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Communication Paradigms for
High-Integrity Distributed Systems
with Hard Real-Time Requirements

Santiago Uruia, Juan Zamorano, J#. Pulido, and Juan A. de la Puente

Abstract The development and maintenance of high-integrity softvigwvery ex-
pensive, and a specialized development process is reqdiredo its distinctive
characteristics. Namely, safety-critical systems ugueklecute over a distributed
embedded platform with few hardware resources which mesige real-time com-
munication and fault-tolerance. This work discusses trefjadte communication
paradigms for high-integrity distributed applicationsttwhard real-time require-
ments, and proposes a restricted middleware based on thentschedulability
theory which can be certified and capable to obtain the reduredictability and
timeliness of this kind of systems.

1 Introduction

On-board embedded computers play a crucial role in spdtgcvehere they per-
form both platform control functions, such as guidance aadgation control or
telemetry and tele-command management, and payload spcititions, such as
instrument control and data acquisition. One distinctikraracteristic of on-board
computer systems is that hardware resources are scarceo dioe need to use
radiation-hardware chips and limitations in weight and powonsumption, and
these resources are distributed due to the physical destagtoveen the instruments
and to replicate mission-critical components. Another &syect of these systems
is the presence of high-integrity and hard real-time resya@nts, which raises the
need for a strict verification and validation (V&V) processttp at the system and
software levels [1]. This new step in the development precesalledcertification
Itis a very expensive process which will shape the completeldpment tools and
methods of the system.
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It is worth noting that inside a high-integrity system ndtthe software has the
same criticality: while some applications have a directliogtion in the safety of
the system, a fault in other parts of the code will result anlyninor effects [2].
Therefore, not all the software is certified to the highadicality level to save
costs.Ravenscaiis a computational model designed for high-integrity, heeall-
time, embedded systems [3]. It is a profile that specifies ¢h@foperations that
the real-time operating system (RTOS) has to provide, ssultak set of forbidden
operations that would made the system unpredictable. Oarteénand, Ravenscar
compliant real-time kernels have to provide less functionghan other RTOSs, and
therefore they are be smaller and easier to certify. On therdtand, applications
developed under the Ravenscar restrictions are suitakderiporal analysis.

Due to the specific characteristics of this kind of systemeraegal purpose mid-
dleware cannot be used to develop high-integrity code. Djective of this paper is
to describe the design principles used in a safety-critiaddleware for the Euro-
pean Space Agency (ESA), discussing the most adequate auicatian paradigms
and the requirements of a high-integrity middleware. In¢he, the main goal is
to be able to analyze statically the schedulability of itsdheeal-time deadlines.
This paper is organized as follows. Section 2 describes dhéributions and re-
lated work, while Section 3 sets the computational modettiSe 4 defines a set
of restrictions for building safety-critical distributexystems, including the imple-
mentation requirements and an analysis of the adequate goivation paradigms.
Finally, Section 5 summarizes the main conclusions of thiskw

2 Contributions and related wor k

This paper builds upon current advances in scheduling yheordistributed hard
real-time systems. Tindell and Clark [4] extended the raspdime analysis tech-
niques used for event-triggered single processors tallistid systems, introducing
the concept of holistic schedulability. Later, Palencid &onzlez Harbour [5] im-
proved the technique to reduce the pessimism of transaction

The main objective of this work was the development of a Rewarcompliant
middleware for next-generation space-crafts. Specificéle main contributions of
this paper are:

1. Specification of the distribution requirements of theoagwace industry;

2. Modelization and response time analysis of the specifiziduted system;

3. Restrictions needed for a safety-critical middlewaral adequate communica-
tion paradigms.

Some of the restrictions specific to the Ada programminguagg were published
previously by the authors [6], but this paper extends thakwad make the require-
ments language independent.

1 Actually Ravenscais a village in England, where experts from industry and acadie high-
integrity and hard real-time systems met to define the profile.
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Kopetz elaborated the Time-Triggered Architecture (TTA) fo provide hard
real-time communication for safety-critical distributegstems. However, a time-
triggered middleware presents similar scalability praiddor development a main-
tenance than cyclic executives. In contrast, a Ravenszapiant middleware
supports time-triggered and event-triggered programnfiogme past publications
about the specific topic of Ravenscar-compliant distribgstems exists [8], but
only discussing the research challenges.

3 Computational Model

3.1 Industrial requirements

The following list of requirements has been extracted frova heeds expressed
by different companies from the aero-space industry. Ngntleéy represent the
middleware requirements found during the development fiérdint projects for
the European Space Agency (ESA), including self-mainthloag-term satellites,
mission-critical unmanned space vehicles, and satekitad]

e Predictability: End-to-end transfers in bounded time for messages witt har
real-time deadlines.

e Fault tolerance: Replication of network links and/or routers for resiliento
hardware failures.

e Diagnostic information: The application should be able to know the status of a
node and communication links.

e Multicast communication: One-to-many communication, even if the network
does not support broadcasting operations.

e Message segmentation: The partitioning of messages greater than the maximum
transfer unit should be done by the middleware.

e Message forwarding: Transparent communication between nodes not directly
connected.

Some of these requirements complicate the implementafidineomiddleware
and the static analysis of the whole system. However, it lshioel noticed that not
all these requirements are needed in every applicationnmevery criticality level.
In fact, the system integrator should be able to disable tiveanted functionality
at design time to ease the certification of the system anditeceethe performance
penalty. Therefore, the middleware must be tailorable atggtation time to be
adapted to specific application needs.
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3.2 Restrictions for the RTOS

As said above, the certification entailed by every safetggrty system shapes its
development process, thus a strict set of restrictions ésle@ when developing
high-integrity software. These are the main restrictioitsatied by the Ada 2005
Ravenscar Profile [9, § D.13.1] for the RTOS:

A static number of threads and shared resources

No thread termination (and no abortion)

No dynamic memory at the kernel level

Only a single thread can wait on a given condition variable

In addition, the threads are scheduling according to FixedriB/ Preemptive
Scheduling (FPPS), using the Immediate Ceiling Priorigt&tol (ICPP) for shared
resources [10]. Thanks to these restrictions the impleatiemtof the kernel is small
enough to be certified, while offering a sufficient set of =g which allow the
schedulability analysisf the application. Another derived advantage for embedded
systems is that Ravenscar implementations require veryésaurces and have a
high performance. In addition, the ICPP assures that dekslicannot ever occur, a
highly desirable property specially for safety-criticgstems.

4 A restricted middleware for High-Integrity Systems

4.1 Holistic schedulability analysis

Current mono-processor response-time analysis can égalisatic number gie-
riodic or sporadic taskgi.e. threads), each having a worst-case execution time
(WCET), and synchronize by using a static number of shareduress. The
response-time analysis method has been also extendedstobulied systems [4].
The holistic schedulability analysis assumes that eaathes¢hread can send a fixed
set of messages, and no thread can receive more than onegmdasaddition, each
message must have a bounded size, and a fixed destinatiad.thre

A transactionl’;, composed of a set of tasks; with precedence relations, is
another important concept for the response time analysiistfibuted systems.
The objective is to analyze the end-to-end response timaabf #ansaction to asses
the schedulability of the system. And although each task®@tistem has a unique
priority, due to their precedence relations every task adiadaction (except the first
one) is activated by the preceding task of the transactiam & the second one has
a higher priority. As a side note, the deadline of a task msittansaction is usually
longer than its period because the transaction can stattt@mactivation even if the
last one is not still running.

For example (see figure 1), the transactignis composed of task; 1 (which
runs over the noddl;), messagen 1 (transmitted via the network), and taskr; »
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Fig. 1 Example of a distributed transaction.

(executing insidéN,). The transaction has a peridg (i.e. the number of times the
transaction is activated per second), angd has the offsetp; » since the start of
transaction. Thus the network can be modeled as a CPU (bwages cannot be
preempted), and each message is like a task, with a fixedtpyriarperiod, and a
worst-case transmission time. The original holistic scitaility method had been
improved with more exact response time analysis [5]. Laltersystem model was
extended with the analysis of multiple events [11], a messag activate more than
one task, or also a task can be activated by multiple messages

Although the computational model can be seen as too regssidtis rich enough
to provide the common services needed in a safety-criticstbsn. However, cur-
rent response time analysis techniques requsiagle activation poinfor each task
(either an event for sporadic tasks or a timer for periodies)nBut in some com-
munication paradigms including Remote Procedure Call (RIP@ Remote Method
Invocation (RMI), the client thread sends a message to theisend blocks until
the other thread sends another message with the respomsadfivation points). A
general method should be developed to analyze more tharctinatian point.

4.2 Modelization of synchronous calls

In this paper, each thread is modeledrby 1 tasks inside a transaction, wheres
the number of activation points of the thread. As can be sedigure 2, although
the transactiof ; is composed by twthreads it is modelled as thretasks

1. the sender thread sends a query to the server, and themmperd blocking re-
ceive operation (task 1).

2. the server thread processes the petition and then sewisttie response (task
12,2).

3. finally, the message wakes-up the client thread and readsiswer (tasko 3).

Although a RPC or RMI can be modeled using this techniqueatiadysis is not
completely accurate because multiple activations of a#etion can be executing at
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Fig. 2 Model of a Remote Procedure Call.

the same time unlike an RPC (the client thread cannot stathanactivation until
the last one is complete). Blocking operations are requiadonly for RPC-like
operations, but also for message segmentation, and ome#tg-communication in
a point-to-point topology or for networking technologieshwno broadcast support.
It is worth noting that not all transactions are distributedr example, using this
technique it is possible to model blocking system callg Bkread operation from
a file where the thread is blocked until the information isdré@am the hard disk.
However, all the tasks of the same thread share the saméprilbus the response
time analysis methods must be extended to cope with nontamigorities.

4.3 I mplementation requirements

Multiple design choices were studied when developing thadieivare for this spe-
cific ESA project. It is desirable that a task invoking a reenoperation does not
delegate the message generation (including data marghatliessage partitioning,
composition of message headers, and even message quetoeargther task to
avoid priority inversionPriority inversionis a undesired effect typically found when
a task cannot execute until a lower-priority task exits frashared resource. Total
priority inversion is in general not possible but it can (andst) be bounded. From
the point of view of the middleware, if the message genemat@one by a specific
task of the communications stack then a high-priority tagk lve preempted by
this task even if the message is sent by another task withothest priority of the
node. Therefore, it is encouraged that the middleware codméssage generation
is executed directly by the sender task, i.e. with its ptyori

For the transfer of the message, there are typically twoilplessnplementations:

1. middlewarethread: the sender task puts its message into a buffer, which will be
sent by a sporadic thread of the middleware.
2. sef service: the sender task calls the device driver directly.
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The advantage of the first implementation is that the sersddérdan be completely
asynchronous. In contrast, the self-service model shaaid to wait until the mes-
sage is completely transferred to know the status of theggaration. In the other
hand, the self-service implementation has a lower pridnkgrsion.

Therefore, if the remote operation is asynchronous, thiet@ahe middleware
can be fully non-blocking. However, if the operation is syranous (e.g. a RPC)
the call will be blocking, and in addition the middleware rhsat a timer to detect
a communication problem, e.g. the message was lost or teezeemode is not re-
sponding. Otherwise, the sender thread will be blockedvéardt is worth noting
that message acknowledgement and retransmissions arsusdtyudone by soft-
ware in a safety-critical distributed system because gueeal delivery is provided
by the hardware communication bus.

Communication networks also introduce some priority isi@r: The network
is normally non-preemptable, so if a low-priority messagbeing transferred then
another message with a higher priority cannot be sent inatilftame is completely
transmitted. For that reason, the maximum size of a messag¢ lbe bounded.
Of course, in the first implementation, the middleware tdredl sent the output-
messages by priority.

At the destination node, the receiver thread should thengs®each call with
the priority specified in the message. The above guidelimeitaimessage genera-
tion is also applicable at the receiver side of the middlewdéris desirable that
the composition and unmarshalling of the message are pegtbdirectly by the
receiver task. It should be noticed that each partition ¢dirhave an independent
run-time system. No clock synchronization is needed bextiescommunication is
message oriented [12, p. 1.27], but of course a mechanishtama certain degree
of common time is desirable in a real-time system.

In summary the implementation must document the architeaitithe middle-
ware, specifying if any step is delegated by another taskhénaaller or called
node. Also, the metrics of the maximum blocking time of thgdeist critical sec-
tion should also be documented, otherwise a complete resgone analysis of the
whole system would be not possible.

4.4 Restrictions for the middleware

In addition to the restrictions for the RTOS explained intggc3.2, another set of
constraints is needed for safety-critical middlewaress#id above, the schedulabil-
ity theory assumes a static computational model, where uh@er of connections
and messages does not change at all during the mission. §haere is astatic
number of nodeswhereno dynamic connectionare allowed, and where all the
nodes perform @oordinated initializatiorto start the application at the same time
(in areal-time system it is not acceptable to enqueue a stqumil the server node
is active).
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Nodes are not allowed to stop its execution, as enforceddRTOS restriction
about no thread termination. And if the connections are yioathic, there is a static
number of messages, and each one has a fixed origin and destirzs well as a
fixed priority. Finally, the computational model also assstiounded size messages
to be able to compute the maximum transfer time. This doesnaan that each
message has a fixed size but a maximum size limit.

Another implicit restriction is thaho concurrent remote callsre allowed.
Therefore, while in a general-purpose middleware usuatly@ad pool serves all
requests—including calls to the same remote operation asah® time—in this
restricted middleware there is a unique thread per remoteatipn that receives
and processes each message. It is worth noting that anstitey@roperty derived
from this restriction is that distributed deadlocks are passible in this restricted
middleware, thus reducing the costs of the certificatiornefwhole system [13].

In addition to the above restrictions which always must Hereed, there is also
another set obptional restrictions which is not deemed essential for all safety-
critical middlewares, but some kinds of distributed systeran benefit from it [6].
The key goal of these restrictions is to simplify the implertagion of the middle-
ware, thus facilitating its certification, and to ease thgpomse time analysis of
the system, reducing the main sources of pessimism anddiofaieility. However,
some of this restrictions has no impact in the implementatibthe middleware,
and even are difficult to detect violations statically.

The first optional restriction is to allo@synchronous callgnly, i.e. to forbid
all blocking remote operations (like a remote procedur8.calrelated restriction
is “no segmentatidin so only messages up to the MTU are allowed. This avoids
a blocking send operation until all the parts of the messagesent. For the same
reasons, fio multicast is also needed if the hardware does not support the broad-
casting of messages, however this restriction is alwaysired)to avoid the analysis
of multi-event systems.

Finally, it can be useful to enforce ti@ complex remote typegle, i.e. a param-
eter of a remote operation cannot be an unconstrained arsieetype (e.g. linked
list). With those types the exact size of the message carmobimputed until run-
time, including its maximum size. So thanks to this reswitthe maximum size
of every message can be computed statically and thus thé-eass transfer time,
and in addition the middleware does not need to handle thedigation of complex
data [14].

4.5 Adequate Communication Paradigms

The communication paradigms supported in this Ravensmaptant middleware
includesmessage passingmote procedure calliRPC), andeal-time publish/subscribe
(P/S). These paradigms can be implemented with little cae they are supported

by current response time analysis techniques to asseshbdidability of the sys-

tem. But, due to its blocking nature, the RPC paradigm regumore code and
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timers than the the message passing or the P/S paradigmhamdotre it can be
more difficult to certify.

However, although the Remote Method Invocation (RMI) cao dle analyzed
using similar techniques, in general it is difficult to eresspome restrictions in this
communication paradigm. For example, although the numbeistributed objects
can be static, it is possible to send a remote reference thenwode and therefore a
new connection would be created at run-time, clearly viotpthe restriction about
no dynamic connections. It is worth noting that OOP is notallguemployed in
safety-critical software due to its highly dynamic nature.

The Distributed Shared Memory (DSM) paradigm also pressomnse problems
for safety-critical middlewares. The main advantage of DiSkhat the programmer
does not have to write explicitly the data transfer becatisgatime the middleware
transparently handles this, also easing the port of egistpplications to distributed
platforms. But this transparency is difficult to modelizedahus to perform the
schedulability analysis of the application.

In summary, the message passing paradigm is well understmadsimple to
learn, codify and analyze, and therefore it is very adeqtmté¢he development
of high-integrity systems. The P/S paradigm, needed ty fulket the industrial
requirements because it allows multicast communicati@nalso adequate for a
safety-critical middleware because it can also be certif@though the response
time analysis of multi-event systems can be more difficulpéoform. The RPC
paradigm can also successfully be used in a safety-criticddlleware, although its
blocking nature makes harder the certification at the higbitscality levels.

However, as said above the RMI and DSM paradigms are thedesgiate of the
studied communication paradigms. Althougjftared memorgan be used for inter-
partition communication inside a node (e.g. among diffeceiticality levels), DSM
is not recommended for hard real-time communication inetgadritical distributed
system.

5 Conclusions and future work

All safety-critical systems must be certified prior deplamh and thus adequate
development methods and tools must be used for this typegbfihiegrity soft-
ware (like the Ravenscar profile). This heavily affects thédieware, which usually
have to support hard real-time communication over a regecoostrained embed-
ded platform.

This paper has described the design of a Ravenscar-corngdifaty-critical mid-
dleware with hard real-time deadlines for future projedtshe European Space
Agency (ESA). After analysing the industrial requiremeautsl the current schedu-
lability theory for distributed systems, a set of restaos and implementation and
documentation requirements was proposed to allow cettdicaf the middleware
and to perform the response time analysis of distributedcgtjons.
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Finally, it was discussed the most adequate communicatoadigms for this

kind of systems. Simple paradigms like message passinglaispisubscribe are
expressive-enough and can be implemented and analyzedemsitg than remote
procedure calls, distributed shared objects, or distethshared memory.
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