
Estimating the Maximum Hidden Vertex Set in Polygons

Antonio L. Bajuelos ∗

Department of Mathematics & CEOC
University of Aveiro

3810-193 Aveiro, Portugal
leslie@ua.pt

Santiago Canales †

Escuela Técnica Superior de Ingenierı́a, ICAI
Universidad Pontificia Comillas de Madrid

C/ Alberto Aguilera 21 Despacho 208
28015 Madrid, Spain

scanales@dmc.icai.upcomillas.es

Gregorio Hernández †

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo, Boadilla del Monte
28660 Madrid, Spain
gregorio@fi.upm.es

A. Mafalda Martins ‡

Department of Mathematics & CEOC
University of Aveiro

3810-193 Aveiro, Portugal
mafalda.martins@ua.pt

Abstract

It is known that the MAXIMUM HIDDEN VERTEX SET

problem on a given simple polygon is NP-hard [11], there-
fore we focused on the development of approximation algo-
rithms to tackle it. We propose four strategies to solve this
problem, the first two (based on greedy constructive search)
are designed specifically to solve it, and the other two are
based on the general metaheuristics Simulated Annealing
and Genetic Algorithms. We conclude, through experimen-
tation, that our best approximate algorithm is the one based
on the Simulated Annealing metaheuristic. The solutions
obtained with it are very satisfactory in the sense that they
are always close to optimal (with an approximation ratio
of 1.7, for arbitrary polygons; and with an approximation
ratio of 1.5, for orthogonal polygons). We, also, conclude,
that on average the maximum number of hidden vertices in
a simple polygon (arbitrary or orthogonal) with n vertices
is n

4 .

1. Introduction

While the traditional art gallery problems deal with set-
ting the minimum number of guards (or lights) in a given

∗Supported by CEOC through Programa POCTI, FACT, co-financed
by EC fund FEDER

†Supported by grant MEC-HP2005-0137
‡Supported by CEOC through Programa POCTI, FCT, co-financed

by EC fund FEDER and supported by a FCT fellowship, grant
SFRH/BD/19138/2004

simple polygon (simple closed polygonal curve with its in-
terior) P , such that each point in P is seen by at least one
guard [13], in this paper we deal with the inverse problems:
find the maximum number of points in a given polygon,
such that no two of these points see each other. This class of
problems has many applications, for example in computer-
games, where a player needs to find and collect or destroy as
many objects as possible. Not seeing the next object while
collecting an object makes the game more interesting. In
the visibility problems field, these problems are known as
hiding problems [11]. Of these, we are going to study the
MAXIMUM HIDDEN VERTEX SET (MHVS) problem. This
problem asks for a set S of maximum cardinality of vertices
of a given simple polygon, such that no two vertices in S see
each other. Given two points x and y in a simple polygon P ,
we say that x sees y (or y is visible to x) iff the closed seg-
ment [xy] does not intersect the exterior of P . The MHVS
problem is a NP-hard combinatorial problem both for arbi-
trary and orthogonal polygons [11]. Orthogonal polygons
are interesting for they may be seen as abstractions of art
galleries, for instance. In [4], Eidenbenz has proven that,
this problem is, also, APX-hard.

Our contribution: Since the MHVS problem is NP-hard
we propose four approximation techniques for computing
an approximate solution, i.e, a large hidden vertex set for
a given simple polygon P (arbitrary and orthogonal). The
first two are designed specifically to solve the MHVS prob-
lem, and the other two are based on the general metaheuris-
tics Simulated Annealing and Genetic Algorithms. We also
realize a comparative study of the results obtained by them,

International Conference on Computational Sciences and Its Applications ICCSA 2008

978-0-7695-3243-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICCSA.2008.19

421

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

using for it two random polygon generators, one to gen-
erate random arbitrary simple polygons [8] and another to
generate random orthogonal polygons [10]. After this com-
parative study, we make a statistical analysis to choose the
best technique concerning the cardinality of the hidden ver-
tex set obtained, |H|. As the optimal solution of the MHVS
problem (i.e., the maximum number of vertices that is pos-
sible to hide in a polygon) is unknown, we have a method,
as in [2], that allows us to determine an upper bound for
it. In this way, we are able to determine the approximation
ratio of our best approximation technique. Our implemen-
tation has been developed using the CGAL 2D Regularized
Boolean Set-Operations package [1, 6] and our experiments
are conducted on a large set of randomly generated simple
polygons.

2. Preliminaries and some useful results

Let P be a simple polygon with n vertices,
v0, v1, . . . , vn−1. As in this paper we only deal with
simple polygons, we use the term polygon to refer to a
simple polygon . We assume, without loss of generality,
that the vertices of P are ordered in a counterclockwise
direction around the interior of P . Given a set of vertices
of P we say that H is a hidden vertex set for P if no two
vertices in H see each other. As stated before, the MHVS
problem on a polygon asks for a hidden vertex set, H , of
maximum cardinality. In [11] Shermer has proven that for
arbitrary and orthogonal polygons, with n vertices, the size
of a maximum hidden vertex set can be as large as, but not
exceed, �n

2 � and n−2
2 , respectively. These tight bounds are

achieved in triangular saw polygons (see Figure 1(a)) and
in staircase polygons (see Figure 1(b)), respectively.

(a) (b)

Figure 1. (a) Triangular saw polygons; (b) Stair-
case polygons.

Given that the MHVS problem is NP-hard, we developed
approximation algorithms to tackle it. In approximation al-
gorithms the guarantee of finding optimal solutions is sacri-
ficed in exchange for getting good solutions in a reasonable
computational time. However, we do not know the optimal
solution for the MHVS problem, so we can ask: How can
we expect to prove that our approximate solutions are near
it? To try to answer this question, we developed a heuristic

to determinate a minimum clique partition of the visibil-
ity graph of a given polygon, which gives us a method to
compute an upper bound on the optimal number of hidden
vertices for each instance in our experiments. Then the ap-
plication of the approximation algorithms together with the
heuristic to determine the upper bounds, to each instance
in our experiments, gives us the performance ratio of our
approximation algorithms.

The visibility graph of a polygon P is defined as [12]:
V G(P) = (V,E), where V = {v | v is a vertex of P} and
E = {(u, v) | the vertices u and v are visible in P}. Figure
2 illustrates a polygon P and its visibility graph.

Figure 2. A polygon P , with n = 10, and
V G(P).

We say that a set C is a clique partition of V G(P) if its
elements are disjoint subsets Vi of V , where each vertex in
Vi sees all vertices in Vi. Figure 3 illustrates a polygon P
and a clique partition of V G(P).

Figure 3. A clique partition (with 4 cliques) of
V G(P).

It is easy to see that, for each element of a C we can
hide at most one vertex in P , so |C| ≥ |H|, ∀C,H . Con-
sequently, the number of hidden vertices in a maximum-
cardinality of a hidden vertex set of P is at most the num-
ber of cliques in a minimum-cardinality clique partition
of V G(P). Thus, the number of cliques in a minimum-
cardinality clique partition of V G(P) is an upper bound on
the optimal number of hidden vertices in P . But, the prob-
lem of determining this upper bound (MINIMUM CLIQUE

422

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

PARTITION problem) is NP-hard [5], so we developed, as
stated above, an approximation algorithm to solve it.

In our experiments the main objective is to find large hid-
den vertex sets, H , and small clique partitions, C. The set
H that we obtain approximates the optimal number of hid-
den vertices with an approximation ratio of |C|

|H| .

3. Approximation Algorithms

We developed four approximation algorithms to deter-
mine H of maximum cardinality in a given polygon P . The
first two, designated by A1 and A2, are greedy construc-
tive algorithms. The other two, called M1 and M2, are
based on the general metaheuristics Simulated Annealing
(SA) and Genetic Algorithm (GA), respectively. Relatively
to the MINIMUM CLIQUE PARTITION problem, we devel-
oped a greedy/sequencial constructive algorithm to deter-
mine a clique partition C with a small number of cliques,
which we designate by A3. In the next sections we are go-
ing to describe these algorithms.

3.1. Greedy Strategies

A natural approach to find H is to do so in a greedy way:
add hidden vertices one by one until H is achieved, select-
ing at each step a hidden vertex from the set of vertices of
P , according to some rule. In this way, we apply two rules
to select the hidden vertices, consequently we have two dif-
ferent greedy algorithms: A1 and A2.

Algorithms A1 and A2. The first rule is based in the hid-
den region concept. Being vi a vertex of P , we denote
by V (vi) the visibility polygon of vi, i.e., the set of all
points of P seen by vi. We call set of hidden regions of
vi the set HRi = P\V (vi) = {HR1

i , . . . , HRk
i }, which is

formed by all sub-polygons (regions) of P whose points are
not seen by vi (see, for example, Figure 4).

(b)

V v()5

1
5HR

2
5HR

3
5HR

4
5HR

v0

v18

v17

v16

v9

v7

v6

v5

v4

v3

v2

v8

v10

v11

v15

v14

v13 v12

v19

(a)

v0

v18

v17

v16

v9

v7

v6

v1

v8

v10

v11

v14

v13 v12

v19

V v()2

1
2HR

2
2HR

v5

v4

v3

v2

v15

Figure 4. P with n = 20 and (a) V (v2)
and HR2 = {HR1

2, HR2
2}; (b) V (v5) and

HR5 = {HR1
5, HR2

5, HR3
5, HR4

5}.

Based on some experiments, we observe that, in most
cases, the convex vertices (a vertex is called convex if its
interior angle is lesser then π) are those the that has more
hidden regions. Therefore, we select convex vertices one by
one, according to the cardinality of HR and the area of its
visibility polygon. In this way we build H (see Algorithm
1 for a complete description of this method).

Algorithm 1 Determining H from the hidden regions
(method A1)
Input: A polygon P with n vertices and V G(P)
Output: A hidden vertex set, H

1. H ← ∅
2. Vconv ← {vi | vi is convex}
3. for each vi ∈ Vconv do
4. determine V (vi) and |HRi|
5. end for
6. while Vconv �= ∅ do
7. Choose vi in Vconv with more hidden regions; and in

the event of a tie choose the one whose V (vi)’s area
is smaller

8. H ← H ∪ {vi}
9. Delete vi (and all vertices seen by vi) from Vconv

10. end while
11. return H

Remark: the calculating of the V G(P) is made accord-
ing to the algorithm described on [7], that is based on com-
puting the visibility polygon for each vertex of P . This cal-
culation is made as a pre-processing.

The second rule is based in the number of vertices seen
by one vertex. Thus, the algorithm A2 is similar to A1. The
main differences are that we consider the list of all vertices
of P (step 2.) and instead of selecting the convex vertex that
has more hidden regions (step 5.), we choose the vertex that
sees less vertices, until we have H .

3.2 Metaheuristics

As stated before we developed two techniques based on
the general metaheuristics Simulated Annealing and Ge-
netic Algorithms: M1 and M2. For a comprehensive survey
on metaheuristics see, e.g., [3].

3.2.1 Simulated Annealing Metaheuristic

The Simulated Annealing (SA) metaheuristic tries to min-
imize the limitation of the local search algorithms, which
stops as soon as they find a local extreme. For that, it is
allowed to accept solutions of worse quality than the cur-
rent solution with a certain probability. This probability is

423

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

dependent of a parameter called temperature, T , which de-
creases over the algorithm iterations according to a decre-
ment rule.

To solve an optimization problem with the SA meta-
heuristic it is necessary to specify the following aspects:

1. Specific Parameters (of the problem)

• Solution Space (set S);

• Cost or Objective Function (f);

• Neighborhood of each solution;

• Initial Solution.

2. Generic Parameters (of the annealing strategy)

• Initial Temperature (T0);

• Temperature decrement rule;

• Number of Iterations in each temperature
(N(T));
• Termination Condition.

Below, we describe the way these elements were adapted
to our problem.

1. Specific Parameters

Solution space (set S). The solution space to our prob-
lem is the set of all H for P . Therefore, S is finite
and we can represent it by S = {S1, S2, . . . , Sm}, where
Si = vi

0v
i
1 . . . vi

n−1 for i = 1, . . . , m. In this way, each ele-
ment of S (i.e., each candidate solution), Si, is represented
by a chain with length n, where vi

j , with j ∈ {0, . . . , n−1},
represents the vertex vj ∈ P and can have the value 0 or 1.
If vi

j = 1 then the vertex vj is marked as a hidden vertex;
otherwise (vi

j = 0) the vertex vj is marked as not hidden.
Besides, so that Si is a valid solution, the vertices marked
as hidden cannot see each other (see Figure 5, for an illus-
tration).

v0

v18

v17

v16

v9

v7

v6

v5

v4

v3

v2

v1

v8

v10

v11

v15

v14

v13 v12

v19

1 0 0 0 1 0 1 0 0 1 0 1 0 01 0 0 0 0 1

i
v 0

i
v 1

i
v 2

i
v 19

iS

Figure 5. An element Si ∈ S (for a polygon
with n = 20) and its representation. Black
dots represent hidden vertices.

Objective function (f). The objective function
f : S → N assigns to each element of S a natural
value. For each Si ∈ S, f(Si) is the number of 1’s in Si,
representing the hidden vertices.

Neighbourhood of each solution. According to the SA
metaheuristic, for every Si ∈ S, an element Si+1 ∈ S,
called neighbour of Si, must be obtained, which will be the
element to analyze in the next iteration. In our case, given
Si = vi

0, . . . , v
i
n−1, we generate randomly a natural number

t ∈ [0, n− 1] and then, if:

• vi
t = 1 then we set vi+1

t = 0 and we accept this new
solution with some probability, since we are worsening
the solution.

• vi
t = 0 then we set vi+1

t = 1. If this new solution is a
valid solution then we accept it, since we are improv-
ing the solution; else we validate the obtained solution
and accept it with some probability.

– solution’s validation: we mark all hidden ver-
tices as not hidden if vt sees them, in other words,
if vi+1

j = 1 and vt sees vj then we change the

value of vi+1
j value to 0.

Note that, the validation always makes the solution
worse.

Initial Solution. The initial solution is the first Si ∈ S,
with i ∈ {1, . . . , m} to be analyzed. In our case, it was con-
sidered Si = 10 . . . 0, i.e., the vertex v0 is marked as hidden
the remainder are labeled as not hidden.

2. Generic Parameters

Initial temperature (T0). The literature advises that the
SA metaheuristic must depart from a high initial tempera-
ture (T0). Nevertheless, it does not seem suitable to con-
sider, for T0, fixed values independent from the problem. In
this sense, it would be advisable to realize different analysis
to choose T0 , since its value may depend in large extent
of the problem to solve. Following this idea, a comparative
study has been realized taking into account two different
types of T0:

1. An initial temperature that is dependent on the num-
ber of vertices of the polygon P : T0 = f(n). In our
comparative study we considered T0 = n.

2. A constant initial temperature: T0 = 1000.

424

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

Temperature decrement rule. The temperature decre-
ment rule defines the value of T at each iteration k. Unfor-
tunately, in spite of the existence of rules which guarantee
the convergence to a global optimum they are not feasible
in applications, because they are too slow for practical pur-
poses. Thus, faster temperature decrement rules are adopted
in applications. In this way, an analysis has been realized on
three different types of rules that appear in the literature:

1. Tk+1 = T0
1+k (FSA decrease);

2. Tk+1 = T0
ek (VFSA decrease);

3. Tk+1 = αTk, where 0 < α < 1 (geometric decrease).

Number of iterations in each temperature (N(T)). The
value of N(T) must be large enough so that the system
reaches its stationary state for each temperature T . In our
algorithm the number of iterations for every temperature is
equal to T , i.e., N(T) = T . This ensures that there are
more iterations for high temperatures, which will be when
the solutions are far from the optimum.

Termination Condition. Theoretically, the search should
stop when a frozen state is achieved, i.e., when T = 0. Nev-
ertheless, normally it is possible to finish with a final tem-
perature, Tf , greater then zero without quality loss in the
solution. In this sense, the termination condition chosen in
our algorithm consists of finishing the search when the tem-
perature is lesser than or equal to 0.005, i.e, Tf ≤ 0.005.
Clearly for lower temperatures the obtained solution will be
closer to the optimum, but the response time of the algo-
rithm increases considerably.

3.2.2 Genetic Algorithms Metaheuristic

Genetic Algorithms (GA) are technics that simulate the pro-
cesses of the natural evolution (biological). To solve an op-
timization problem with the GA metaheuristic it is neces-
sary to specify the following components:

• a genetic representation of the possible solutions,
called individuals or chromosomes, to the problem
(Encoding);

• a way of creating an initial population of possible so-
lutions (Initial Population);

• a function to evaluate the individuals and make the ef-
fect of natural selection, sorting solutions according to
their “strength” (Objective or Fitness function);

• genetic operators to alter the composition of the solu-
tions (Selection, Crossover and Mutation);

• the values of various parameters used by the genetic al-
gorithm (e.g., population’s size, probability of the ge-
netic operators, population’s evaluation, population’s
generation, termination condition).

Next, we describe these components designed for our
problem.

Encoding. In our algorithm an individual (or chromo-
some) I is represented by a chain of 0’s and 1’s, with length
n, i.e., I = g0g1 . . . gn−1, where each element, gi, is called
a gene. Each gene represents a vertex of the polygon, i.e.,
the ith gene represents the vertex vi ∈ P . The value of each
gene is 0 or 1. If the gi = 1 then the vertex vi is marked as
a hidden vertex; otherwise (gi = 0) the vertex vi is marked
as not hidden (see Figure 6).

v3

v11

v5

v7

v9

v18

0 0 0 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01I

g0 g3 g5 g7 g9 g11 g18 g24

Figure 6. An individual, I, (for a polygon with
n = 25) and its representation. Black dots
represent hidden vertices.

Initial Population. The population of a given genera-
tion/iteration consists of a set of individuals. The total
number of individuals in each population has to be large
enough to ensure diversity, but not too much that damages
the efficiency of the algorithm. In our case it has been
taken as the population size the number of vertices of the
polygon, linking in this way the entrance of the problem
with the elements of the metaheuristic. Thus, the popula-
tion for the generation t in our algorithm is represented by:
P (t) = {It

0, I
t
1, . . . , I

t
n−1}, where each It

i represents an in-
dividual belonging to the population P (t) and n is the num-
ber of vertices of the polygon P .

Remember that, an individual represents a possible solu-
tion for our problem, i.e, each individual must be a hidden
vertex set. Thus, in our algorithm, to create the initial pop-
ulation, P (0), we generate each of the n individuals in the
following way: ∀i ∈ {0, . . . , n−1}, we mark as hidden the
vertex vi and all the vertices in P that form with vi a hidden
vertex set. This algorithm is illustrated below.

425

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

Algorithm 2 Generation of I0
i , with i ∈ {0, . . . , n− 1}

1. gi ← 1 and gj ← 0,∀j �= i (thus, H = {vi})
2. for j = 0 to n− 1 do
3. if vj ∪H is a hidden vertex set then
4. gj ← 1
5. end if
6. end for

For example, in Table 1 it is illustrated the initial popula-
tion, P (0) = {I0

0 , I0
1 , . . . , I0

n−1}, of the polygon exempli-
fied in Figure 7.

I0
0 = 1000000000 I0

5 = 0010010100

I0
1 = 0100000010 I0

6 = 0010101001

I0
2 = 0010101001 I0

7 = 0010100100

I0
3 = 0001000001 I0

8 = 0100000010

I0
4 = 0010101001 I0

9 = 0100000001

Table 1. Individuals of P (0)

v0

v9

v7

v6

v5v4

v3

v2

v1

v8

Figure 7. Polygon with n = 10.

Objective or Fitness Function. This function should
help us to make the best selection of individuals to be re-
produced, so that it will assign higher values to the solutions
closer to the optimal one. In our case, given an individual
I , the fitness function, f(I), returns the number of 1’s that
exists in the chain that represents it.

Selection. The selection method should choose the best
individuals to be reproduced. While there are many differ-
ent types of selection, we use the most common: the roulette
wheel selection. In this selection the individuals are given
a probability of being selected that is directly proporcional
to their fitness. Two individuals are then chosen randomly
based on these probabilities to be parents in crossover. In
our case we use this method to choose the two best individ-
uals to be parents in crossover.

Crossover. Crossover operates on selected genes from
parent individuals and creates new individuals (children).

While there are many different kinds of crossover, we use
the single point crossover, to generate one child. In this
type of crossover, a randomly selected point (gene) on the
two parents is chosen, then the parents are divided at this
crossover point, and, finally, a child is created by exchang-
ing tails (see Figure 8).

0 1 0 0 0 0 0 0

1 1 1 1 0 1 1 1 } 0 1 0 1 0 1 1 1

Parents Child

Figure 8. Single point crossover.

Crossover does not always occur, it occurs with a given
probability, pc. The value of pc is decided on the basis of
trial and error, however, pc is generally between 70% and
95%. We use pc = 0.9. Note that, the child resulting from
this crossover may not be valid (i.e., it may not correspond
to a hidden vertex set). Thus, we must make it valid. For
that, we fix the best tail, which is the tail that has more 1’s,
and we validate another tail as follows. Suppose that it has
m genes. We randomly generate m, different, natural num-
bers, t0, t1, . . . , tm−1 (0 ≤ ti ≤ m−1). Then, we have two
cases: (1) the worst tail is the first one (2) the worst tail is
the second one. In case

(1) For each ti, if gti
= 1 and vti

is not seen by any ver-
tex represented in the second tail, then the value 1 is
maintained, otherwise we change its value to 0.

(2) For each ti, if gt+ti+1 = 1 and vt+ti+1 is not seen by
any vertex represented in the first tail, then the value 1
is maintained, otherwise we change its value to 0.

Figure 9 exemplifies case (2).

1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 01 }
Parents

Valid Child

Validation

8�t

0 0 0 0 0 0 0 01 1 1

Child

1 0 1 1 10 0 0 0

0 0 0 0 0 0 0 01 1 1

v0v0

v2
v2

Invalid Child

v9

v11

v5

v8

v18
v18

v8

v5

Figure 9. Single point crossover and valida-
tion.

In these example, we can see that the generated child
is not valid, since v9 and v11 are seen by v8. The worst

426

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

tail is the second one and it has m = 11 elements, so the
following 11 numbers are randomly generated t0 = 3, t1 =
5, t2 = 7, t3 = 8, t4 = 6, t5 = 1, t6 = 0, t7 = 9,
t8 = 4, t9 = 2 and t10 = 10. Since g9 = 1 and v9 is
seen by the vertex v8 its value is changed to 0; g18 = 1 and
v18 is not seen by any vertex represented in the first tail, so
its value remains 1; g11 = 1 and v11 is seen by the vertex
v8, so its value is changed to 0. Thus, the new child is now
10100100100000000010, which is a valid individual.

Mutation. In a binary representation, the action of muta-
tion is relatively simple, it merely flips a randomly selected
binary digit from zero to one or vice versa, as shown in Fig-
ure 10.

1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0Before:

After: 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0

t

Figure 10. Mutation.

The probability of mutation, pm, is decided on the ba-
sis of trial and error, however it is usually less than 1%. In
our case we apply the mutation to the child obtained in the
crossover operation, with pm = 0.05, as follows: we gener-
ate randomly a natural number t ∈ [0, n−1]. If gt = 1 then
we change its value to 0; otherwise (gt = 0), we change its
value to 1 only if the resultant individual is valid (i.e., if he
represents a H).

Population’s Generation. To generate a new population
we replace the worst individual of the population by the
child obtained at the crossover.

Population’s Evaluation. We consider the evaluation
of a population, i.e., the fitness of a population,
F (P (t)), as the maximum value of the objective func-
tion when applied to all individuals of the population, i.e.,
F (P (t)) = max{f(It

0), . . . , f(It
n−1)}.

Termination Condition. If in a sufficiently large number
of generations the fitness has not changed, we can assume
that we are close to optimal. Thus, we consider as the termi-
nation condition that the fitness of the population F (P (t))
remains unchanged for a number of generations h. In our
case, has been considered h = 5000 (this value was chosen
empirically).

3.3 Greedy/Sequencial Strategy for the
MINIMUM CLIQUE PARTITION PROBLEM

As stated in section 2, we developed an approximated
algorithm to determinate a minimum clique partition of
the visibility graph of a given polygon, which gives us a
method to compute an upper bound on the optimal num-
ber of hidden vertices for each instance in our experiments.
The algorithm that we designed to tackle this problem is a
greedy/sequencial constructive strategy, which we call A3.
In this strategy we first determine n clique partitions of
V G(P) from each of the vertices of P (see Algorithm 3). In
the end, we choose as the solution the partition with fewer
elements.

Algorithm 3 Algorithm to determine a clique partition from
the vertex vk

1. C ← ∅
2. j = k
3. repeat
4. Determine a clique from vj , Cj = {vj , vj+1, . . . , vi}
5. C ← C ∪ Cj

6. j ← (i + 1) mod n
7. until j �= k

4 Experiments and Results

We have implemented our approximation algorithms on
a PC using the CGAL library (version 3.2.1). Our software
works with Microsoft Windows XP with Microsoft C++
compiler in Visual Studio 2005. The tests were performed
on a Windows XP PC with an Intel(R) Core(TM)2 CPU
T5500 1.66GHz, 1.00 GB of RAM. We have performed ex-
tensive experiments with the strategies described in section
3. In this section we relate our results and conclusions from
our experiments.

Our experiments were realized on a large set of randomly
generated polygons, arbitrary and orthogonal. The arbitrary
polygons were generated using the CGAL’s function ran-
dom polygon 2 [8], whose implementation is based on the
method of eliminating self-intersections in a polygon by us-
ing the so-called “2-opt” moves method; and to generate
orthogonal polygons we used the polygon generator devel-
oped by O’Rourke (for evaluation of [10]).

The following experiments were realized with four sets
of arbitrary polygons, each one with 50 polygons of 50, 100,
150 and 200 vertex polygons, respectively. An analogous
study is performed for orthogonal polygons and the conclu-
sions are drawn in the end of the section 4.2.

427

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

4.1 Analysis of the SA’s Parameters

According to section 3.2.1 we are going to analyze the
choice of two parameters (T0 and the function used to re-
duce the temperature) to find the combination of its values
that fits best into our problem. The different combinations
produce six cases (see Table 2).

Cases

Case 1 T0 = n and Tk+1 = T0
1+k

Case 2 T0 = n and Tk+1 = T0
ek

Case 3 T0 = n and Tk+1 = αTk−1 (α = 0.9)
Case 4 T0 = 1000 and Tk+1 = T0

1+k

Case 5 T0 = 1000 and Tk+1 = T0
ek

Case 6 T0 = 1000 and Tk+1 = αTk−1 (α = 0.9)

Table 2. The 6 different cases

We analyze these six cases by comparing the number of
hidden vertices, the time spent and the number of iterations
performed by each of the six cases. It should be noted that
in all cases we impose a condition for the final temperature,
Tf ≤ 0.005. If we decrease this value the obtained solution
is closer to the optimum, but the response times will in-
crease because the number of evaluated candidate solutions
is higher.

In Tables 3, 4 and 5 are exposed the obtained results by
the first three cases. These tables present, as can be seen, the
average time of pre-processing (PP) in seconds, the average
number of hidden vertices, the average runtime in seconds
and the average number of iterations of the algorithm.

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.46 13.96 0.06 9999
100 2.48 27.4 0.14 19999
150 7.14 40.5 0.22 29999
200 15.76 53.84 0.38 39999

Table 3. Case 1: T0 = n, Tk+1 = T0
1+k

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.46 6.86 0 10
100 2.48 11.96 0 10
150 7.14 17.56 0 11
200 15.76 22.7 0 11

Table 4. Case 2: T0 = n, Tk+1 = T0
ek

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.46 9.92 0 88
100 2.48 16.54 0 94
150 7.14 22.2 0 98
200 15.76 28.04 0 101

Table 5. Case 3: T0 = n, Tk+1 = αTk−1 (α = 0.9)

As we can see, in these first 3 cases the best solution,
concerning the average number of hidden vertices, is ob-
tained in Case 1. So, the best solution corresponds to the
FSA temperature reduction (which is the slowest temper-
ature reduction), with a larger number of iterations and a
greater response time.

In the following three cases, we analyze how the differ-
ent types of temperature decreasing behave, being T0 con-
stant, we choose T0 = 1000. The obtained results are illus-
trated in Tables 6, 7 and 8. As we can see, in these 3 cases
the best solution is obtained in Case 4. Thus, the best so-
lution corresponds, also, to the FSA temperature reduction,
with a larger number of iterations and a greater response
time.

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.46 13.96 0.88 199999
100 2.48 27.4 1.16 199999
150 7.14 40.48 1.46 199999
200 15.76 53.86 1.68 199999

Table 6. Case 4: T0 = 1000, Tk+1 = T0
1+k

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.46 6.8 0 13
100 2.48 12.44 0 13
150 7.14 17.58 0 13
200 15.76 22.84 0 13

Table 7. Case 5: T0 = 1000, Tk+1 = T0
ek

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.46 9.66 0.12 116
100 2.78 16.24 0.04 116
150 7.14 22.64 0.06 116
200 15.76 28.04 0.08 116

Table 8. Case 6: T0 = 1000, Tk+1 = αTk−1 (α =
0.9)

Comparing the 6 cases, we can notice that the obtained
results, concerning the average of |H|, are almost the same
for the Cases 1 and 4 and for the Cases 3 and 6, that is, inde-
pendently of the type of T0, the average of |H| are identical
for FSA and geometric decreases. It is noticed, also, that, in
general, the Case 5 is slightly better than Case 2.

As a general conclusion, we can say that despite of the
FSA increase of the response time of the algorithm it im-
proves the solution obtained. So, if we are looking for a
solution closer to the optimum, it is more suitable to choose
a slow decreasing of the temperature, the election of the
initial temperature is not influential. Note that the best solu-
tions are those obtained in the cases 1 and 4, they are almost

428

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

equal. However, the response time and the number of iter-
ations are higher in the case 4. As, we want have to find a
compromise between the goodness of the solution obtained
and the algorithm’s runtime. It seems that the case 1, is the
one that better answers to these conditions. Therefore, this
will be the case that we will use to realize the comparison
with the rest of the designed algorithms.

We must remember that we have taken Tf ≤ 0.005.
Clearly, if this temperature is lowered the solutions obtained
by our heuristics improve, and in more extent those cases
that are further to find the optimal, i.e., for faster tempera-
ture decreases: VFSA and geometric. Therefore, if an ac-
ceptable and rapid solution is wished it will be possible to
obtain reducing Tf and using a rapid decrease.

It is important to note that all alternatives with respect to
parameters of the SA metaheuristic that could be explored
is almost infinite. We have attempted in this work to find
general references to these parameters, noting that a more
exhaustive study in future investigations might improve the
obtained results.

4.2 Comparison of the four strategies

In this section we are going to analyze and to compare
the results obtained with the four approximation techniques:
A1, A2, M1 (Case 1) and M2. Tables 9, 10, 11 and 12
present the obtained results by the four strategies. These
tables present, as can be seen, the average time of pre-
processing (PP) in seconds, the average number of hidden
vertices, the average runtime in seconds and the average
number of iterations of the algorithm.

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.48 13.96 0.04 9999
100 2.42 27.4 0.1 19999
150 7.2 40.5 0.26 29999
200 15.58 53.86 0.36 39999

Table 9. Results obtained with M1 (Case 1)

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.48 12.1 0.08 12.1
100 2.42 24.18 0.46 24.18
150 7.2 35.12 0.5 35.12
200 15.58 46.62 0.9 46.62

Table 10. Results obtained with A1

Comparing the results obtained with M1 and A1 (Tables
9 and 10, respectively), we notice that the M1 heuristic has,
on average, much more iterations, but is faster and the aver-
age number of hidden vertices is superior.

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.48 13.58 0 13.58
100 2.42 27.12 0 27.12
150 7.2 39.88 0 39.88
200 15.58 52.68 0 52.68

Table 11. Results obtained with A2

Contrasting, now, the data exposed in Table 11 with that
exposed in Table 10, we can see that A2 is faster and obtains
better solutions. Relatively to M1 (Table 9), we notice that
although the average number of iterations of the M1 algo-
rithm is much higher and M1 is slower than A2, once more,
the average of hidden vertices obtained with M1 is higher.

Vertices PP (sec.) |H| Time (sec.) Iterations

50 0.48 13.54 0.06 5226.4
100 2.42 26.28 0.08 5680.0
150 7.2 38.3 0.26 6666.7
200 15.58 50.34 0.5 7160.2

Table 12. Results obtained with M2

We can also conclude, from Tables 12 and 10, that the
average number of iterations of the M2 algorithm is very
superior to the A1, but it is faster and the solutions obtained
are better. From Tables 12 and 11 we can end that the algo-
rithm M2 is slower than the algorithm A2 and that accrue
worst solutions. Finally, the data exposed in Table 12 with
those exposed in Table 9, we notice that the M2 has on av-
erage less iterations, but M1 is slightly faster and obtains
better solutions.

As a conclusion we can say that, M1 seems to be the best
technique, since the obtained average of hidden vertices is
the best, and in spite that average of the number of iterations
is the biggest, the only method that is faster than it, is the
A2. In terms of the obtained solution the best approximation
technique is the M1, the second best is the A2, followed by
M2, and finally the worst is the A1 (see Figure 11).

Number of Hidden Vertices

0

10

20

30

40

50

60

50 100 150 200

Number of Vertices

A
v
e
ra

g
e

o
f

H
id

d
e
n

V
e
rt

ic
e
s

M1

A1

A2

M2

Figure 11. Solutions obtained by our strate-
gies for arbitrary polygons.

429

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

However, the comparison between the results obtained
by the different algorithms only makes sense, if they are
significantly different, i.e., if we can ensure that the distri-
butions of these results are different. To check this situa-
tion we apply the ANOVA test (using the Statistics Toolbox
(Version 6.1) of the MATLAB [9]) to the results that has
been used to obtain the averages exposed in the previous ta-
bles, concerning the average number of hidden vertices. We
declare that a result is significantly different if the p-value
is less than 0.05. The p-values returned by the ANOVA test
are 9.88098e−14 for the data obtained with the polygons
with n = 50 and 0 for the data obtained with the polygons
with n = 100, 150 and 200. So we can conclude that at
least one sample average is significantly different than the
other sample averages, for any case. Then we performed a
multiple comparison test to determine which pairs of aver-
ages are significantly different, and which are not (using the
MATLAB’s multcompare function). The answers provided
by the realized tests are presented in the following tables,
with the + sign indicating whether the average is signifi-
cantly different and − if it is not.

Algorithm M1 A1 A2 M2

M1 • + - -
A1 + • + +
A2 - + • -
M2 - + - •

Table 13. ANOVA Test for n = 50

Algorithm M1 A1 A2 M2

M1 • + - +
A1 + • + +
A2 - + • +
M2 + + + •

Table 14. ANOVA Tests for n = 100, n = 150
and n = 200

As we can see, for n = 50, M1 is not significantly dif-
ferent from A2 and M2; and A2 is not significantly different
from M2. For n = 100, n = 150 and n = 200, A2 and M1

are not significantly different. So, from the multiple com-
parison tests realized we can conclude that A2 and M1 do
not obtain significantly different results, in spite that we ob-
serve that M1 gets better results in the average of the num-
ber of hidden vertices. The rest of the algorithms generate
significantly different results. However, as we said before,
a likewise study was made with orthogonal polygons. For
those polygons the conclusions are similar, with the dif-
ference that the strategies M1 and A2 obtain significantly
different results (concerning the average number of hidden
vertices). So we proceed our study considering that the M1

is the algorithm that obtains the best solutions.

Now, to conclude about the average of the maximum
number of vertices that we can hide in an arbitrary poly-
gon with n vertices, we applied M1 (which is the one that
obtains better solutions) to nine sets of arbitrary polygons,
each one with 50 polygons of 20, 40, 60, 80, 100, 120, 140,
150 and 200 vertex polygons, respectively. The average of
the obtained results, concerning |H|, are exposed in Table
15.

Vertices 20 40 60 80 100 120 140 150 200

|H| 5.7 10.98 16.3 21.58 26.88 32.08 37.2 39.7 53.22

Table 15.

Then, using the least squares method, we obtained the
following linear adjustment (see Figure 12):

f(x) = 0.2667x + 0.6182 ≈ x

3.7
+ 0.6182 ≈ x

4

0

10

20

30

40

50

60

20 40 60 80 100 120 140 160 180 200

Vertices

A
v

e
ra

g
e

o
f

H
id

d
e

n
V

e
rt

ic
e

s

f(x)=0.2667*x+0.6182

Figure 12. Least Squares Method.

Thus, we can conclude that on average the maximum
number of hidden vertices in a arbitrary polygon P with
n vertices is, at least, n

4 . In order to get a quantitative mea-
sure on the quality of the calculated |H|, we computed the
minimum clique partitions, to our instances (the nine sets of
polygons described above). The ratio between the larger H
(obtained with M1) and minimum clique partition, C, ob-
tained with A3 (see section 3.3) never exceeded 1.7. That
implies that our algorithm has an approximation ratio of 1.7.

A similar study was made with randomly generated or-
thogonal polygons, and we concluded that:

1. The best strategy is the M1 (case 1), with significantly
different solutions from the other methods. In Figure
13, that was obtained in similar way to the Figure 11,
we can see that M1 stands out among the other strate-
gies, mainly for n ≥ 100.

430

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

Number of Hidden Vertices

0

10

20

30

40

50

60

50 100 150 200

Number of Vertices

A
v
e
ra

g
e

o
f

H
id

d
e
n

V
e
rt

ic
e
s

M1

A1

A2

M2

Figure 13. Solutions obtained by our strate-
gies for orthogonal polygons.

2. On average the maximum number of hidden vertices
in an orthogonal polygon with n vertices is, also n

4 ;

3. The approximation ratio is 1.5 , for all randomly gen-
erated instances

(b)

(a)

Figure 14. Example of the minimum clique
partition (using the method described in sec-
tion 3.3) of the orthogonal polygon with n =
100 vertices. The maximum H; (a) using A1

(b) using M1

Figure 14 shows one of the orthogonal polygons, with
n = 100, that we tested, with our best and worst algorithms,
M1 and A1, respectively. In this Figure, are illustrated the
minimum clique partition obtained by A3 (see section 3.3),
|C| = 37, the solution obtained by A1, |H| = 23 (Figure
14(a)) and the solution obtained by M1, |H| = 28 (Figure
14(b)). The black dots represent the obtained hidden ver-
tices.

Figure 15 shows one of the arbitrary polygons, with
n = 100, that we tested, with our best and worst algorithms,
M1 and A1, respectively. In this Figure, are illustrated the
minimum clique partition obtained by A3, |C| = 35, the so-
lution obtained by A1, |H| = 23 (Figure 15(a)) and the so-
lution obtained by M1, |H| = 27 (Figure 15(b)). The black
dots represent the obtained hidden vertices.

(a)

(b)

Figure 15. Example of the minimum clique
partition (using the method described in sec-
tion 3.3) of the orthogonal polygon with n =
100 vertices. The maximum H; (a) using A1

(b) using M1

Figure 16 (a) shows a saw polygon, with n = 20, that
we tested with M1, and Figure 16 (b) shows a staircase
polygon, with n = 20, that we tested with M1. In this Fig-
ure, are illustrated the minimum clique partition obtained by

431

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

A3, |C| = 10 and the solution obtained by M1, |H| = 10 in
both cases. Note that, in these examples, |C|

|H| = 1. The
black dots represent the obtained hidden vertices.

(a)

(b)

Figure 16. The C and H sets; (a) in saw poly-
gon, with n = 20, obtained with A3 and M1

and (b) in staircase polygon, with n = 20, ob-
tained with A3 and M1.

5 Conclusions and Future Work

We designed and implemented four approximation algo-
rithms for solving the MAXIMUM HIDDEN VERTEX SET

problem in polygons. The first two, A1 and A2, are greedy
constructive strategies, and the other two, M1 and M2,
are based on the general metaheuristics Simulated Anneal-
ing and Genetic Algorithms, respectively. We also give a
method to compute the minimum clique partitions of the
visibility graph of a polygon, allowing us to obtain prov-
able bounds on how close our results are to optimal. From
our statistical analysis of these approximation algorithms,
we concluded that that the best one, concerning the number
of hidden vertices, is the M1. The hidden vertex sets ob-
tained with it were very satisfactory in the sense that they
were always close to optimal. We, also, concluded, that on
average the maximum number of hidden vertices in a poly-
gon (arbitrary or orthogonal) with n vertices is n

4 .
Since the metaheuristics have proven to behave very well

in solving this class of NP-hard problem, there are several
directions for further research. We intend to use different
parameterizations of the Genetic Algorithms metaheuristic

(e.g., use different types of genetic operators), to adapt and
implement other metaheuristics (e.g., the Ant Colony and
Tabu Search metaheuristics) and to develop hybrid meta-
heuristics to solve, not only this problem, but also other
NP-hard visibility problems.

References

[1] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

[2] Y. Amit, J. S. B. Mitchell, and E. Packer. Locating guards for
visibility coverage of polygons. In Proceedings of the Work-
shop on Algorithm Engineering and Experiments, pages 1–
15, 2007.

[3] C. Blum and R. Andrea. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM
Comput. Surv., 35(3):268–308, September 2003.

[4] S. Eidenbenz. (In-)Approximability of Visibility Problems on
Polygons and Terrains. PhD thesis, Institute for Theoretical
Computer Science, ETH, Zurich, 2000.

[5] S. Eidenbenz and C. Stamm. Maximum clique and mini-
mum clique partition in visibility graphs. In TCS ’00: Pro-
ceedings of the International Conference IFIP on Theoret-
ical Computer Science, Exploring New Frontiers of The-
oretical Informatics, pages 200–212, London, UK, 2000.
Springer-Verlag.

[6] E. Fogel, R. Wein, B. Zukerman, and D. Halperin. 2d regu-
larized boolean set-operations. In C. E. Board, editor, CGAL
User and Reference Manual. 3.2.1 edition, 2006.

[7] S. Ghosh. Visibility Algorithms in the Plane. Cambridge
University Press, New York, NY, USA, 2007.

[8] S. Hert, M. Hoffmann, L. Kettner, , and S. Schönherr. Geo-
metric object generators. In C. E. Board, editor, CGAL User
and Reference Manual. 3.2.1 edition, 2006.

[9] W. L. Martinez and A. R. Martinez. Computational Statistics
Handbook with MATLAB[R]. Chapman & Hall/CRC, Boca
Raton, London, New York, 2002.

[10] J. O’Rourke, I. Pashchenko, and G. Tewari. Partitioning or-
thogonal polygons into fat rectangles. In CCCG, pages 133–
136, 2001.

[11] T. Shermer. Hiding people in polygons. Computing, 42(2-
3):109–131, 1989.

[12] T. C. Shermer. Recent results in art galleries. In Proceedings
of the IEEE, volume 80, pages 1384–1399, sep 1992.

[13] J. Urrutia. Art gallery and illumination problems. In J.-
R. Sack and J. Urrutia, editors, Handbook of computational
geometry, pages 973–1027. Elsevier, 2000.

432

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 29, 2008 at 12:15 from IEEE Xplore. Restrictions apply.

