
Data Dependencies and Program Slicing:
from Syntax to Abstract Semantics

Isabella Mastroeni
Università di Verona

isabella.mastroeni@univr.it

Damiano Zanardini
Universidad Politécnica de Madrid

damiano@clip.dia.fi.upm.es

Abstract
We discuss the relation between program slicing and data depen-
dencies. We claim that slicing can be defined, and therefore cal-
culated, parametrically on the chosen notion of dependency, which
implies a different result when building the program dependency
graph. In this framework, it is possible to choose dependency in the
syntactic or semantic sense, thus leading to compute possibly dif-
ferent, smaller slices. Moreover, the notion of abstract dependency,
based on properties instead of exact data values, is investigated in
its theoretical meaning. Constructive ideas are given to compute
abstract dependencies on expressions, and to transform properties
in order to rule out some dependencies. The application of these
ideas to information flow is also discussed.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal Methods; D.3.1 [Formal Definitions and
Theory]: Semantics; F.3.2 [Semantics of Programming Languages]:
Program analysis; I.1.0 [General]

General Terms Languages, Security, Theory, Verification

Keywords Abstract Interpretation, Abstract non-interference, De-
pendency analysis, Program slicing

1. Introduction
Control and data-flow analysis is among the most effective tech-
niques for program understanding, verification and debugging. Ef-
ficient algorithms for intra and inter-procedural program manipula-
tion have been designed on suitable program representations called
program dependency graphs (denoted PDGs), which keep track of
how information propagates through the program code. This is the
case of (static) program slicing [22, 17, 16, 20, 4], a technique
which extracts from programs the statements which are relevant
to a given behavior. In particular, a slice is an executable program
which is obtained by statement deletion on the original program,
and whose behavior must be identical to a specific subset of the
original behavior. Informally, a slice has to be such that an observer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

should not distinguish between the execution of the program and
the slice, if (s)he only pays attention to the value of a set of vari-
ables at some program point, as specified in the slicing criterion.

Since the first publications [22], there have been many works
proposing several notions of slicing, and different algorithms to
compute slices. Ward and Zedan [21] note that most papers provide
an informal definition of the meaning of a program slice, and con-
centrate attention rather on defining and computing program depen-
dencies. According to the authors, this focus on the computation of
program dependencies somehow confuses the notion of slice with
the algorithms for computing slices. Their work looks at slicing as
a program transformation, and does not even rely on data depen-
dencies.

Main contribution

The construction of a program dependency graph relies on the
chosen notion of dependency. We believe it is possible to define a
general notion of slicing, parametrically on what the words depends
on (or the symmetric ones is relevant to) mean. The idea is that
we choose the dependency, and derive a corresponding notion of
slicing.

In literature, characterizing slicing by means of dependency is
not new. In particular, Amtoft and Banerjee [3] exploit a logic for
deriving independencies in order to certify if a program transfor-
mation is a slice of the original program. In that work, as well as in
most approaches to slicing (e.g., the algorithm by Reps [16], based
on PDGs), slicing is characterized by means of a syntactic depen-
dency, based on the occurrence of a variable in an expression. For
instance, in the assignment x := 2y, we can state that x depends on
y, because y occurs in the assigned expression. This notion of de-
pendency loses some information, when syntactic occurrence is not
enough to get the real idea of relevancy. For instance, the value as-
signed to x does not depend on y in the statement x := z + y − y,
although y occurs in the expression. The syntactic approach may
fail in computing the optimal set of dependencies, since it is not
able to rule out this kind of false dependencies. This results in ob-
taining a slice which contains more statements than needed.

On the other hand, moving from standard syntactic slicing to
a semantic-based slicing, where x is the only variable relevant to
x + y − y, would result in more precise slices, only considering
true dependencies and their propagation.

In the same framework, dependencies can be abstracted, in
order to obtain a weaker notion which only holds when some
property of data depends on a property of some variable. More
precisely, x depends on y only if some property of x is affected by

125

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

some property of y at a previous point in the execution. This leads
to a weaker notion of dependency, called abstract dependency. The
main interest is in deciding, in the evaluation of an expression e,
which (properties of) data the final abstract value of e depends
on, i.e., which variables are relevant to the chosen property of the
expression e. Computing slices on abstract dependencies gives a
smaller program, since the abstraction prunes the PDG by ruling
out some dependencies which are only relevant at the concrete
level.

The present paper proposes a definition of abstract dependency,
based on the concrete semantics of the program (see Sec. 4). This
notion of dependency is parametric on the properties of interest.
Basically, an expression e depends on a variable x w.r.t. a property
ρ if changing x, and keeping all other variables unchanged with
respect to ρ, may lead to a change in e with respect to ρ (here, we
take the same property for both the input variables and the output
value of the expression but, in principle, they might be different
properties). Since this notion is inherently semantic, the problem
arises of making it implementable. A constructive approach is
introduced, which:

• computes the variables an expression depends on, given some
properties on data;

• finds an approximation of the most precise property s.t. an
expression does not depend on a chosen variable.

So far, only denotational characterizations of abstract data depen-
dencies have been proposed. Our purpose is to partially fill the gap
between semantics and computation, by giving a constructive, ap-
proximated way for computing dependencies.

Finally, an application to information flow, particularly to ab-
stract non-interference (ANI) [9], is discussed. Light is shed on the
relation between ANI and abstract dependencies, by pointing out
how computing dependency may be used in order to enforce con-
fidentiality of data. To this purpose, and according to the definition
of ANI, it makes sense to define another version of abstract depen-
dencies, which is based on the abstract, rather than the concrete
semantics. Both notions can be possibly used in information flow.
In particular, the latter one can rule out some false dependencies,
which are actually generated by harmless flows of information. On
the other hand, it relies on some assumptions about how the at-
tacker knows the code of the program and can statically analyze
it [9], namely, on its precision in analyzing it. A constructive ap-
proach is also introduced for this second version of dependency.

State of the art and related work

Besides the foundational work by Cohen [6] and Cartwright and
Felleisen [5], a (standard) dependency calculus was proposed by
Abadi et al. [1] in the setting of functional languages. More re-
cently, Amtoft and Banerjee [3] defined a Hoare-style logic to an-
alyze variable independency; program traces, potentially infinitely
many, are abstracted, in the framework of abstract interpretation,
by a finite set of variable independencies. The potentiality of this
approach, which will be introduced more deeply afterwards, is that
independencies can be statically checked against the logic and ap-
plied, as shown by the authors, to program slicing. This work was
extended to object-oriented languages [2], and the independency
analysis has been provided.

Rival [18] recently characterized abstract dependencies. This
is, to the best of our knowledge, the only description of a weak-

ened form of dependency, based on representing data properties
by means of abstract interpretation. Rival discusses abstract depen-
dency and its application to alarm diagnosis, together with several
techniques for analyzing and composing dependencies (e.g., the de-
pendency analysis of the compound statement [s1 ; s2] involves
combining dependencies in s1 and s2 compositionally). However,
for non-compound statements, only a mathematical, set-theoretic
definition of dependencies is provided; the purpose of our con-
structive approach is precisely to shed light on how the calculus
of abstract dependency may be done on statements.

Literature on program slicing is quite extended, and almost
spans the last three decades (see Tip [20] for a survey). An ab-
stract version (often referred to as abstract slicing), based on data
properties instead of exact values, still lacks a comprehensive def-
inition. Despite its title, the work by Hong, Lee and Sokolsky [13]
discusses a different notion of abstract slicing, where abstract inter-
pretation is considered in the restricted area of predicate abstraction
and where, instead of weakening the observation of all the execu-
tions, the authors only look at a subset of the possible executions.

2. Foundations
This section, which is not supposed to be exhaustive, provides
the necessary background in the Abstract Interpretation theory,
and introduces the simple programming language the paper refers
to. Moreover, further notions on partitioning abstract domains are
given, which will be important in motivating an assumption under-
lying the rest of the paper (Sec. 4).

Abstract interpretation: a brief introduction

In the following, we will use the standard framework of abstract
interpretation [7, 8] for modeling data properties. Abstract do-
mains are chosen for denoting properties over concrete domains,
since their mathematical structure guarantees, for each concrete el-
ement, the existence of the best correct approximation in the ab-
stract domain. This is due to the property of abstract domains of
being closed under greatest lower bound. Formally, the lattice of
abstract interpretations of C is isomorphic to the lattice UCO(C) of
all the upper closure operators (uco) on C [8]. An uco ρ : C 7→ C
on a poset C is monotone, idempotent, and extensive1 . Ucos are
uniquely determined by the set ρ(C) of their fix-points (we will
abuse notation by identifying ρ(C) = {ρ(c)|c ∈ C} with ρ).
For a singleton {v} and a uco ρ, we often write ρ(v) instead of
ρ({v}). In the following, we will use the abstract domain SIGN,
containing [⊤], [⊥] and the abstract values [neg] ≡ Z− (nega-
tive numbers) and [pos] ≡ Z+ (positive numbers with 0). The
corresponding uco maps sets of numbers to their sign. Moreover,
PAR = {[⊤] , [even] , [odd] , [⊥]} models parity of numbers. Fi-
nally, PARSIGN = PAR ⊓ SIGN is obtained by reduced product,
i.e., it is the smallest domain which is more precise than both PAR
and SIGN (e.g., it contains [poseven]).

Completeness in abstract interpretation is a property of abstract
domains relative to a fixed computation. An abstract domain ρ is
complete for f if it is optimally precise for the computation of f .
Formally, ρ is complete for f if ρ ◦ f ◦ ρ = ρ ◦ f . In other
words, computing f in the abstract domain corresponds precisely

1 ∀X ∈ C. X ≤C ρ(X). Usually, C = ℘(D) for some D, and ≤C is set
inclusion on D.

126

to abstracting the concrete computation of f , without further loss
of information. E.g., PAR is complete for +, but SIGN is not.

Language and Semantics

We consider the IMP language [23] and denote by V
def
= Z the set

of values for the static variables VAR. Expressions e ∈ EXP are
defined by standard operators on constants and variables. States
σ ∈ Σ = VAR → V are memory configurations. i.e., mappings
from variables to values. In general, if a program has k variables
x1, . . . , xk, we will represent states as tuples, i.e., Σ = Vk and
σ = 〈v1, . . . , vk〉; the state σ′ = σ [x← v] satisfies σ′(x) = v
and σ′(y) = σ(y) for any y 6= x.

As far as semantics is concerned, S JsK (σ) is the state obtained
by computing s in σ. Moreover, P JsK

p
(σ) is a partial semantics

collecting all the possible states at the program point p inside s,
when s is executed in σ. 2 We write e [x1, . . . , xk] to make ex-
plicit the variables in e (i.e., VARS (e) = {x1, . . . , xk}); E JeK (σ)
is the (concrete) semantics of expressions. Consider now an ab-
stract domain ρ on values: the related abstract semantics on ex-
pressions, E JeKρ, is applied to abstract states Σρ def

= ρ(℘(V))k and
is defined as the best correct approximation of E JeK. Namely, let
σ = 〈v1, . . . , vk〉 ∈ Σ and ε = 〈ρ(v1), . . . , ρ(vk)〉 ∈ Σρ:
E JeKρ (ε) = ρ({E JeK (u1, . . . , uk) | ∀i. ui ∈ ρ(vi)}).

Similarly, semanticsP JsKρ

p
(ε0) (where ε0 = 〈⊤, . . . ,⊤〉 is the

most abstract state, mapping all variables to⊤) statically computes
a safe over-approximation of the minimal abstract state ε′p ∈ Σρ

which describes variables at p:

P JsKρ

p
(ε0)

def
= εp ≥ ε′p = ρ(∪{P JsK

p
(σ) |σ ∈ Σ}).

When e is clear by the context, ∀x is a shorthand for ∀x ∈
VARS (e). Ordering ε′ ≤ ε′′ and abstraction ρ(σ) are defined
pointwise. Given a state ε, a covering {ε1..εk} is a set of states
such that ε describes the same set of concrete states as all the εi:
ε = ∪iεi. ∀ε will stand for ∀ε ≤ εp.

Partitions and atoms

Given ρ ∈ UCO(℘(V)), the induced partition Π(ρ) of ρ is the
set {V1, .., Vk}, partition of V, characterizing classes of values
undistinguished by ρ: ∀i.∀x, y ∈ Vi .ρ(x) = ρ(y).

EXAMPLE 2.1. Let ρ = {[⊤] , [even]}; the induced partition
Π(ρ) is {[even] , [odd]} since values are distinguished by their
parity. Π(ρ) happens to be equal to Π(PAR), i.e., they induce the
same partition though PAR is more concrete.

A domain ρ is partitioning if it is the most concrete among those in-
ducing the same partition: for a partition P , ρ = ⊓{η|Π(η) = P}.
Every η can be transformed into ρ′ partitioning by closing it un-
der set complement of abstract values (in the example, [odd] is the
complement of [even] w.r.t. [⊤]) [15]. If ρ is partitioning, Π(ρ)
is the set of the atoms of ρ, viewed as a complete lattice3, i.e., the
atoms of a partitioning domain are the abstractions of singletons.
ATOM (V) is the atomicity predicate and can be extended point-
wise to states.

2 The values can be more than one. E.g., in while b do ... ; y := y+1 od,
the set of values y can have inside the loop grows at each iteration, while,
at the exit, y has a unique value resulting from the termination of the loop
(if it terminates).
3 V ∈ ρ r {⊥} is an atom iff ⊥ ≤ρ U ≤ρ V implies U = V or U = ⊥
for every U ∈ ρ

3. Slicing vs. dependencies
Program slicing [22] is a program manipulation technique which
extracts, from programs, statements relevant to a particular com-
putation. Informally, a slice provides the answer to the question:
which program statements potentially affect the computation of the
variable x at the program point (i.e., statement) s? In order to an-
swer this question, an observer needs a window through which only
part of the program states can be seen [4]. Therefore, a program
slice is the set of program statements which contribute directly or
indirectly to the values assumed by some set of variables at some
program point. The observation window of the program is specified
by a slicing criterion, usually represented as a pair 〈s, X〉, which
requires the observation of the variables X at the program points s.
The following definition [4] formalizes the original idea of program
slicing by Weiser [22]:

DEFINITION 3.1. For a statement (program point) s and a vari-
able x, the (static backward executable) slice P ′ of the program
P with respect to the slicing criterion 〈s, {x}〉 is any executable
program with the following properties:

1. P ′ can be obtained by deleting zero or more statements from
P ;

2. If P halts on the input I , then, each time s is reached in P ,
the value of x at s, is the same in P and in P ′. If P fails to
terminate, then s may be reached more times in P ′ than in P ,
but P and P ′ have the same value for x each time s is executed
by P .

The standard approach to characterizing slices, and the correspond-
ing relation being slice of, are based on the notion of program de-
pendency graph [14, 16], as described by Binkley and Gallagher
[4]. Dependency graphs can be built out of programs, and describe
how data propagate at runtime. Following the program slicing ap-
proach, we could be interested in computing dependencies on state-
ments: s′′ depends on s′ if some variables which are used inside s′′

are defined inside s′, and definitions in s′ reach s′′ through at least
one possible execution path. Also, s depends implicitly on an if-
statement or a loop if its execution depends on the boolean guard.

EXAMPLE 3.2. Consider the program below and the derived de-
pendency graph (edges which can be obtained by transitivity are
omitted): s8 depends on both s5 and s7 (and, by transitivity, s1)

y := v + 1

s1

s6

s7s3

s4

s5 s8

s2

w := 3s2 s6 z := 3
s3

s5

s4
v := z + w

v := 4
w := z + 4
z := 1 s7

s1 (x ≤ y)?

s8

since v is not known statically when entering s8. On the other hand,
there is no dependency of s8 on either (i) s6, since z is not used in
s8; or (ii) s2, since w is always redefined before s8. The depen-
dency of s7 on s1 is implicit since 4 does not depend on x nor y,
but s7 is executed conditionally on s1.

There exist a number of techniques for building and analyzing de-
pendency graphs, allowing to study how information propagates

127

among statements. Usually, the basic rules for detecting a depen-
dency between s1 and s2 are

• Control dependence edges: s1 represents a control predicate
and s2 represents a component of the program immediately
nested withing the control predicate s1;

• Flow dependence edges: s1 defines a variable x which is used
in s2, i.e., x ∈ def (s1) ∩ ref (s2) and x is not further defined
in any statement between s1 and s2.

As noted by Ward [21], there is clearly a gap between the definition
of slicing, given in Def. 3.1, and the standard implementation based
on program dependency graphs, outlined above. Anyway, we think
that this is not because, in general, the notion of dependency is
something untied to slicing and simply used for implementing.
Rather, because slicing and dependencies are usually defined at
different levels of approximation. In particular, we can note that
Def. 3.1 defines slicing by requiring the same behavior, w.r.t. a
criterion, between the program and the slice, i.e., we are specifying
what is relevant as a semantic requirement. On the other hand,
we can see above that PDGs consider a notion of dependency
between statements which corresponds to the syntactic presence
of a variable in the definition of another variable. In other words,
slices are usually defined at the semantic level, while dependencies
are used for implementation and therefore defined at the syntactic
level. This means that, the gap between slicing and dependencies is
due to the well known gap between semantics and syntax. In this
paper, the idea is to partially fill this gap by identifying a notion
of semantic dependency corresponding to the slicing definition
given above, in order to characterize the implicit parametricity of
the notion of slicing on a corresponding notion of dependency.
Note that the PDG approach is based on the computation of used
variables in the expression e, i.e., the variables e depends on.
Therefore, we wonder if this set can be rewritten by considering
a semantic form of dependency leading towards standard slicing.
Moreover, we study how this dependency can be then replaced by
other forms of dependencies, modeling what is relevant to a given
computation, and this results in generating different weakenings of
slicing.

One of the first works aiming to formalize the notion of depen-
dency is the information flow logic by Amtoft and Banerjee [3].
This logic allows to formally derive, by structural induction, the set
of all the independencies among variables. In Fig. 1, we use the
original notation proposed by the authors, where [x ⋉ y] is read as
the current value of x is independent of the initial value of y, and
holds if, for each pair of initial states which agree on all the vari-
ables but y, the corresponding current states agree on x. Hence, T#

stands for sets of independencies, and G is a set of variables rep-
resenting the context, i.e., (a superset of) the variables at least one
test surrounding the statements depends on. Moreover, in the rules
we introduce a new notation which will be useful in the following:
y e ⇔ y ∈ VARS (e).

In our aim of defining slicing in terms of dependencies, the first
thing we have to observe on this logic is that it always computes
(in)dependencies from the initial values of variables. This fact,
makes its use for slicing not so straightforward, since it loses the
local dependency between statements. In order to understand what
we mean, consider for example the program fragment P = w :=
x + 1; y := w + 2; z := y + 3. At the end of this program, we
know that z only depends on the initial value of x, but, by using the

G ⊢ {T#
0 } x := e {T#}

if ∀[y ⋉ w] ∈ T#. (x 6= y ⇒ [y ⋉ w] ∈ T#
0)

(x = y ⇒ (w /∈ G ∧ ∀z e. [z ⋉ w] ∈ T#
0)

G0 ⊢ {T
#
0 }s1{T

#} G0 ⊢ {T
#
0 }s2{T

#}

G ⊢ {T#
0 }if e then s1 else s2{T

#}
if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x e. [x ⋉ w] ∈ T#

0)

G0 ⊢ {T
#}s{T#}

G ⊢ {T#}while e do s{T#}
if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x e. [x ⋉ w] ∈ T#)

Figure 1. A fragment of the independency logic

logic in Fig. 1, we lose the trace of (in)dependencies which, in this
case, would involve all the three assignments. Indeed, this logic,
is more suitable for forward slicing (which is the one considered
by the authors [3]), since it fixes the criterion on the input. In fact,
forward slicing finds out all the statements affected by the variables
in the criterion. In the trivial example given above, if we consider
as criterion the input of x, then we obtain that all the statements
depend on x. Therefore, any slice of the original program contains
all of them [3].

Now, let us make some observations. In this section we de-
scribed two different approaches to slicing, one based on PDGs
and the other based on a logic for independencies. What we would
like to underline is that even if these methods follow opposite direc-
tions from the criterion for computing slices, both are explicitly and
strongly based on a notion of dependency which is clearly syntac-
tic. In PDGs, the notion of dependency is implicit in the definition
of the set ref (s), where the set of all the variables referred in the
evaluation of the expression e in s is exactly the set of all the vari-
ables appearing in the expression e, i.e., all the variables x such
that x e. In the logic, more explicitly, we use exactly this notion
of dependency for characterizing the set of independencies holding
during the execution of a program.

These observations lead us to the possibility of defining slicing
in terms of dependencies by forgetting the way we want to compute
it, for instance in the forward or in the backward direction. At
this point, in order to obtain different notions of slicing we can
simply focus our attention on how we can define new kind of
dependencies. The first step towards a generalization of the way
of defining slicing is to consider semantic dependencies, where
intuitively a variable is relevant for an expression if it is relevant
for its evaluation. For example, z + y − y does not semantically
depend on y. This semantic notion can then easily generalized in
what we will call abstract dependency, where a variable is relevant
to an expression if it affects a given property of its evaluation.

4. Abstract dependencies for program slicing
As explained in Sec. 3, we are particularly interested in finding
which variables might affect the evaluation of e in the assignment
x := e or in a control statement with guard e, i.e., which variables
belong to the set REL (e) of the variables relevant in the evaluation
of e. As already pointed out, standard dependency calculi compute
REL (e) as VARS (e). In the following definition, e is said to se-
mantically depend on x (written x Se) if the evaluation of e may

128

change depending on x, i.e., if there exist two values for x leading
to different values of e.

DEFINITION 4.1 (Semantic dependencies, Dep). Let x ∈ VAR,
Y ⊆ VAR.

x Se ⇔ ∃σ1.σ2 ∈ Σ. ∀y 6= x. σ1(y) = σ2(y)
∧ E JeK (σ1) 6= E JeK (σ2)

Y Se ⇔ ∃y ∈ Y. y Se

The formulation of x Se can be rewritten as

∃σ ∈ Σ, v1, v2 ∈ V. E JeK (σ [x← v1]) 6= E JeK (σ [x← v2])

By using this notion of dependency, we can characterize the subset
of VARS (e) containing exactly only, and all, the variables which are
semantically relevant for the evaluation of e. This way, we obtain a
notion of dependency which implies deriving more precise slices,
namely, we are able to remove statements a standard, syntactic
analysis would leave. Consider the following running example.

EXAMPLE 4.2. Consider the program:

P ≡ sx ; sy ; sw ; z := w + y + 2x2 − w ;

where sx, sy and sw define, resp., x, y and w, and e
def
= w + y +

2x2 − w. We want to compute the slice P ′ of P affecting the final
value of z (i.e., the slicing criterion S is the final value of z). If we
consider the standard notion of slicing, then it is clear that we can
erase sw without changing the final result for z. Considering the
standard PDG approach, we would have a dependency between
z and w, since w is used where z is defined. Consequently, the
slice obtained by applying this form of dependency would leave the
program unchanged. On the other hand, if the semantic dependency
is considered, then the evaluation of e does not depend on the
possible variations of w, which implies that we are able to erase
sw from the slice.

Consider now abstract properties of data: in this context, the
picture is quite different. The abstract calculus of dependencies
is a weaker version of its standard (concrete) counterpart: it is
often the case that e (semantically) depends, with respect to the
considered abstract property, on a strict subset of VARS (e) (and,
also, of REL (e), defined w.r.t. x Se). Given an abstract property
ρ, e depends on x w.r.t. the property ρ (written x

ρ
 e) if, although

all the variables, but x, have the same property, the evaluations of
e may have a different property. In other words, the property ρ of e
does not depend on x when the rest of the input state is fixed w.r.t. ρ.
Note that this definition is ambiguous since it does not specify
how the expression is evaluated in terms of the abstract input. We
suppose the analysis of abstract dependencies to be based on the
concrete semantics, as it happens, for example, in program slicing,
where abstract dependency properties are derived by analyzing the
control flow graph of the program, i.e., a representation of the
program relying on its concrete semantics. In this case, we define
the so called narrow abstract dependencies.

(Narrow) abstract dependencies

The following definition is called narrow since it follows the same
philosophy as narrow abstract non-interference [9], where we con-
sider abstractions for observing input and output, but these abstrac-
tions are observations of the concrete evaluation of the expression4 .

4 Note that, in the following of the paper, in order to simplify the notation
and the construction, we consider the same property in input and in output

DEFINITION 4.3 (Ndep). Let ρ ∈ UCO(℘(V)).

x
ρ
 N e⇔ ∃σ1, σ2 ∈ Σ.∀y 6= x. ρ(σ1(y)) = ρ(σ2(y))

∧ ρ
“

E JeK (σ1)
”

6= ρ
“

E JeK (σ2)
”

Note that ρ is always applied to singletons (ρ(v) stands for ρ({v})).
Therefore, the focus is merely on how domains behave on single
values. As an important result, we have x

ρ′

 N e ⇔ x
ρ′′

 N e for
every ρ′ and ρ′′ inducing the same partition on singletons. Since
it is straightforward to note that x

ρ
 N e is affected only by Π(ρ),

rather than by ρ itself, in the following we only consider, without
loss of generality, partitioning domains.

Note that Ndep is reasonable from a practical point of view,
since it fits in the framework of several analysis techniques, and
in particular in program slicing. However, this notion suffers the
problem of adding some false dependencies; this is due to the fact
that also the concrete value of variables different from x can vary
in the input changing the value of e, although their property ρ is
fixed.

EXAMPLE 4.4. Consider the program in Example 4.2 and con-
sider the PAR property. If we compute the set of relevant variables
for the parity of e, then we can note that, still, we keep the indepen-
dency from w, but also that the parity of e does not even depend on
any possible variation of x. Therefore, the outlined non-standard
version working on properties may lead to a smaller (more pre-
cise) slice. In fact, if we consider the abstract dependencies with
ρ = PAR, the independency [z ⋉ x] holds after the assignment,
since the parity of the evaluation of e does not change by modify-
ing x, which means that the slice can erase the statement sx.

At a first sight, in the previous example, the independency of the
parity of e from x appears to be due simply to the fact that, in e,
the parity of x is a constant, since 2x2 is always even. However, a
deeper analysis would note that we can look simply at the abstract
value of x only because the operation involved (the sum) in the
evaluation is complete [7, 11] w.r.t. the abstract domain considered
(PAR). The following example, shows that, if we deal with opera-
tions which are not complete for the considered abstract domain,
then it is not sufficient to look at the abstract value of the variable
for deriving the dependencies.

EXAMPLE 4.5. Consider the program in Example 4.2, and the
SIGN domain. In this case, even if the sign of the expression 2x2

is constantly positive, still the sign of z might change due to a
concrete variation in x (e.g., consider y = −4 and two executions
in which x is resp. 1 and 5). Therefore, x has to be considered
as relevant to S although the sign of 2x2 (the only sub-expression
containing x) is constant. This can be derived also by considering
the logic of independencies, since, by varying the value of x, we
indeed can change the sign of e. These issues will play a rôle in
defining a different notion of abstract dependency (Sec. 7).

The key point in the examples above is that, by considering abstract
dependencies, we are at the same time abstracting the criterion, i.e.,
we aim to detect which variables affect a property of e (e.g., sign)
instead of the exact value. The problem is that the correspondence
between abstraction of the dependency and abstraction of the crite-
rion is not so straightforward.

for the evaluation of e. Nevertheless, the whole construction can be gener-
alized by using two different abstractions.

129

The problem is that, even if we consider semantic [abstract]
dependencies, we still could not be able to reach the most precise
slice for a given criterion. This loss of precision occurs whenever
we have to deal with control statements which implicitly remove
some semantic dependencies in a way which is not detectable by
looking only at semantic [abstract] dependencies for expressions.
Consider, for example

if (y + 2x mod 2) == 0 then w := 0 else w := 0

then we can erase the dependency between the guard and x, since
the value of the guard does not depend on x, but we cannot remove
the dependency between w and y, annulled by the semantics of the
if (the variation of y cannot change the final value of w). The only
way to detect this independency is to realize that the final value of
w is invariant w.r.t. the evaluation of the guard, and this requires
more specific semantic analyses of statements, which go beyond
the aim of this paper.

Hence, what we propose here is a sound approximation of
abstract slicing, i.e., slicing w.r.t. abstract criteria, obtained by using
abstract dependencies for pruning the syntactic PDG, since many
dependencies only hold at the syntactic level. As underlined in the
example above, the problem is that in this framework we are only
able to prune flow dependence edges, while the control dependence
ones need more specific analyses for being erased.

Now, computing a slice consists in deleting statements which
are not reachable in the PDG, starting from the information pro-
vided by the slicing criterion. It is easy to see that abstract depen-
dencies lead to smaller slice (therefore, they imply a weaker notion
of slicing), because a statement is less likely to be reachable (i.e.,
to be kept in the slice) in the pruned PDG.

5. A constructive approach to abstract
dependencies

This section discusses a constructive way to compute abstract de-
pendency. By means of the (domain-dependent) definition of oper-
ations on abstract values, it is possible to automatically obtain (an
over-approximation of) the set of relevant variables.

An algorithm describing this approach is provided. Importantly,
it must be pointed out that, as far as simple numerical domains
are concerned, the interested reader will not find dramatic compu-
tational improvements w.r.t. the brute force, exponential approach
which takes all possible abstract values for each variable, and ac-
tually goes into the quantifiers explicitly or implicitly involved in
Def. 4.3. In fact, computational effort can be saved if the domain is
big and many variables are involved, and a significant part of them
is found to be irrelevant. Yet, this work mainly focuses on giving an
insight on how abstract dependencies work, and provides a reason-
able basis for applications where domains can be really huge and
complicated.

5.1 Checking Ndep

We discuss the main ideas for constructively computing narrow de-
pendencies. The algorithm in Fig. 2 tries to find, incrementally and
starting from ∅, a set of variables which are provably not relevant to
the studied expression. This is done by checking whether a change
in such variables does not make a difference in the evaluation. Fi-
nally, the set-complement of the maximal set of variables for which
irrelevance can be proved is returned.

First, note that, in the realm of static analysis, the concrete se-
mantics cannot be used directly as it appears in Def 4.3. Hence, we
will define narrow dependencies in terms of the abstract semantics
E J·Kρ:

DEFINITION 5.1 (Atom-Adep). x
ρ
 AT e ⇔

∃σ1, σ2 ∈ Σ. ∀y 6= x. ρ(σ1(y)) = ρ(σ2(y)) ∧

¬ATOM
“

E JeKρ (ρ(σ1) ∪ ρ(σ2))
”

Being the domains partitioning, the non-atomicity requirement on
the evaluations of e amounts to say that all concrete evaluations
(which yield singletons) on ρ(σ1)∪ ρ(σ2) would not be abstracted
by the same abstract value (this is the crucial issue in Ndep), i.e.,
σ1 and σ2 may lead to different values for e. Indeed, Definitions
4.3 and 5.1 are equivalent:

THEOREM 5.2. For every e and x, x
ρ
 N e iff x

ρ
 AT e.

Proof. Suppose x
ρ
 N e does not hold; we prove that also x

ρ
 AT e

is false. The hypothesis amounts to say that, if there exist σ1, σ2

such that ∀y 6= x. ρ(σ1(y)) = ρ(σ2(y)), then ρ(E JeK (σ1)) =

ρ(E JeK (σ2)). Note that

ρ
“

E JeK (ρ(σ1(y)))
”

= ρ
“

S

y′∈ρ(σ1(y)) E JeK (y′)
”

= ρ
“

E JeK (σ1(y))
”

by the additivity of the abstract domain. Since σ1(y) is a singleton
and ρ is partitioning, we have that ρ(E JeK (σ1(y))) is an atom
of ρ. Analogously, we obtain that ρ(E JeK (σ2(y))) is an atom of
ρ. Moreover, these two sets are the same by the hypothesis that
Ndep does not hold. Hence, their union is an atom and is equal to
E JeKρ (ρ(σ1) ∪ ρ(σ2)) by additivity of all the functions involved.

On the other side, suppose x
ρ
 AT e does not hold: we prove

that neither Ndep holds. Suppose that there exist σ1, σ2 such that
∀y 6= x. ρ(σ1(y)) = ρ(σ2(y)); the hypothesis guarantees the
atomicity of E JeKρ (ρ(σ1) ∪ ρ(σ2)). By additivity, this fact im-
plies that both ρ(E JeK (σ1(y))) and ρ(E JeK (σ2(y))) are atomic
and equal, otherwise their union could not be an atom. Therefore,
we have the thesis, i.e., Ndep does not hold. 2

In general, the interest is in finding the set of relevant variables,
rather than verifying if a given x is relevant. To deal with abstract
computations, we provide operations on ρ (e.g., in PARSIGN, rules
like [odd] + [odd] = [even] or [poseven] ∗ [⊤] = [even],
and an abstract ⊔ to model ∪ on states). This leads to a com-
putable E JeKρ, which, however, may lose some information, and
also the Ndep/Atom-Adep equivalence. One direction of the impli-
cation of Theorem 5.2 still holds: if a dependency x

ρ
 N e exists,

then x
ρ
 AT e is detected as true. This is a soundness condition, if

the purpose is to over-approximate the set of relevant variables as
required, e.g., in computing correct slices.

Dependencies are computed according to Atom-Adep, in order
to approximate Ndep. In the brute force approach, Atom-Adep is
verified by checking ATOM

“

E JeKρ (ε)
”

for every ε atomic (i.e.,
abstraction of a singleton {σ}).

EXAMPLE 5.3. Let ρ = PARSIGN. In order to compute the set
of ρ-dependencies on e [x, y, z], we must compute E JeKρ on ev-

130

ery possible atomic value5 of x, y and z, i.e., E JeKρ must be
computed 43 times. y is not relevant to e if, for any Vx, Vz ∈
ATOMS (ρ), there exists U atomic s.t. ∀V ∈ ATOMS (ρ) . U =
E JeKρ (〈Vx, V, Vz〉). This amounts to say that changing y does not
affect e.

Indeed, it is possible to be smarter, by taking some arrangements
into account:

• Excluding states: consider dependencies of e [x, y, z] in Ex.
5.3, computed at the program point p. Suppose P JsK

p
infers

εp(y) = [posodd] (Sec. 2). Then, we only need to consider
states of the form 〈Vx, [posodd] , Vz〉 as inputs for E JeKρ at
p.

• Computing on non-atomic states: let E = {[poseven] ,
[negeven]} and O = {[posodd] , [negodd]}. In this case,

∀V ′ ∈ E, V ′′ ∈ O. E JeKρ (〈Vx, V ′, V ′′〉) ≤ U

is implied by the more general result

E JeKρ (〈Vx, [even] , [odd]〉) ≤ U

since E and O are partitions, respectively, of [even] and [odd],
and E JeKρ is monotone: ε′ ≤ ε′′ implies ⇒ E JeKρ (ε′) ≤
E JeKρ (ε′′). This means that results obtained on ε can be used
on ε′ ≤ ε.

Let the set [ε|X] denote all the states ε′ ≤ ε s.t. ∀x ∈ X. ε′(x) =
ε(x), and ∀y /∈ X. ATOM (ε′(y)). To prove e not dependent on
x, we need to prove ATOM

“

E JeKρ (εx)
”

, for any εx ∈ [εp|{x}].
This amounts to say that any variation in x does not lead to an
observable variation in e, whenever all the other variables are fully
specified as atoms. Given e and an atom U , the atomicity condition
AU

e (ε) holds iff E JeKρ (ε) gives U , or there exists a covering
{ε1, .., εk} of ε such that AU

e (εi) holds for every i. Importantly,
AU

e (ε) implies that ρ({E JeK (σ)|σ ∈ ε}) is an atom, and the
second disjunct helps if, due to a possible loss of information,
E JeKρ (ε) > U although ∀ε′ < ε. E JeKρ (ε′) = U .

EXAMPLE 5.4. Let e ≡ x∗x+1 and ρ = SIGN. E JeKρ follows the
usual rules on ∗ and +: [pos] ∗ [pos] = [pos], [neg] ∗ [neg] =
[pos], [⊤]∗[⊤] = [⊤], [pos]+[pos] = [pos], [⊤]+[pos] = [⊤].
This is enough to compute E JeKρ (〈[neg]〉) = E JeKρ (〈[pos]〉) =
[pos]. Yet, although [⊤] = [pos] ∪ [neg], the general result
E JeKρ (〈[⊤]〉) = [pos] cannot be proven with these rules, since
[⊤] ∗ [⊤] + [pos] = [⊤]. In this case, the result A[pos]

e (〈[⊤]〉)
can be proven because of the second condition on the covering
{〈[pos]〉, 〈[neg]〉}.

By Atom-Adep, to prove the non-relevance of x it is enough to have
∃V.AV

e (εx) for every εx ∈ [εp|{x}], where it is not required to
have the same atom for all states. We define X-coverings of states:
a covering {ε1..εk} of ε is an X-covering if (i) for every x ∈ X,
εi(x) = ε(x) holds for every i; (ii) for every y /∈ X, εi(y) is
ε(y) or one of its direct sub-values, i.e., a V < ε(y) s.t. ∄V ′. V <
V ′ < ε(y). The assertion A′

e (ε,X), where X ⊆ VAR, holds iff
∃U.AU

e (ε), or there exists an X-covering {ε1..εk} of ε, such that
∀i. A′

e (εi, X). Intuitively, an X-covering is a set of restrictions

5 Atoms in ρ are [poseven], [posodd], [negeven], and [negodd];
since this is a partition of concrete values, we describe all concrete inputs
by computing E JeKρ on atoms.

f u n c t i o n FINDNDEPS { / / e is left implicit
nonDep := ∅ ; / / can be modified by prove()
PROVE (εp , VARS (e)) ;
re tu rn VARS (e) r nonDep ; } / / relevant vars

procedure PROVE (ε ,X) {
i f (A′

e (ε, X)) then {
nonDep := nonDep ∪ X ;

} e l s e foreach (x ∈ X) {
PROVE (ε ,X r {x}) ; } }

Figure 2. The FINDNDEPS algorithm

on a state, which do not involve X. Clearly, the condition for
the non-relevance of a set X is related to the definition of X-
covering, since [εp|X] can be obtained by repeatedly applying to εp

(and the newly obtained states) the X-covering operation. Indeed,
A′

e (ε, X) implies ATOM
“

E JeKρ (εX)
”

on every εX ∈ [ε|X] and,
therefore, the non-relevancy of X.

The algorithm FINDNDEPS (Fig. 2) starts by trying to prove
A′

e (εp, VAR); since {ε} is the only VAR-covering of any ε,
this condition is only satisfiable if AU

e (εp) holds, i.e., if e de-
pends on no variables. Otherwise, the set X is decreased non-
deterministically until some A′

e (εp, X) is proven. A′
e (εp, X)

means that an atomic value for e was obtained without the need
of restricting X variables; therefore, X only contains non-relevant
variables.

PROPOSITION 5.5. If A′
e (εp, X) can be proven, then there is no

x ∈ X such that x
ρ
 AT e.

Proof. Consider the definition of A′
e: if AU

e (εp) holds for some
atom U , then there are no dependencies. Otherwise, let εi be one
of the states belonging to the X-covering; for every σi ∈ εi,
E JeK (σi) belongs to the same atom, i.e., there is no way to distin-
guish between two computations. This means that it is possible to
change X variables to any value, without changing the property of
e. Since this is true for every εi, and these states are a covering of
εp, the thesis follows. 2

Importantly, the assertions A′
e (εp, X) and A′

e (εp, Y) guarantee
X ∪ Y

ρ
 AT e not to hold, even if A′

e (εp, X ∪ Y) cannot be di-
rectly proven. The final result of FINDNDEPS is VARS (e) r Z,
where Z is the union of all sets Zi such that A′

e (εp, Zi) can be
proved. It is an over-approximation of relevant variables REL (e).

FINDNDEPS may deal, in principle, with infinite domains, since
non-dependency results can be possibly proven without exploring
the entire state-space; in fact, if AU

e (ε) can be proven, then it is
not needed to descend into the (possibly infinite) set of sub-states
of ε. This is not possible in the brute force approach. It is also
straightforward to add bounds in order to stop refining states if
some computational threshold has been reached.

6. Dependencies erasure in the abstract
framework

The problem of computing abstract dependencies can be observed
from another point of view: given e and a set X of variables, we

131

ρ := ρ0 ; / / the initial domain
rep eat {

inputQueue := [εp] ; / / one-element queue
wh i l e (notEmpty (inputQueue)) {

ε := extract (inputQueue) ;
i f (∄V. AV

e (ε)) then {
i f (ATOM (ε)) then { / / on VARS (e) r X

/ / at this point,V is not atomic
V := E JeKρ (ε) ;
ρ := ATOMIZE (ρ, V) ;
/ / the queue still has 1 element
inputQueue := [εp] ;

} e l s e { / / {ε1..εk} is an X-covering of ε
foreach (i) {

insertInQueue (inputQueue ,εi)}}}}
} u n t i l (ρ has not been modified in the while loop) ;
re tu rn ρ ; / / the domain s.t. X

ρ
 N e does not hold

Figure 3. The EDEP algorithm.

may be interested in soundly approximating the most concrete ρ
such that X

ρ
 N e does not hold. This can be accomplished by

repeatedly simplifying an initial domain ρ0 in order to eliminate
abstract values which are responsible for dependencies. In order
to avoid dependencies on X, we should have A′

e (εp, X), i.e.,
AV

e (εX) should hold for any εX ∈ [εp|X]. If this does not
hold for some ε, then ρ is modified to obtain the atomicity of
V = E JeKρ (ε).

We design a simple algorithm EDEP (e, ρ0, X) (Fig. 3), which
repeatedly checks if there exists V s.t.AV

e (ε). Initially, the current
state ε is εp; then, it is progressively specialized to states belonging
to one of its X-coverings, until one of the following holds:

• AV
e (ε); in this case, ρ is precise enough to exclude dependen-

cies on X in ε, and is not modified;

• ε cannot be refined anymore (it is atomic on VARS (e)r X) but
V is non-atomic; in this case, ρ needs to be simplified in order
to obtain ATOM (V).

States are processed by means of a queue; we stop when all the
states have been consumed without any modification to ρ, i.e.,
when no non-atomic V has been found. As in FINDNDEPS, states
are progressively restricted, and computations on E JeKρ (ε) are
avoided if the desired property already holds for ε′ > ε.

The simplifying operator on ρ and V is a domain trans-
former, and works by removing abstract values in order to obtain
ATOM (V). Formally,

ρ′ = ATOMIZE (ρ, V)
def
= {U ∈ ρ | V ∩ U = ⊥ ∨ V ≤ U}

The final ρ is an approximation of the most precise ρ′ s.t. X
ρ′

 N e
is false:

THEOREM 6.1. ρ
def
= EDEP (e, ρ0, X) makes e not narrow depen-

dent on X. In other words: the final ρ satisfies non-dependency
of e on X, that is, for every ε which is atomic on VARS (e) r X,
E JeKρ (ε) is atomic.

Proof. The algorithm halts if, in processing εp, ρ is not changed.
Processing εp involves computing E JeKρ on sub-states when re-

quired, in order to prove the atomicity property on every concrete
state represented by εp (we exploit monotonicity of E JeKρ on
states). This is precisely obtained if every state is removed from
the queue before any modification to ρ occurs. 2

On the practical side, the loss of precision in abstract computations
may lead to remove more abstract values than strictly necessary
from the semantic point of view.

It is important to note that EDEP works as long as Ae can be
computed on the initial domain (in this case, no problems arise
in subsequent computations, since the complexity of ρ can only
decrease). This can possibly happen even if ρ0 is infinite (see
the last part of the previous section). Moreover, differently from
FINDNDEPS, there is no reasonable trivial counterpart, since brute
force would be really impractical.

7. An application to secure information flow
As suggested before, our approach to abstract dependencies (and
abstract slicing) has been inspired by a recent abstract interpretation-
based model of non-interference in language-based security, namely,
abstract non-interference [9]. Non-interference [12, 19] is an in-
formation flow property of programs, enforcing confidentiality of
data. Let program data be divided into a public part L and a private
part H ; non-interference is satisfied if an external user is not able
to acquire information about the initial value of variables classified
as H by only observing the final value of variables classified as
L . It is well known that confidentiality can be modeled by means
of dependency relations among the different components of a pro-
gram [6, 3, 2]. This model makes clear the strong relation existing
between non-interference and dependencies. In a recently proposed
model, abstract non-interference [9], abstractions come into play
in modeling the observational power of attackers. We show, in this
section, that the relation existing between slicing/dependencies and
non-interference is even stronger in this abstract context. In par-
ticular, computing abstract dependencies, provides a technique for
computing abstract non-interference certifications. This means that
our approach to abstract slicing, is not simply a pure generaliza-
tion of a well-known technique, but provides new insights in links
existing between different computer science fields.

7.1 Abstract dependencies.

In introducing narrow dependencies (Sec. 4), we mention the pos-
sibility of choosing the semantics which is used to evaluate ex-
pressions. Taking an abstract semantics leads to an alternative ver-
sion of abstract dependencies, which is the one that we have to
consider for reasoning on the most general notion of abstract non-
interference.

To this end, we formalize the same notion for abstract depen-
dencies in a more general way, by considering the abstract evalua-
tion of e in ρ (i.e., the best correct approximation of E JKρ):

DEFINITION 7.1 (Adep). Let ρ ∈ UCO(℘(V)).

x
ρ
 A e ⇔ ∃σ1, σ2 ∈ Σ. ∀y 6= x. ρ(σ1(y)) = ρ(σ2(y))

∧ E JeKρ (ρ(σ1)) 6= E JeKρ (ρ(σ2))

Note that, false dependencies are be avoided in this approach
(indeed, this has been one of the main reasons why the related,
non-narrow notion of abstract non-interference was introduced).
Clearly, Adep makes the assumption that the analyzer can compute

132

directly the abstract semantics (in the following, a computable ver-
sion of E JKρ will be used). It is worth noting that Adep is a stronger
notion than Ndep [9], in the sense that abstract dependencies are
less likely to occur than their narrow counterpart: x

ρ
 A e implies

x
ρ
 N e. Moreover, in both Ndep and Adep, the more precise the

chosen domain, the more dependencies may occur.

7.2 Dealing with Adep

The FINDNDEPS algorithm can be modified in order to account for
Adep. This is, in a sense, a stronger property than Ndep (Sec. 4).
The main difference between Ndep and Adep is the choice of the
semantics used to observe the program execution. In the latter, we
suppose to analyze dependencies in the abstract semantics E JeKρ.
To compute Adep, we do not need to define a new implementable
version of abstract dependencies, as we did with Ndep. Instead, we
can change FINDNDEPS to obtain a second version FINDADEPS, as
shown in the next two paragraphs.

7.2.1 Comparing executions.

The atomicity of results (Def. 5.1) is no longer required: it is
enough to guarantee that E JeKρ is the same in every state ε′ com-
patible with ε (i.e., ε′ ≤ ε); This leads to a weaker definition of
AU

e (ε):

AU
e (ε) ≡ E JeKρ (ε) ⊜ U

∨ ∃ covering {ε1, .., εk}. ∀i.A
U
e (εi)

E JeKρ (ε) ⊜ U ≡ E JeKρ (ε) = U

∧ ∄ε′ < ε. E JeKρ (ε′) < U

The predicate ⊜ can be defined compositionally on the structure of
e, and, obviously, relies on our knowledge of the abstract domain
(i.e., it is necessary to know how abstract operations behave).

7.2.2 Replacing expressions.

During computations on a state ε, an expression e may be replaced
by any e′ which is equivalent w.r.t. E JeKρ on every ε′ ≤ ε. In
this case, the replacement is useful if the new expression is simpler.
For example, e1 + e2 can be replaced by e1 + U in ε, provided
E Je2K

ρ (ε) ⊜ U . To replace an expression by a constant value
may simplify the original expression and, possibly, get rid of some
variables. The substitution is parametric on the state, hence its
validity cannot be extended to larger states: this is important when
states are restricted (e.g., in computing AU

e (ε) and A′
e (ε, X)).

EXAMPLE 7.2. Let ε′′ < ε′. In order to be equivalent on ε′′, two
expressions e1 and e2 should be such that ∀ε ≤ ε′′. E Je1K

ρ (ε) =
E Je2K

ρ (ε). Indeed, this condition does not imply the more gen-
eral one on ε′, since there may exist ε ≤ ε′ s. t. E Je1K

ρ (ε) 6=
E Je2K

ρ (ε).

The algorithm can exploit this additional information by collecting
pairs (e0, ε) whenever computations show e0 to be equivalent to e
on ε (e.g., when e0 = V and E JeKρ (ε) ⊜ V is verified). In further
computations, if the analysis is performed on a state ε′ ≤ ε (for
example, in provingAU

e (ε′)), then e0 can be safely used instead of
e, thus resulting, generally, in an efficiency improvement.

It is worth noting that the replacement of expressions cannot
be done when we consider Ndep, because the concrete semantics
could be able to distinguish two executions even if E J·Kρ cannot.

EXAMPLE 7.3. Let e ≡ y + 2x2 be analyzed in PARSIGN
w.r.t. narrow dependency. Since 2x2

⊜ [poseven], we may think
it safe to replace e by y+[poseven]. However, given a fixed value
for y, there exist two values of x such that the final value can be dis-
tinguished. Indeed, this is correctly accounted for in FINDNDEPS:
evaluating E JeKρ (ε) does not yield an atom, so that FINDNDEPS
does not exclude dependencies on x.

7.3 Enforcing abstract non-interference.

In abstract non-interference, malicious external users can only see
input and output data up to a degree of precision which is described
by two abstract domains η and ρ. ANI models the property that an
attacker observing η of public input and ρ of public output is unable
to break the secrets of a program P (we write (η)P(ρ) if P satisfies
this security requirement).

Giacobazzi and Mastroeni [10] give a systematic method for
enforcing ANI, i.e., a logic whose assertions take the form (η) s (ρ)
for a statement s and two domains η and ρ. Consider, in particular,
two rules (the second is specialized on η = ρ), which allow to
derive ANI properties for expressions and assignments6.

A1 :
(η) JeK (ID) ⊑ ρ

(η) e (ρ)
A4 :

(ρ) e (ρ) , x public
(ρ)x := e (ρ)

The expression (η) JeK (ID) in A1 denotes the secret kernel [9] (on
expressions) of e w.r.t. η, that is, the most precise domain ρk which
cannot break secrets on e when the domain on input is η (i.e., such
that (η)e(ρk)). Importantly, an approximation of the secret kernel
can be obtained by the EDEP algorithm (Sec. 6), which provides
a mechanizable version of the derivation, close to the original,
semantic one [9]. Rule A4 means that an assignment to a public
variable is secure if the assigned expression does not depend on any
private variables w.r.t. ρ (i.e., (ρ) e (ρ)⇔ ¬((VARSH (e))

ρ
 e)7).

Whenever we are interested in having the same observation both
in input and in output, we can note that, if (ρ) JeK (ID) ⊑ ρ, then
(ρ) e (ρ). Indeed, (ρ) JeK (ID) returns the most concrete output ob-
servation making the expression evaluation independent from the
private variables when the input observation is ρ; if this is computed
as a fixpoint, then LFPID (λX. (X) JeK (ID)) characterizes a harm-
less attacker observing the same property in input and in output,
i.e., (ρ) e (ρ). Unfortunately, the function is not monotone, there-
fore we are not sure to find exactly the most powerful attacker [9].

The fixpoint computation is incorporated in the EDEP algorithm
(possibly, not starting from the ID domain). Therefore, it is possible
to use the abstract dependency computation in order to approximate
the ANI property for assignments and, consequently, make the
whole derivation systematic. In particular, we may replace A18 by

A1
′ :

ρe ⊑ ρ

(ρe) e (ρ)
where ρe

def
= EDEP

`

e, ID, VARSH (e)
´

The resulting domain ρe also characterizes an attacker observing
the same property both in input and in output, i.e., (ρe) e (ρe).

6 Note that, here we don’t consider control structures since in the original
logic only single variable guards are considered.
7 VARSH (e)

def
= VARS (e) ∩ H

8 This is the only rule which cannot be directly implemented in its original
formulation.

133

8. Conclusions
The aim of the present paper is to provide a deeper insight on the
strong relation between slicing and dependency. A new point of
view is provided on the relation between the standard definition and
the computation of slicing, which allows to look at slicing para-
metrically on the notion of dependency. Since dependency is the
notion formalizing what we mean for relevant when defining slic-
ing, it is possible to get a general framework where we can obtain
new and, possibly, weaker definitions of slicing, deriving from new
notions of dependency. By moving from syntactic to semantic de-
pendency, and from concrete to abstract semantic dependency, we
move from standard towards semantic slicing, and further towards
abstract slicing. Unfortunately, as underlined before, the general-
ization of the standard approaches to slicing in this abstract depen-
dency framework is not sufficient for generating precise abstract
slices, i.e., slices that cut “all” the irrelevant statements w.r.t. an
abstract criterion. This is due to the implicit independencies that
can be generated in the semantics of control statements, which
need more specific analyses for being detected. In this direction
can be exploited the strong relation between dependencies and non-
interference, since the abstract framework for non-interference has
been widely explored.

Another important issue, is that while the syntactic approach to
slicing is clearly implementable, the same does not hold, in general,
at the semantic level. In this direction, a constructive approach to
the characterization of (abstract) semantic dependencies is shown,
but still a lot of work has to be done in order to obtain a real
implementation. Moreover, the introduction of abstract properties
in the context of dependencies leads to discover new interesting
points of view. In particular, given a program, a criterion and a
fixed set of variables X, we could wonder which is the most precise
property which makes the criterion independent from X. The paper
shows a constructive approach for dealing with this new challenge.
Finally, the new abstract approach to dependencies, is used in
the context of language-based security. Due to the strong relation
between the notion of non-interference in language-based security
and the notion of dependency [6], the constructive approach to
abstract dependencies can be exploited in order to approximate,
given a program, the strongest harmless attacker, i.e., the most
precise observation of the program which is unable to disclose
confidential information.

Acknowledgments
This work was funded in part by the Information Society Tech-
nologies program of the European Commission, Future and Emerg-
ing Technologies under the IST-15905 MOBIUS project, by the
Spanish Ministry of Education under the TIN-2005-09207 MERIT
project, and the Regional Government of Madrid under the S-
0505/TIC/0407 PROMESAS project.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of

dependency. In Proc. POPL. ACM, 1999.

[2] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information
flow in object-oriented programs. In Proc. POPL. ACM, 2006.

[3] T. Amtoft and A. Banerjee. A logic for information flow analysis
with an application to forward slicing of simple imperative programs.
Science of Computer Programming, 64(1), 2007.

[4] D. Binkley and K. Gallagher. Program slicing. Advances in
Computers, 43, 1996.

[5] I. Cartwright and M. Felleisen. The semantics of program depen-
dence. In Proc. PLDI. ACM, 1989.

[6] E. Cohen. Information transmission in computational systems. ACM
SIGOPS Operating System Review, 11(5), 1977.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. POPL. ACM, 1977.

[8] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proc. POPL. ACM, 1979.

[9] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parame-
terizing non-interference by abstract interpretation. In Proc. POPL.
ACM, 2004.

[10] R. Giacobazzi and I. Mastroeni. Proving abstract non-interference. In
Proc. EACSL, volume 3210 of LNCS. SV, 2004.

[11] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract
interpretations complete. Journal of the ACM, 47(2), 2000.

[12] J. Goguen and J. Meseguer. Security policies and security models. In
Proc. SSP. IEEE, 1982.

[13] H. Hong, I. Lee, and O. Sokolsky. Abstract Slicing: A new approach
to program slicing based on abstract interpretation and model
checking. In Proc. SCAM. IEEE, 2005.

[14] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions
of programs. ACM TOPLAS, 11(3), 1989.

[15] S. Hunt and I. Mastroeni. The PER model of abstract non-
interference. In Proc. SAS, volume 3672 of LNCS. SV, 2005.

[16] T. Reps. Algebraic properties of program integration. Science of
Computer Programming, 17, 1991.

[17] T. Reps and W. Yang. The semantics of program slicing and program
integration. In Proc. Colloq. on Current Issues in Programming
Languages, volume 352 of LNCS. SV, 1989.

[18] X. Rival. Abstract dependences for alarm diagnosis. In Proc. APLAS,
volume 3780 of LNCS. SV, 2005.

[19] A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
2003.

[20] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3, 1995.

[21] M. Ward and H. Zedan. Slicing as a program transformation. ACM
TOPLAS, 29(2), 2007.

[22] M. Weiser. Program slicing. In Proc. ICSE. IEEE, 1981.

[23] G. Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, 1993.

134

