides a
better way for extracting the time-frequency information
from PCG signals. This had also been shown in [3] with a

TABLE III

ACCURACY PERCENTAGES

Accuracy Sensitivity Specificity
STFT 96.78% 96.79% 96.77%
CWD 97.85% 97.55% 98.16%

classification performance of 98%, using heuristic measures
on the TFR. In our work, an automatic feature finding in
the time-frequency plane was performed, with similar results
and an improved methodology, which had been successfully
applied to EEG, ECG and voice signals, but rarely used in
PCG and heart sound signals.

Future work includes development of strategies to allow
for physical interpretation of the relevant features (zones of
the TFD with discriminant information). Moreover, it would
be interesting to evaluate the effects of noise using signals
with lower signal-to-noise ratio.
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