
Efficient Set Sharing Using ZBDDs

Mario Méndez-Lojo1, Ondřej Lhoták2, and Manuel V. Hermenegildo1,3

1 Dept. of Computer Science, University of New Mexico, USA
2 D. R. Cheriton School of Computer Science, University of Waterloo, Canada
3 Dept. of Computer Science, Tech. U. of Madrid, Spain and IMDEA-Software

Abstract. Set sharing is an abstract domain in which each concrete object is
represented by the set of local variables from which it might be reachable. It is
a useful abstraction to detect parallelism opportunities, since it contains definite
information about which variables do not share in memory, i.e., about when the
memory regions reachable from those variables are disjoint. Set sharing is a more
precise alternative to pair sharing, in which each domain element is a set of all
pairs of local variables from which a common object may be reachable. However,
the exponential complexity of some set sharing operations has limited its wider
application. This work introduces an efficient implementation of the set shar-
ing domain using Zero-supressed Binary Decision Diagrams (ZBDDs). Because
ZBDDs were designed to represent sets of combinations (i.e., sets of sets), they
naturally represent elements of the set sharing domain. We show how to synthe-
size the operations needed in the set sharing transfer functions from basic ZBDD
operations. For some of the operations, we devise custom ZBDD algorithms that
perform better in practice. We also compare our implementation of the abstract
domain with an efficient, compact, bitset-based alternative, and show that the
ZBDD version scales better in terms of both memory usage and running time.

1 Introduction

Set sharing [11] is an abstract domain aimed at tracking dependency information among
sets of variables. In set sharing abstractions, each concrete object is represented by the
set of program variables from which it might be reachable. Set sharing-based analyses
discover valuable information for parallelizing instructions, statements, function calls,
etc. (and are therefore typically used for that purpose), since each abstract state contains
definite information about which variables do not share, i.e., which variables cannot
reach the same memory location. From this perspective, set sharing analysis can be seen
as a compact encoding of the information present in points-to analyses, but in set shar-
ing only the groups of variables that might reach the same object in memory are stored.

Set sharing has been shown to be a more precise alternative to, e.g., pair sharing, in
which each domain element is a set of all pairs of local variables from which a common
object may be reachable. However, some of the intrinsic operations of the set sharing
domain are exponential in the number of local variables being tracked, which can be-
come a problem for certain programs and has limited so far wider application. This
intrinsic complexity can be dealt with in part by introducing widenings, i.e., simplify-
ing the sharing sets conservatively when they become too large, but of course at the

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 47–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad...

https://core.ac.uk/display/148654968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

48 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

expense losing precision. Finding significantly more efficient implementations reduces
the need for resorting to such lossy solutions and consequently improves practicality.

We introduce a new, efficient implementation of the set sharing domain using Zero-
supressed Binary Decision Diagrams (ZBDDs). ZBDDs were designed to represent sets
of combinations (i.e., sets of sets), so they can represent very naturally the elements of
the set sharing domain. To the best of our knowledge this is the first link provided be-
tween set sharing and ZBDDs. We start by providing set-sharing transfer functions for
a subset of Java.1 We then show how to express the operations needed for implementing
the set sharing transfer functions in terms of basic ZBDD operations. Also, for some
of the operations, we propose custom ZBDD algorithms that are more appropriate for
these particular cases than those in the standard ZBDD libraries. In particular we pro-
vide a design for native ZBDD operations that emulate non-standard set manipulations.
The introduction of ZBDDs is done at the implementation level and does not alter the
definition of the domain operations, so that the domain designer does not need to be
aware of their presence. Finally, we provide performance results comparing two im-
plementations of the set-sharing domain: an efficient, compact, bitset-based alternative
(representing a highly-tuned version of the traditional approach) and our ZBDD-based
implementation. The results show that the ZBDD version scales better in terms of both
memory usage and running time. Our custom ZBDD algorithms are also shown to per-
form better in practice than the stock ones.

2 Reachability and Sharing

As mentioned before, we will concentrate for concreteness on a subset of Java, although
set sharing has been shown to be applicable to different classes of imperative and declar-
ative languages. A concrete state G = (V ar ∪Obj, E) is a directed graph where every
node can be either a variable v ∈ V ar or an object o ∈ Obj. The edges of the graph have

been labeled such that o1
f−→ o2 means “the field f of object o1 points to o2.” We will as-

sume that edges connecting variables and objects have the special label -. An object o is

reachable from the variable v in G iff there is a path v
-−→ o1

f−→ o1
g−→ o2 . . .

h−→ o. The
reachability set of a variable v in the state G is the set of all objects that are reachable
from it, i.e., reach(G, v) = {o ∈ Obj | o is reachable from v in G}.

One or more variables share in a state G if the intersection of their reachabilty sets
is non-empty:

share(G, V) ⇔
⋂

v∈V

reach(G, v) �= ∅.

Since null variables have no outgoing edges (conversely, if o.f is null, there is no edge
in the graph that starts at o and is labeled with f), they do not share.

Given graph G, define its set sharing as the set of maximal sets of variables that share:

sh(G) = {V ′ ⊆ V ar | share(G, V ′) and �W s.t. V ′ ⊂ W and share(G, W)}
1 As we will see later, these transfer functions, which are independent from the specific way

in which the internal set-sharing domain operations are implemented, are in fact themselves
improvements over those previously proposed.

Efficient Set Sharing Using ZBDDs 49

G21GG0

f g

O

0 1 2 3

O2O1

O0

3

V V V V

f g

O O O

O

1 3

321

2

0

0 VVVV

g

O O

f

0 1 2 3

O321

O0

V V V V

Fig. 1. Three concrete states

The set sharing provides definite information about which variables do not have any
memory location in common, i.e., the memory regions reachable from them are disjoint.
We can be sure that no object is reachable from more than one variable of a set W if no
superset of W is an element of sh(G).

Example 1. Fig. 1 shows three examples of concrete states. We assume that all the
variables are of type Foo, a class with two fields f and g, pointing to objects of class
Foo. In the graph G0, the reachability sets are reach(G0, v0) = reach(G0, v1) =
{o0, o1, o2} , reach(G0, v2) = {o2} and reach(G0, v3) = {o3}. The set sharing of G0

is sh(G0) = {{v0, v1, v2} , {v3}}. Note that sh(G0) = {{v0, v1} , {v0, v1, v2} , {v3}}
is not an acceptable set sharing, even though v0 shares with v1, because {v0, v1} ⊂
{v0, v1, v2}, and v0, v1, and v2 all share. The reachability sets of v1 and v2 in G1 and
G2 differ from the ones in G0; however, the set sharing is the same for all three graphs:
sh(G0) = sh(G1) = sh(G2) = {{v0, v1, v2} , {v3}}.

Note that the information provided by set sharing abstract states at program points is in-
strumental for parallelization: assume that the set sharing of the example, {{v0, v1, v2} ,
{v3}}, is in fact the abstract state inferred by analysis at the program point just be-
fore two consecutive method calls m(v0, v1, v2) and n(v3). The set sharing represents
a number of concrete states (including G0, G1, and G2) in all of which v3 points to
a memory region that is disjoint from the memory regions pointed to by v0, v1, or
v2. Since analysis is safe, while actual sharing during execution may be less, there
cannot be any concrete states in which there is more sharing than that implied by
{{v0, v1, v2} , {v3}}. Thus, under reasonable assumptions regarding the parallel ab-
stract machine, memory management, scheduling, etc., the two method calls can be
safely parallelized since they are independent: execution of m(v0, v1, v2) cannot af-
fect that of n(v3) and they can proceed in parallel without interference. Also, the final
state after executing them in parallel will be equivalent to the state obtained after their
sequential execution.

3 Sharing Semantics as Set Operations

3.1 Notation

We use double capital letters (like SH) for sets of sets, single capital letters (S) for sets
and lowercase letters (for instance, v) to denote elements of a set. We write SHV =

50 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

{S ∈ SH | V ⊆ S} to denote the subset of SH containing all sets having V as a sub-
set. Conversely, SH−V = SH − SHV . For singleton sets, we define a more concise
notation: SHv = SH{v} and SH−v = SH−{v}.

We define projecting out v from SH as removing v from every set in SH : SH |−v =
{S \ {v} | S ∈ SH} \ {{}}. The replacement operator on sets of sets replaces all the
ocurrences of variable v1 with v2 in every set. Formally, SH |v2

v1
=

{
S|v2

v1

∣∣ S ∈ SH
}

,
where

S|v2
v1

=
{

S if v1 /∈ S
S \ {v1} ∪ {v2} else

The binary union operator
 computes the unions of all pairs of sets taken from two
sets of sets: SH1
 SH2 = {S1 ∪ S2 | S1 ∈ SH1, S2 ∈ SH2}.

3.2 Abstract Operations

In this section, we review the abstract set sharing semantics that was defined and proven
correct in previous work [16]. We also improve the precision for two of the operations:
the field load and the field store. Our compositional semantics defines a denotation func-
tion for each expression and command. We define the special variable res, which stores
the result of an expression. Thus, the functions for both expressions and commands are
transformers on set sharings. The function for an expression transforms the set sharing
to abstract a state in which res points to the result of evaluating the expression.

Figs. 2 and 5 contain the semantics of expressions and commands, respectively. They
represent the transition from an initial abstract state [6] SH to a final abstract state
SH ′. In our domain, an abstract state SH approximates all the set sharings of a set of
concrete states GG: SH = α(GG) =

⋃

G∈GG

sh(G) , i.e., SH is a correct abstraction of

a set of concrete states {G1, . . . , Gn} if sh(Gi) ⊆ SH, i = 1..n. For instance, given a
concrete state G such that sh(G) = {{v3}}, the abstract state {{v0, v1, v2} , {v3}} is
a valid approximation of G. If a variable is null in the concrete states {G1, . . . , Gn},
it does not appear in SH . Thus, the predicate mustBeNull(SH, v) returns true when
SHv = ∅.

In practice, our abstract state is a pair composed of an abstract set sharing and a type
component τ . The objective of this second element is to approximate the set of possi-
ble types of each variable. This corresponds to the concept of a “type of class” analy-
sis [1,7]. In our context, τ helps in determining which variables are non null and which

SEI
π�null�(SH)

SH ′ = SH

SEI
π�new k�(SH)

SH ′ = SH ∪ {{res}}

SEI
π�v�(SH)

SH ′ = ({{res}} � SHv) ∪ SH−v

SEI
π�v.f�(SH)

SH ′=

8
<

:

⊥ if mustBeNull(SH, v)

SH ∪ ({{v, res}} �
[

S∈SHv

P(S|−v)) else

Fig. 2. Abstract semantics for the expressions as set operations

Efficient Set Sharing Using ZBDDs 51

ones may be null. If we consider null as another type [13], then a variable may be null if
null is one of its possible types: mayBeNull(τ, v) = (mustBeNull(SH, v) and null ∈
τ(v)). For clarity, we omitted the type component from the transfer functions in Fig. 2
and 5; the full version of the semantics can be found in the Appendix in Fig. 13 and 14.

3.3 Semantics of Expressions

Null, New and Variable Load: The null expression loads the null constant into the
special variable res, so it has no effect on the abstract state, since res does not point
to any object, and therefore does not share with any variable (including itself), both be-
fore and after evaluating the expression. The new expression adds the singleton {res}
to the current set sharing, since it creates a fresh object that cannot be reached from
any of the existing variables. A variable load v forces res to be an alias of v, and
therefore res shares with all those variables with which v shares. Sharings in SH−v

remain unaffected, since the addition of res cannot change the reachability set of any
variable not reachable from v. For instance, given SH = {{v0, v1, v2} , {v3}}, the
variable load v0 results in SH ′ = SH−v ∪ ({{res}}
 SHv) = {{v3}} ∪ ({{res}}

{{v0, v1, v2}})={{v3}} ∪ {{res} ∪ {v0, v1, v2}} = {{v0, v1, v2, res} , {v3}}.

Field Load: In the case that v.f is null, there is no change in the existing set sharing.
Because the expression of SH ′ includes SH , that case is correctly approximated. When
v.f is not null, we know that the object being assigned to res is reachable from v. The
other variables that share with v in SH may or may not share with res in SH ′. In the
state G0 of Fig. 3, although v2 shares with v0 in the initial and final states, it does not
share with res in the final state; however, v1 will share with both res and v0 after the
load. We write {{v, res}}

⋃

S∈SHv

P(S|−v)) to account for objects reachable from v

which become also reachable from res, and may be reachable from any subset of the
variables that shared with v in SH . Objects not reachable from v (SH−v) are accounted
for by the union with SH . For instance, in the same state G0, if {v3} ∈ SH , then the
load of v0.f does not alter that particular element, which has to also be present in SH ′.

Example 2. The graphs in Fig. 3 illustrate three different memory states before the
evaluation of v0.f. They correspond to the graphs in Fig. 1, but this time we indicate
the type of every object and the object pointed to by res after the expression evalua-
tion. The initial set sharing is identical in all cases: sh(G0) = sh(G1) = sh(G2) =
{{v0, v1, v2} , {v3}}. However, the evaluation results in a different set sharing for
each resulting graph G′

i: sh(G′
0) = {{v0, v1, v2} , {v0, v1, res} , {v3}}, sh(G′

1) =
{{v0, v1, v2, res} , {v3}}, and sh(G′

2) = {{v0, v1, v2} , {v0, res} , {v3}}. Assume that
the abstract state that approximates all the initial concrete states is also SH =
{{v0, v1, v2} , {v3}}. The transfer function for v0.f results in a final abstract state
SH ′ = SH ∪ ({{v0, res}}
 P({v1, v2})) = {{v0, v1, v2} , {v3}} ∪ ({{v0, res}}

{{} , {v1} , {v2} , {v1, v2}}) = {{v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} ,
{v0, v2, res} , {v0, res} , {v3}}. As required, all the sharings sh(G′

0), sh(G′
1), and

sh(G′
2) are included in SH ′.

52 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

FooFoo

Foo

FooFoo

Foo

FooFoo

Foo

gfgf

gf

V3

gfgf

gf

V3V0

Foo

V0 1V V2

gfgf

V1V0

gf

V3V2res res1V V2res

G0 G1 G2

gf gf

Foo
gf

Foo

Fig. 3. Three concrete states

3.4 Semantics of Commands

Variable Store: For a store of the form v=expr, the semantics comprises three steps.
First, the expression on the right-hand side is evaluated. Second, all ocurrences of v are
removed from the current abstract state, since the value of v is being overwritten. Fi-
nally, all appearances of res are replaced by v, which deletes res from the abstract state.

Field Store: First, we evaluate the expression whose result is being stored; SH1 con-
tains that intermediate value. Sharings in SH1 unrelated to v or res are unaffected by
the store and contained in SH2 = SH1−{v,res} , which is a subset of the final state.
For each sharing in SH1v , the store might affect the reachability set of each vari-
able involved and result in many smaller sharings. For example, in a memory state
like G in Fig. 4, an assignment to v0.f destroys any sharing between v0 and v1 (note
that res does not share with v1), but not the one between v0 and v2. All the possible
combinations for the final sharings that have to do with v are contained in SH3 =⋃

S∈SH1v

P(S) \ {{}}.

Now, for every sharing in SH3 that contains v we have two possibilities: all the
variables share also with res (and therefore, with SH1res), or none of them does. Note
that every possible intermediate case in which just a few of the variables share with
SH1res is represented by a smaller subset in SH3 containing only those variables.
While SH4 = SH1res
 SH3v includes the combinations in which all the variables do
share with SH1res , SH3 approximates the situations in which none of them do share
with res.

Foo

FooFoo

gf

gfgf

V2V1 V0

gf

Foo

res

Fig. 4. Graph G

Example 3. Assume an initial state (after evaluating
the expression) G depicted in Fig. 4. The dotted edge
indicates where v0.f will point after the execution
of v0.f= expr. The initial set sharing is sh(G) =
{{v0, v1} , {v0, v2} , {res}}. After the load, sh(G′) =
{{v0, v2} , {v0, res} , {v1}}. Assume that the starting
abstract state, after the evaluation of the expression
expr, is also SH1 = {{v0, v1} , {v0, v2} , {res}}.
Since there is no sharing unrelated to v or res,
SH2 = ∅. The next step is to calculate SH3 =
P({v0, v1}) ∪ P({v0, v2}) \ {{}}= {{v0} , {v0, v1} , {v1}} ∪ {{v0} , {v0, v2} , {v2}}
= {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}}. Since SH1res = {{res}} and SH3v0 =

Efficient Set Sharing Using ZBDDs 53

SCI
π�v=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = SH1|−v

SH ′ = SH2|vres

SCI
π�v.f=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = SH1−{v,res}

SH3 =
[

S∈SH1v

P(S) \ {{}}

SH4 = SH1res � SH3v

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

SCI
π�if v==null com1 else com2�(SH)

SH1 = SCI
π�com1�(SH|−v)

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustBeNull(SH, v)
SH1 ∪ SH2 if mayBeNull(τ, v)
SH2 else

SCI
π�if v==w com1 else com2�(SH)

SH1 = SCI
π�com1�(SH)

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustAlias(SH, v, w)
SH1 ∪ SH2 if mayAlias(SH, v, w)
SH2 else

SCI
π�com1;com2�(SH)

SH ′ = SCI
π�com2�(SCI

π�com1�(SH))

Fig. 5. Abstract semantics for the commands

{{v0} , {v0, v1} , {v0, v2}}, SH4 = {{v0, res} , {v0, v1, res} , {v0, v2, res}}. The fi-
nal abstract state SH ′ = {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}} is the union of
SH3|−res = SH3 and SH4|−res ⊂ SH3. As required, sh(G′) ⊆ SH ′ holds after
the removal of the auxiliary variable res from G′.

Conditional Statements: In the case where the guard is (v==null), the type com-
ponent may contain definite information about whether a variable v is not null (null /∈
τ(v)). If we cannot determine exactly the nullity of v (i.e., mayBeNull(τ, v) is true),
then the final state is the least upper bound of the resulting set sharing for the two
branches. In particular, SH1 � SH2 = SH1 ∪ SH2.

In the case where the condition is v==w, the sharing information may be enough to tell
that the two variables are definitely equal, because they are both null: mustAlias(SH,
v, w)=(mustBeNull(SH, v) and mustBeNull(SH, w)). On the other hand, v and w do
not share if they do not appear together within a subset of SH. Therefore mayAlias(SH,
v, w) = (mustAlias(SH, v, w) and SH{v,w} �= ∅). It is important to see that sharing
information does not imply equality: a set sharing like {{v, w}} indicates that v and w
might reach a common object, not that they must be aliases.

Example 4. Given a command like if (cond) v0 = v1 else {v0 = null;
v1 = null}, and assuming an initial abstract state SH = ∅ that does not contain
enough information to determine cond, the set sharing corresponding to the if branch
is SH1 = {{v0, v1}}. The abstract state after simulating theelse branch is SH2 = {}.
Therefore, the final state is SH ′ = SH1 ∪ SH2 = {{v0, v1}}. However, SH ′ does
not imply that v0 necessarily shares with v1, even when they appear together in SH ′,
but that v0 might reach an object reachable from v1 in some of the concrete states
approximatted by SH ′; in the example, if cond would be false, both variables are null
and do not share.

54 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

4 Semantics as ZBDD Operations

Zero-suppressed BDDs (ZBDDs) [8,9] are a data structure similar to binary decision
diagrams (BDDs) [3], but designed to encode sets of combinations (i.e., sets of sets
of primitive elements). To encode the set sharing domain using ZBDDs, we define the
primitive elements to be the variables in the program being analyzed. ZBDDs have
been demostrated to perform better [14,15] than standard BDDs when encoding sets of
combinations that are sparse in the sense that a) the set contains just a small fraction
of all the possible combinations, and b) each combination contains just a few literals.
A ZBDD is a rooted directed acyclic graph (DAG) of non-terminal and terminal nodes.
Each non-terminal ZBDD node is labeled with a variable, and has two outgoing edges
to other nodes, called the zero-edge and the one-edge. There are two terminal nodes, the
zero node and the one node. They do not have variables or outgoing edges. The universe
of all variables is totally ordered, and the order of the variables appearing on the nodes
of any path through the ZBDD is consistent with the total order. Each path through the
ZBDD that ends at the one terminal node defines a set of variables. The set contains a
variable v if the path passes through a node labeled with v, and leaves the node along
its one edge. Assuming the variable ordering is fixed, the smallest ZBDD representing
a given set of sets is unique, and can be found efficiently.

1

1
0

0

1
0

V2

V1

0 1

V0

Fig. 6.

Example 5. Assume a set of variables V ar = {v0, v1, v2} and the
variable ordering v0, v1, v2. The unique smallest ZBDD represent-
ing the set of sets {{v0, v2} , {v1}} is the ZBDD shown in Fig. 6.
There are two paths from the root of the ZBDD to the one termi-
nal node. On the path containing the v0 and v1, only the node la-
beled v1 is exited through the one edge; thus, this path represents
the set {v1}. On the path containing v0 and v2, both nodes are exited
through their one edges; thus, this path represents the set {v0, v2}.

Efficient algorithms exist for common operations on the
set of sets encoded by a ZBDD, including union (denoted
+), intersection, set difference, product (SH1 ∗ SH2 =
{S1 ∪ S2 | S1 ∈ SH1 and S2 ∈ SH2}), and division (SH/v =
{S \ {v} | S ∈ SH and v ∈ S} and SH%v = {S ∈ SH | v �∈ S}).

A set sharing like SH = {{v0, v2} , {v1}} is expressed in ZBDD notation as SH =
v0v2 + v1. Note that we will denote single literal sets by a single lower case letter
(like v), while generic ZBDDs will be referred to with double upper case (normally,
SH). For instance, given the set sharings SH = v0v2 + v1 and v0 , an expression like
SH ∗ v0 = v0v1 + v0v2 is legal. The empty set is written as 0, and the set containing
only the empty set is written as 1.

4.1 Expressions and Commands; Native Operations

Figs. 7 and 9 show the ZBDD version of the transfer functions2 in Fig. 2 and 5. For
most of the set operations, there is an equivalent native ZBDD operation. For instance,

2 The type component is again omitted, although in practice it is updated in an identical fashion
to Fig. 13 and 14.

Efficient Set Sharing Using ZBDDs 55

SEI
π�null�(SH)

SH ′ = SH

SEI
π�new k�(SH)

SH ′ = SH + res

SEI
π�v�(SH)

SH ′ = setResEqTo(SH, v)

SEI
π�v.f�(SH)

SH ′=

(
⊥ if mustBeNull(SH, v)

SH + v ∗ res ∗ powUnion(SH/v) else

setResEqTo (P) {
i f (P = 0 or P = 1 or P.top > v)

re turn P
i f (P.top < v))

re turn Getnode (P.top ,P0 ,P1)
re turn Getnode (P.top ,P0 , r e s∗P1)

}

powUnion (P) {
i f (P = 0 or P = 1)

re turn P
R0 ← powUnion(P0)
R1 ← powUnion(P1)
re turn Getnode (P.top ,Ro + R1 ,1 + R1)

}

Fig. 7. Abstract semantics for the expressions as ZBDD operations

SH1
SH2 is equivalent to SH1 ∗SH2 and SH−v is equivalent to SH%v. This corre-
spondence is useful because it results in no gap between the denotational semantics of
Sect. 3 and the implementation. However, we added a number of non-standard ZBDD
operators to improve the readability of the equations. The set of elements in SH con-
taining v (SHv, in set notation) is obtained via SH//v = SH/v ∗ v. We delete all
the ocurrences of v in SH using projOut(SH, v) = SH/v + SH%v − 1. The unit
set 1 (which represents the set containing the empty set) has to be deleted because SH
might contain the single literal v, as we did in the corresponding project out set operator
SH |−v.

In other occasions, we created new ZBDD operators because of efficiency reasons.
For instance, the variable load set equation SH ′ = ({{res}}
 SHv) ∪ SH−v can be
expressed as SH ′ = res∗ (SH//v)+SH%v. This combination of standard operators,
while intuitive, has the disadvantage of being inefficient in practice. Since we expect this
function to be invoked with high frequency (every time a variable is on the right hand
side of an assignment), we devised a dedicated ZBDD algorithm that computes the same
result, setResEqTo(SH, v). The algorithm, shown in Fig. 7, uses the same notation as
in [9]: P0 and P1 for the graph reachable through the zero-edge and one-edge, respec-
tively, P.top for the current variable, and Getnode(v, P0, P1) for the procedure that
generates a node with the variable v and subgraphs P0 and P1. The correctness of se-
tResEqTo(SH, v) is based on a variable order in which res is always the last variable,
the one closer to the leaves. Given this precondition, we only need to find v in the graph,
and then multiply its one-edge child by res, which will preserve the variable order.

With the basic ZBDD operators and setResEqTo we can understand the transfer
functions of the null, new, and variable load expressions. The field load, on the other
hand, depends on the ZBDD version of the predicate that determines whether a variable
is null: mustBeNull(SH, v) = (SH/v = 0). It also requires computing the union of
the powersets of the elements of a set sharing SH : {P(S) | S ∈ SH}. Although this
seems to be a complex operation, it has a very natural description in terms of an algo-
rithm in ZBDDs. We have devised a native ZBDD algorithm, powUnion(SH), shown
in pseucode in Fig. 7. The correctness proof of the algorithm is given in the appendix.

56 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

1

10

0

10

0 1

10
V2

V0 V0

V2

0 1 1

V2

1

Fig. 8. ZBDDs representing v0v2, 1 + v2, and 1 + v0 + v0v2 + v2

SCI
π�v=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = projOut(SH1%res, v)

SH ′ = SH1/res ∗ v + SH2

SCI
π�v.f=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = SH1%v%res

SH3 = projOut(
powUnion(SH1//v) − 1, res)

SH4 = (SH1/res) ∗ (SH3//v)

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 + SH3 + SH4 else

SCI
π�if v==null com1 else com2�(SH)

SH1 = SCI
π�com1�(projOut(SH, v))

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustBeNull(SH, v)
SH1 + SH2 if mayBeNull(τ, v)
SH2 else

SCI
π�if v==w com1 else com2�(SH)

SH1 = SCI
π�com1�(SH)

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustAlias(SH, v, w)
SH1 + SH2 if mayAlias(SH, v, w)
SH2 else

SCI
π�com1;com2�(SH)

SH ′ = SCI
π�com2�(SCI

π�com1�(SH))

Fig. 9. Abstract semantics for the commands

This native implementation will prove to be fundamental for the scalability of the anal-
ysis (Sect. 5).

Example 6. We show how the native algorithm computes powUnion(v0v2). Fig. 8 con-
tains the initial ZBDD representing v0v2 (left). To compute powUnion for the orig-
inal ZBDD, we first recursively compute powUnion for the node labeled v2. When
powUnion is applied to the node labeled v2, which represents the set v2, we have
R0 = P0 = 0 and R1 = P1 = 1. The result is a node labeled v2 with zero suc-
cessor R0 + R1 = 1 and one successor 1 + R1 = 1 + 1 = 1, shown in the center of the
figure. This ZBDD represents the powerset of v2, namely 1+v2. We will call this ZBDD
N . When we compute powUnion of the original ZBDD, R0 = P0 = 0, and R1 = N .
This step generates a node with value v0, zero successor R0 + R1 = 0 + N = N , and
one successor 1 + R1 = 1 + N = N . Because both nodes are identical (reduction rule
applied within Getnode), we can delete one of them and change both edges of v0 to
lead to just one N , as shown in the right ZBDD in Fig. 8. The resulting graph represents
1 + v0 + v0v2 + v2.

Efficient Set Sharing Using ZBDDs 57

The command semantics (Fig. 9) is described in terms of the operators listed before.
We only add a new predicate, used when checking if two variables might be aliases:
mayAlias(SH, v, w) = (mustAlias(SH, v, w) and SH/(v ∗ w) �= 0). The following
example shows how the field store from Example 3 would be calculated using ZBDDs.

Example 7. Assume we start evaluating v0.f= expr in an abstract set sharing SH1 =
v0v1 + v0v2 + res. Because all the sharings in SH1 contain v0 or res, SH2 = 0. The
union of the powersets of SH1//v0 = v0v1+v0v2 is calculated in a very similar fashion
to the last example, and results in a set sharing 1+v0+v0v1+v0v2+v1+v2. Therefore,
SH3 = projOut(v0+v0v1+v0v2+v1+v2, res) = v0+v0v1+v0v2+v1+v2. The last
component of the result is SH4 = (SH1/res) ∗ (SH3//v0) = 1 ∗ (SH3//v0) = v0 +
v0v1+v0v2. The result is SH ′ = 0+SH3+SH4 = SH3 = v0+v0v1+v0v2+v1+v2,
which is the same result obtained in the set example.

5 Experiments

To evaluate the scalability (in terms of memory usage and running time) of the ZBDD
approach, we compared it to an alternative representation for set sharings based on sets
of bitsets. Bitsets are a fast, light representation compared to other ways of representing
a set sharing. In a bitset, each bit bi indicates if the variable vi is in the sharing (bi = 1)
or not (bi = 0). Our first implementation used the Java library where a BitSet is an
array of double words. However, our first experiments showed that this approach does
not scale beyond set sharings with more than a few thousand elements. For this reason,
we replaced the library implementation by a lightweight version, which only requires a
single word to represent each sharing. This effectively limits the number of variables to
be not more than 32 for the bitset approach, which is reasonable when confronted with
powerset operations. In all the experiments we assume that the number of variables
n is bounded by 32, but note that the ZBDD implementation scales well for larger set
sharings, and could handle bigger values of n. Our ZBDD implementation of set sharing
is based on the JDD library [21].

Several characteristics of set sharings influence the memory usage and the perfor-
mance of the data structure representing them. Although the number of variables n
seems to be important, our two representations are independent of this parameter. In
the case of the bitsets, because we use 32 bits to store every sharing, independently of
the number of variables. In the case of ZBDDs, only the statistical distribution of the
sharings (i.e., their sparsity) influences the number of nodes required to represent the
information, and therefore the memory usage and performance of the ZBDD. For
the same reason, the behavior of the two data structures is independent of the shar-
ing density of SH , i.e., the proportion of the number of sharings over the maximum
possible: SHd = |SH |/2n.

The most decisive factor is the number of sharings |SH |. Because we allocate a new
bitset every time a new sharing is added, the performance of the set of bitsets approach
is inversely proportional to |SH |. In the case of ZBDDs we also have to take into
account the variable density. This metric is the average number of variables per sharing:
vd = 1

n∗|SH| ∗
∑

S∈SH|S|. A small variable density is synonymous with a sparse set
sharing, and therefore we can expect the ZBDD to perform inversely proportional to the

58 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

 0

 10

 20

 30

 40

 50

 100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 u
sa

g
e

(M
b

y
te

s)

Number of sharings (in thousands)

Memory usage of BitSet vs. ZBDD (vd=0.28)

BitSet
ZBDD

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

er
 o

f
n

o
d

es
 i

n
 t

h
e

Z
B

D
D

 (
in

 t
h

o
u

sa
n

d
s)

Number of sharings (in thousands)

Variable density and number of ZBDD nodes.

vd = 0.34
vd = 0.28
vd = 0.22

Fig. 10. Memory usage experiments. Over 25 runs.

metric. We now examine how the number of sharings and the variable density relate to
memory consumption and execution times in our experiments.

Memory Usage: We generated random set sharings and measured the space require-
ments for the Java objects backing the set of bitsets and ZBDD as reported by a pro-
filer [12]. The different memory usages are shown on the left of Fig. 10. The plot shows
that the ZBDD scales better than the bitset solution. The differences are more signifi-
cant (a factor of 5) for large values of |SH |. A set of bitsets uses 56 bytes per sharing,
less than the 80 required by a set of the JDK 1.5 BitSet class. At one million sharings,
the set of bitsets requires more than 56Mb, while the same information occupies 12Mb
in the ZBDD version (vd = 0.28). The staircase behavior of the ZBDD memory usage
function is due to the capacity of the array storing the node list (ZBDDs are represented
as arrays in JDD), which doubles when the load exceeds a certain threshold.

In the leftmost graph in Fig. 10 we did not take into account the effect of variable
density. The other plot in that figure demonstrates how ZBDDs benefit from sparse
variable distributions. This time we do not show the number of Kbytes in the y-axis, but
rather the number of nodes in the binary decision diagram. As expected, sparse sharings
require fewer nodes than those that are more dense in terms of vd. In the experiments,
the number of nodes goes down by an average 38.2% from vd = 0.34 to vd = 0.22.

Speed: We measured the number of milliseconds required to compute the semantics
of the most significant operations (variable load/store, and field load/store), given a
random initial set sharing. We disabled the JDD cache for the experiments. All the
measurements were done on a Pentium M 1.73Ghz with 1Gb of RAM. The virtual
machine was Sun’s JVM 1.5.0 running on Ubuntu 6.06. The results are in Figs. 11
and 12.

The time required to simulate a variable load presents a similar, linear behavior in
both cases; the bitset version is 14.6% faster in the average. Although not reflected in
Fig. 11, the native operation setResEqto takes half the time of the equivalent compo-
sition of ZBDD operations (see Sect. 4). For the variable store, both running times are
roughly linear in the number of sharings. However, the lack of a native ZBDD imple-
mentation results in running times noticeably slower than those of the set of bitsets. It

Efficient Set Sharing Using ZBDDs 59

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

T
im

e
(m

s.
)

Number of sharings (in thousands)

Variable Load (vd=0.28)

BitSet
ZBDD

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500

T
im

e
(m

s.
)

Number of sharings (in thousands)

Field Load (vd=0.26)

BitSet
ZBDD

Fig. 11. Performance of a set of bitsets vs ZBDD (expressions). Over 25 runs.

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300 350 400 450 500

T
im

e
(m

s.
)

Number of sharings (in thousands)

Var Store (vd=0.21)

BitSet
ZBDD

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20 40 60 80 100

T
im

e
(m

s.
)

Number of sharings (in thousands)

Field Store (vd=0.19)

BitSet
ZBDD

Fig. 12. Performance of a set of bitsets vs ZBDD (commands). Over 25 runs.

remains an open question whether a dedicated ZBDD algorithm can be devised for this
command.

The powerset operation is a major obstacle for a feasible implementation of set shar-
ing using the sets of bitsets. Both the field load and field store transfer functions depend
on this operation. While the ZBDD powUnion algorithm requires reasonable times for
calculating the union of many powersets, the bitset implementation presents exponential
growth with respect to the number of sharings. For example, it needs half a minute to
compute the output state for a field load in which the initial sharing has 5,000 elements.
The ZBDD implementation finishes the same operation in less than 600ms. The field
store (Fig. 12, right), which is a more complex operation, presents a similar pattern,
although the running times are always significantly larger than for the field load.

6 Related Work

The ideas presented in this paper build on one hand on [16], where a first definition of a
set sharing-based analysis for Java was introduced and shown to offer advantages in cer-
tain cases with respect to pair sharing-based analyses. We offer substantially improved
definitions of the abstract semantics, a reduction in the number of components of an

60 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

abstract state, and in some cases (like the field load and store) more precise abstract
operations. In addition, a significant difference with our previous work is of course the
use of Zero-suppressed Decision Diagrams to efficiently implement the analysis do-
main. This is done without having to redesign any of the existing abstract operations.
The experiments in [16] involved small set sharings (of at most 50 elements at a time)
while in this paper we show how with ZBDDs we can scale up to thousands of sharings
and still get reasonable times.

There has been extensive work in recent years on the use of BDDs [2,22,24,25] to
represent (abstract) points-to information. In these abstractions, information is stored
in the form of (v, a) pairs, where each such pair indicates that v may point to the al-
location site a. As mentioned before, set sharing information can be interpreted as an
abstraction of points-to information where instead of representing which exact objects
can be pointed to by a variable, the domain captures only which sets of variables may
point transitively to the same object. Thus, our analysis works at a different level since
the set sharing encoding can result in some loss of precision, but offers the advantage
of more compact representation.

ZBDDs were introduced by Minato [8] and applied to a great diversity of problems
in model checking (e.g., [5,10,23]). More recently, Lhoták et al. have applied ZBDDs
to the exploration of infinite state spaces [14] in the context of points-to analysis. The
main differences between this work and [14] are one hand the abstraction used (set
sharing vs. points-to pairs) and on the other that in the approach proposed the domain
does not require relational information, i.e., we can use existing ZBDD libraries [20,21]
directly in our implementation.

To the extent of our knowledge, this is the first work that relates set sharing anal-
ysis with ZBDDs or presents implementation results for the set-sharing domain using
any type of binary decision diagram. In the logic programming realm, there has been a
significant amount of work related to set sharing-based analysis for the automatic paral-
lelization of Prolog programs (e.g., [11,17,18]). However, the abstract operations show
significant differences with the ones required for an imperative/OO language. Further-
more, to the best of our knowledge, all existing implementations use lists of lists to
represent set sharings. In [4] a connection between the set sharing domain and standard
BDDs is suggested, but no implementation or experimental results are provided and
there is no mention of ZBDDs. More recent work [19] for Java presents results for a
BDD-based implementation of the less precise pair sharing domain [16]. Because in
this case the abstraction is a set of pairs (and not a set of sets), the representation used
is quite different from ours.

References

1. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In: Proc. of
OOPSLA 1996, SIGPLAN Notices, October 1996, vol. 31(10), pp. 324–341 (1996)

2. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to Analysis Using BDDs.
In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, pp. 103–114. ACM Press, New York (2003)

3. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Comput. Surv. 24(3), 293–318 (1992)

Efficient Set Sharing Using ZBDDs 61

4. Codish, M., Søndergaard, H., Stuckey, P.J.: Sharing and groundness dependencies in logic
programs. ACM Transactions on Programming Languages and Systems 21(5), 948–976
(1999)

5. Coudert, O.: Solving Graph Optimization Problems with ZBDDs (1997)
6. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In: Fourth ACM Symposium
on Principles of Programming Languages, pp. 238–252 (1977)

7. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 77–101.
Springer, Heidelberg (1995)

8. Minato, S.I.: Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In:
DAC, pp. 272–277 (1993)

9. Minato, S.I.: Binary Decision Diagrams and Applications for VLSICAD. Kluwer, Norwell
(1996)

10. Minato, S.I.: Zero-suppressed BDDs and their Applications. STTT 3(2), 156–170 (2001)
11. Jacobs, D., Langen, A.: Accurate and Efficient Approximation of Variable Aliasing in Logic

Programs. In: North American Conference on Logic Programming (1989)
12. JProfiler, http://www.ej-technologies.com/products/jprofiler/
13. Leroy, X.: Java bytecode verification: algorithms and formalizations. Journal of Automated

Reasoning 30(3-4), 235–269 (2003)
14. Lhoták, O., Curial, S., Amaral, J.N.: Using ZBDDs in Points-to Analysis. In: Proceedings of

the 20th International Workshop on Languages and Compilers for Parallel Computing (2007)
15. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design. Springer, New

York (1998)
16. Méndez-Lojo, M., Hermenegildo, M.: Precise Set Sharing Analysis for Java-style Programs.

In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 172–187.
Springer, Heidelberg (2008)

17. Muthukumar, K., Hermenegildo, M.: Determination of Variable Dependence Information at
Compile-Time Through Abstract Interpretation. In: 1989 North American Conference on
Logic Programming, pp. 166–189. MIT Press, Cambridge (1989)

18. Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and Freeness of
Program Variables Through Abstract Interpretation. In: 1991 International Conference on
Logic Programming, pp. 49–63. MIT Press, Cambridge (1991)

19. Payet, É., Spoto, F.: Magic-Sets Transformation for the Analysis of Java Bytecode. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 452–467. Springer, Heidelberg
(2007)

20. Somenzi, F.: CUDD: CU Decision Diagram Package (2005),
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html

21. Vahidi, A.: JDD: A Pure Java BDD Library (2008),
http://javaddlib.sourceforge.net/jdd/index.html

22. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: PLDI, pp. 131–144. ACM, New York (2004)

23. Yoneda, T., Hatori, H., Takahara, A., Minato, S.I.: BDDs vs. Zero-Suppressed BDDs: for
CTL Symbolic Model Checking of petri nets. In: Srivas, M., Camilleri, A. (eds.) FMCAD
1996. LNCS, vol. 1166, pp. 435–449. Springer, Heidelberg (1996)

24. Zhu, J.: Symbolic Pointer Analysis. In: ICCAD, pp. 150–157 (2002)
25. Zhu, J., Calman, S.: Symbolic Pointer Analysis Revisited. In: PLDI, pp. 145–157 (2004)

http://www.ej-technologies.com/products/jprofiler/
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
http://javaddlib.sourceforge.net/jdd/index.html

62 M. Méndez-Lojo, O. Lhoták, and M.V. Hermenegildo

A Complete Semantics for the Expressions and Commands

Contained in figures 13 and 14. In the case of the type component, the least upper bound
is computed as τ1 � τ2 = { (v, τ1(v) ∪ τ2(v)) | v ∈ V ar}.

SEI
π�null�(SH, τ)

SH ′ = SH

τ ′ = τ [res �→ {null}]
SEI

π�new k�(SH, τ)

SH ′ = SH ∪ {{res}}
τ ′ = τ [res �→ {k}]

SEI
π�v�(SH, τ)

SH ′ = ({{res}} � SHv) ∪ SH−v

τ ′ = τ [res �→ τ (v)]

SEI
π�v.f�(SH, τ)

SH ′=

8
><

>:

⊥ if mustBeNull(SH, v)

SH ∪ ({{v, res}} �
[

S∈SHv

P(S|−v)) else

τ1 = τ [v �→ (τ (v) \ {null}), res �→ (↓F (v.f) ∪ {null})]

Fig. 13. Abstract semantics for the expressions as set operations

SCI
π�v=expr�(SH, τ)

(SH1, τ1) = SEI
π�expr�(SH, τ)

SH2 = SH1|−v

SH ′ = SH2|vres

τ ′ = τ1[v �→ τ1(res)] \ (res, τ1(res))

SCI
π�v.f=expr�(SH, τ)

(SH1, τ1) = SEI
π�expr�(SH, τ)

SH2 = SH1−{v,res}

SH3 =
[

S∈SH1v

P(S) \ {{}}

SH4 = SH1res � SH3v

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

τ ′ = τ1[v �→ (τ1(v) \ {null})] \ (res, τ1(res))

SCI
π�if v==null com1 else com2�(SH, τ)

SH1 = SH|−v

τ1 = τ [v �→ {null}]
σ1 = SCI

π�com1�(SH1, τ1)
τ2 = τ [v �→ (τ(v) \ {null})]
σ2 = SCI

π�com2�(SH, τ2)

(SH ′, τ ′) =

8<
:

σ1 if mustBeNull(SH, v)
σ1 	 σ2 if mayBeNull(τ, v)
σ2 else

SCI
π�if v==w com1 else com2�(SH, τ)

σ1 = SCI
π�com1�(SH, τ)

σ2 = SCI
π�com2�(SH, τ)

(SH ′, τ ′) =

8<
:

σ1 if mustAlias(SH, v, w)
σ1 	 σ2 if mayAlias(SH, v, w)
σ2 else

SCI
π�com1;com2�(SH, τ)

(SH ′, τ ′) = SCI
π�com2�(SCI

π�com1�(SH, τ))

Fig. 14. Abstract semantics for the commands

Efficient Set Sharing Using ZBDDs 63

B PowUnion: Correctness Proof

Proof. powUnion(SH) correctly computes
⋃

S∈SH

P(S):

powUnion(ZBDD(a, P0, P1)) = powUnion(P0 + a ∗ P1) = powUnion(Po) +
powUnion(a∗P1) =

⋃

S∈P0

P(S) ∪
⋃

S∈P1

(P(S∪{a}) =
⋃

S∈P0

P(S) ∪{{a}}∪
⋃

S∈P1

(P(S)

{{} , {a}}) =
⋃

S∈P0

P(S) ∪
⋃

S∈P1

P(S) ∪ {{a}} ∪
⋃

S∈P1

(P(S)
 {{a}}) =
⋃

S∈P0∪P1

P(S) ∪

{{a}}∪({{a}}

⋃

S∈P1

P(S)) = ZBDD(a, powUnion(P0 +P1), 1+powUnion(P1)).

	Efficient Set Sharing Using ZBDDs
	Introduction
	Reachability and Sharing
	Sharing Semantics as Set Operations
	Notation
	Abstract Operations
	Semantics of Expressions
	Semantics of Commands

	Semantics as ZBDD Operations
	Expressions and Commands; Native Operations

	Experiments
	Related Work
	Complete Semantics for the Expressions and Commands
	PowUnion: Correctness Proof

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

