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1. INTRODUCTION 
 
The reliability of consecutive-k-out-of-n: F system (or C(k, n: F) system) has aroused great 
interest since it was first studied by Kontoleon in 1980 [1]. The system consists of a sequence of 
n ordered components along a line such that the system fails if and only if at least k consecutive 
components in the system have failed. A list of typical applications of C(k, n: F) system was 
given by Yam et al. [2]. A research book by Chang et al. [3] provide rich information about C(k, 
n: F) system. 
 
Although in most related research work, all the components of the system are assumed to have 
an equal failure rate, this is not always the case. Fu provided a convincing example [4]. Suppose 
that we want to transport oil from place A to place B by an oil pipeline and that there are n 
pressure pumps equally spaced between A and B. Each pump can transport the oil no more than 
a distance of k pumps. This is obviously a C(k, n: F) system. If pumps (i-l ) to (i-1) have failed 
but the system still works (l<k), then pump i must work very hard to raise the pressure so that 
the oil can pass a distance of l pumps. Therefore, pump i will have a higher probability of 
failure, and the failure rate of a pump should depend on the states of the preceding (k-1) pumps. 
This dependence is called the (k-1)-step Markov dependence.  
 
On the other hand, there has been increasing interest in the study of C(k, n: F) repairable 
systems. In 2001, Lam and Ng studied a model for a C(k, n: F) repairable system with (k-1)-step 
Markov dependence [5]. The lifetime of components and repair times are exponential random 
variables. A priority repair rule based on system failure risk was adopted. Some dependability 
measures were evaluated by a numerical method. For this model with a large n, the method 
would be intricate. Moreover, repair time usually does not follow exponential distribution. Xiao 
et al. [6] revised the model by assuming that repair time is a random variable following a 
general distribution. Then in this situation, the system is a non-Markov C(k, n:F) system with 
(k-1)-step Markov dependence. They used Monte Carlo simulation to estimate the dependability 
(including reliability, transient availability, MTTF and MTBF) of the new model. Since crude 
simulation is inefficient for highly dependable systems, fast simulation methods for rare event 
simulations as importance sampling and conditional expectation were used. 
 
In this paper, we extend the model in Ref. [6] by assuming that not only repair time but also the 
lifetime distribution of components are random variables following a general distribution. 
Moreover, we estimate a dependability measure of great interest, the steady-state availability, 
which was not estimated in [6]. We use the rare event simulation method RESTART for 
estimating all the measures. This method has a precedent, of much more limited scope [7], in 
the splitting method described in [8]. M. and J. Villén-Altamirano coined the name RESTART 
in [9] and made a theoretical analysis that yields the variance of the estimator and the gain 
obtained with one threshold. A detailed analysis with multiple thresholds is made in [10].  
 
A limitation of the RESTART methodology for simulating highly-reliable systems is the 
difficulty to define enough thresholds. For this reason, L’ecuyer et al. [11] pointed out that this 
methodology is not appropriate for this type of systems and Xiao et al. [6] pointed out that 
“importance splitting is hard to be adopted for dependability estimation of non-Markov systems, 
because thresholds function is hard to be presented under this situation”. However, as it will be 
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shown in the paper, probabilities up to the order of 10-12 can be accurately estimated within a 
reasonable computational effort.  
 

2. CONTENT 
 

RESTART has been described with detail in several papers, e.g., [7, 10]. Nevertheless it is 
briefly described here. In the RESTART method a more frequent occurrence of a formerly rare 
event is achieved by performing a number of simulation retrials when the process enters regions 
of the state space where the importance is greater, i.e., regions where the chance of occurrence 
of the rare event is higher. These importance regions are defined by comparing the value taken 
by a function of the system state, called importance function, with certain thresholds. Optimal 
values for thresholds and the number of retrials that maximize the gain obtained with 
RESTART were derived in [10].  
    
The application of this method to particular models requires the choice of a suitable importance 
function. An inefficiency factor related to the importance function was analysed in [9] and 
guidelines for selecting heuristically such a function were provided. In this paper the following 
importance function (at an instant t) is defined: Ф(t) = cl – oc(t), where cl is the cardinality of 
the minimal cutset with lowest cardinality and oc(t) is the number of components that are 
operational at time t in the cutset with lowest number of operational components. Thresholds Ti 
are 1, 2, … , cl-1. 
 
A measure of the efficiency for computing P̂  is given by RCNC, the relative confidence-
normalized cost, which is defined as 2ˆ( )CV P P , where C is the computer cost. The gain G 
obtained with RESTART can be defined as the ratio of the RCNC with crude simulation to the 
RCNC with RESTART. In [10] it is shown that G is given by: 
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The term ( )( )21 ln 1P P− +  can be considered the ideal gain. Factors fV, fO, fR and fT, all of them 

equal to or greater than 1 can be considered inefficiency factors that reduce the actual gain with 
respect to the ideal gain. Each factor reflects: 

• fR: inefficiency due to the non-optimal choice of the number of trials. 
• fT: inefficiency due to the non-optimal choice of the thresholds. 
• fV: inefficiency due to the non-optimal choice of the importance function. 
• fO: inefficiency due to the computer overhead produced by the implementation of        

RESTART. 
 
We have studied C(k, n: F) systems for n = 60, and for k = 4 and k = 6. For k = 4, we had 57 
minimal cutsets, cl = 4 and we defined 3 thresholds associated with values of Ф equal to 1, 2 
and 3 respectively. For k = 6 we defined 2 thresholds more and thus the inefficiency factor fT 
was lower than for k = 4.  
 
The system unreliability was estimated for different small values of intervals (0, te). Simulations 
were made assuming first that component lifetimes are exponentially distributed (model Exp), 
and second assuming that component lifetime distributions are Raleigh (Weibull distribution 
with shape parameter equal to 2). The repair time distributions are Lognormal in all the cases. In 
all the runs, the simulation length was adjusted to have a relative half width of the 95% 
confidence interval (relative error) equal to 10%. The results are given in Table I. 
 



Accurate results were obtained within short computational time. To evaluate the gain in time 
with respect to a crude simulation, the computational time for achieving a relative error of 10% 
with crude simulations were measured for the Exp model with 5et =  (58.4 hours), and for the 
Weibull model with 10et =  (16.1 hours). The measured values were extrapolated for the other 
cases of each model. The factor fT is estimated in the simulation and the product of the factors fV 
x fO is obtained comparing the measured gain with the theoretical one given by equation (1). 
 
Simulation results for the estimation of the steady-state unavailability of the system C(4, 60: F)  
and for the system C(6, 60: F)  will be provided in the conference. 
 
REFERENCES 

 
[1] JM. Kontoleon, “Reliability determination of r-successive-out-of-n: F system”. IEEE Trans 

Reliab, 29(5):600–2 (1980). 
[2] R. Yam, MJ. Zuo, YL. Zhang, “A method for evaluation of reliability indices for repairable 

circular consecutive-k-out-of-n F systems”. Reliab Eng Syst Saf;79(1):1–9 (2003).  
[3] MT. Chao, JC. Fu, MV. Koutras, “Survey of reliability studies of consecutive-k-out-of-n : F 

and related systems”. IEEE Trans Reliab;44(1):120–7 (1995). 
[4] JC. Fu and B. Hu, “On reliability of a large consecutive-k-out-of-n: F systems with k-1-step 

Markov dependence”. IEEE Trans Reliab 36(1):75–7 (1987). 
[5] Y. Lam and HK. Ng, “A general model for consecutive-k-out-of-n: F repairable system with 

exponential distribution and (k-1)-step Markov dependence”. Eur J Oper Res; 129(3):663-
82 (2001). 

[6] G. Xiao, Z. Li, T. Li, “Dependability estimation for non-Markov consecutive-k-out-of-n: F 
repairable systems by fast simulation”. Reliability Engineering and System Safety 92, 293–
297 (2007). 

[7] M. Villén-Altamirano and J. Villén-Altamirano, “On the efficiency of RESTART for 
multidimensional state systems”. ACM T. on Modelling and Computer Simulation 16 (3) 251-
279, (2006).  

[8]  H. Kahn and T.E. Harris, “Estimation of particle transmission by random sampling”, National 
Bureau of Standards Applied Mathematics Series, 12, 27-30, (1951). 

[9] M. Villén-Altamirano and J. Villén-Altamirano, “RESTART: a method for accelerating rare 
event simulations”, Proceedings of the 13th International Teletraffic Congress, 
Copenhagen, Denmark, 71-76, (1991). 

[10] M. Villén-Altamirano and J. Villén-Altamirano, “Analysis of RESTART simulation:   
theoretical basis and sensitivity study”. European T. on Telecommunications 13 (4) 373-
386, (2002).  

[11] P. L’ecuyer, V. Demers, B. Tuffin, “Rare events, splitting, and quasi-Monte Carlo”, to appear 
in ACM T. on Modelling and Computer Simulation, (2008). 
 
 

Table I:  Unreliability estimates for network in Fig.2. 95% conf. interval %10±=  
 

Model Interval 
(hours) 

P̂  Run-time 
(minutes) 

Gain in 
time 

Factor fT Factors  
fV x fO 

Exp 
Exp 
Exp 

Weibull 
Weibull 
Weibull 

(0, 25) 
(0, 5) 
(0, 1) 

(0, 50) 
(0, 15) 
(0, 5) 

2.5x10-10 

3.6x10-12 

1.1x10-13 

1.1x10-6 

5.1x10-10 

2.6x10-13 

0.4 
1.0 
4.5 
0.5 
3.2 

23.7 

274039 
6162037 
42994924 

729 
199501 
5.2x107 

10.1 
21.7 
50.1 
3.1 
9.0 

32.4 

2.7 
2.8 
4.4 
1.9 
2.2 
2.5 

 


