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Abstract—In this paper, a sequential stopping rule for the esti-
mation of a probability by means of Monte Carlo simulation is
analyzed. It is shown that the proposed estimator is almost unbi-
ased, and guarantees a given relative precision irrespective of .
Under very mild conditions, the method also guarantees a certain
confidence level for a given relative estimation error, provided that

does not exceed a maximum value. An extension to importance
sampling is discussed.

Index Terms—Importance sampling (IS), Monte Carlo (MC)
methods, sequential stopping rule, simulation.

I. INTRODUCTION

MONTE CARLO (MC) simulation is a powerful tool
which enables the investigation of complex systems.

MC techniques essentially aim at estimating an unknown
parameter. In this paper we restrict to the case when the desired
parameter is a probability, .

The reliability of the estimation is usually described by its
mean-square error (MSE) or by the confidence level associ-
ated with a given error interval. In conventional MC, no matter
what quality measure is used, the required sample size for a
given quality depends on the unknown , with sample size in-
creasing as decreases. Importance sampling (IS) or other vari-
ance-reduction techniques can reduce the required sample size
[1]; however, in general, its dependence on cannot be avoided.

In practice, two methods can be used to determine sample
size in MC simulations. In the first approach, which we will
term fixed-size MC (FSMC), sample size is fixed beforehand,
based on certain a priori knowledge. The second approach is
to use a sequential stopping procedure, in which sample size is
(randomly) determined by the outcome of the simulation, using
knowledge gained from the simulation itself. A common rule
is to let the simulation run until the empirical (i.e., estimated)
relative precision (standard deviation divided by mean) reaches
a prescribed value [2]. In [3], sufficient conditions are given for
the asymptotic validity of confidence-based sequential stopping
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rules, as the desired confidence volume tends to zero. However,
the nonasymptotic behavior of this and other classes of stopping
rules is difficult to analyze.

In this paper, we study a simple sequential stopping rule for
MC simulation, based on simulating until a given number of
“important” events are observed. Although this kind of stopping
rule is common practice in simulation [4], no rigorous analysis
of its statistical properties is available, to the authors’ knowl-
edge. We will see that, for all practical values of , the behavior
of this method is similar (in terms of bias, MSE, and confidence
level) to that exhibited by FSMC when the required sample size
is assumed to be known in advance. The advantage of the pro-
posed method is that, without assuming such knowledge, it can
achieve a prescribed estimation quality.

The rest of the paper is organized as follows. Section II states
the estimation method and analyzes its bias. Section III charac-
terizes its MSE and relative precision, and Section IV analyzes
confidence level as a function of error interval. Section V pro-
poses an extension to IS and discusses its properties. Finally,
Section VI gives conclusions and suggests future work.

II. MOTIVATION AND STATEMENT OF THE ESTIMATOR. BIAS

Let be a system, and let be an event defined in terms of
the system output variables. We focus on the problem of esti-
mating the probability of the event . To this end, we assume
that a number of statistically independent simulations of the
system are carried out. The independence assumption is stan-
dard in analyses of MC and IS techniques [5], [6], and is partly
justified by analytical simplicity. Note that this assumption does
not prevent application to systems with memory, as will be dis-
cussed in Section VI. In the following, we will refer to each
independent system simulation as a realization. The number of
realizations is the sample size of the simulation experiment. The
outcome of the th realization is a Bernoulli random variable1

which equals one if occurs, and zero, otherwise. Each realiza-
tion for which occurs will be called a successful realization,
or a hit.

In FSMC with sample size , the number of successful real-
izations is a binomial random variable with parameters and

1Random variables are denoted in boldface throughout the paper, and vectors
are underlined.
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, and is estimated as . This estimator
is unbiased and has an MSE [1]

(1)

where . A standard quality measure for an estimator
is its relative precision, defined as the square root of the MSE

divided by .2 From (1), in order to obtain a given relative pre-
cision in FSMC, the sample size should be inversely propor-
tional to .

A sequential stopping method is proposed in which realiza-
tions are run until a given number of hits is reached. The
sample size is thus a negative binomial random variable [7, p.
96]:3

(2)

with and . It is shown in Ap-
pendix A that for

(3)

For low values of , (3) implies that . This
suggests the following estimator:

(4)

We will refer to this estimation method as negative-binomial
MC (NBMC).

The normalized bias for the estimator (4) is obtained
from (3) as

(5)

It is also shown in Appendix A that for , is a nega-
tive, decreasing function of , with

(6)

and that increases with . As a consequence of (6),
for and for . The normalized

bias is plotted in Fig. 1 for several values of . It can be seen
that is very small; indeed, it is observed from (6) that, for

, . Therefore, can be considered essentially
unbiased for practical purposes.

III. MEAN-SQUARE ERROR AND RELATIVE PRECISION

In NBMC with , it is shown in Appendix B that

(7)

for (8)

2For an unbiased estimator, this coincides with the coefficient of variation,
Var[p̂pp]=p.
3The negative binomial distribution is sometimes defined as the number of

unsuccessful realizations nnn � N .

Fig. 1. Normalized bias in NBMC.

Fig. 2. Relative precision in NBMC and in FSMC.

According to (7), the relative precision is
better than for all values of . Assuming that the
average sample size is an integer, we can make a straight-
forward comparison with FSMC with that sample size. From (1)
and (8), it is seen that for a given average sample size, and as-
suming , the relative precision in NBMC is degraded no
more than a factor with respect to that in FSMC.
In general, for not necessarily integer, considering a sample
size in FSMC

(9)

for and . Thus, the degradation factor for the
relative precision is divided by the square root of
the ratio of average sample sizes.

Fig. 2 shows the bound in (8), exact values obtained by nu-
merical computation, and exact values in FSMC with the same
(integer) average size. It is seen that the relative precision in
NBMC is very similar to that in FSMC. It can also be observed
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that the bound (8) is a very good approximation for the exact
MSE in NBMC, except when is high and is very small.

In view of (7), NBMC can be used to assure a relative preci-
sion better than a prescribed value, despite being unknown. In
fact, it is seen that relative precision is nearly independent of .

IV. CONFIDENCE LEVEL FOR AN ERROR INTERVAL

The confidence for an interval ; , , is
defined as the probability that the estimated value lies in that
interval, and can be computed in NBMC as ,
with ,

, and

(10)

(11)

where and , respectively, denote rounding to the nearest
integer toward and toward .

Let , where
is the incomplete gamma function,

. The following results, given by
(12)–(15), hold for , as shown in Appendix C:

(12)

for (13)

for (14)

for

(15)

Expressions (12) and (13) characterize the convergence of
to an asymptotic value as . Equation (15) establishes
that, if the confidence interval is wide enough and does not
exceed a given value, the confidence is guaranteed to be greater
than its asymptotic value. It should be remarked that the condi-
tions expressed in (13)–(15) are not necessary. In fact, numerical
computation shows that for some combinations of param-
eters outside the scope of the conditions in (15).

We now particularize to intervals of the form
, where is a relative error margin, and

compare the confidence obtained in NBMC with that in FSMC.
In FSMC with sample size , the confidence level for a given

is

(16)

Fig. 3. Confidence as a function of error margin in NBMC and in FSMC, for
p = 10 .

To obtain a meaningful comparison, we choose equal to the
average sample size in NBMC, , for integer. Fig. 3
depicts as a function of in NBMC and in FSMC, for several
values of and for (note that in all cases shown

is an integer). Results for other values of are very similar.
The curves have jumps, caused by the discrete character of .
These jumps are much more evident in FSMC, due to the smaller
number of possible values of with that method. It can be seen
that the confidence level in NBMC is similar to that in FSMC
with the same error margin and average (or deterministic, in
FSMC) number of realizations.

Fig. 4(a) shows, with dashed lines, the guaranteed confidence
as a function of , with as a parameter. This confidence

level is guaranteed only for not exceeding the value repre-
sented in Fig. 4(b). The dashed curves in Fig. 4(a) are the limit
of those in Fig. 3 as , for the range of satisfying the
conditions in (15) with . Fig. 4(a) also shows,
with a solid line, the minimum confidence level that can
be guaranteed (by proper selection of ) as a function of .
This is given as subject to the conditions expressed in
(15). The resulting curve delimits the range of confidence levels
that can be guaranteed. For a given error margin , any confi-
dence value above this curve can be assured using adequate ,
for below the maximum value corresponding to that . The
figure shows that the sufficient conditions (15) cover all cases
of practical interest. Namely, any confidence greater than 85%
can be assured for any margin lower than 120%; and any con-
fidence greater than 80% can be assured for any margin lower
than 67%.

The selection of as a function of the desired confidence-
error performance is depicted in Fig. 5. Fig. 5(a) shows the min-
imum value of that assures a given confidence level for a
given relative error , provided that does not exceed the value
in Fig. 5(b). These can be used as “design curves” in NBMC
simulations. As an example, if we wish to guarantee that lies
in the interval ( ) with 95% confidence,

should be used, with a maximum of 0.129 (this perfor-
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Fig. 4. Guaranteed confidence in NBMC. (a) Guaranteed confidence �c

and minimum confidence that can be guaranteed �c . (b) Maximum p for
guaranteed confidence �c.

mance is quite similar to the “rule of thumb” for FSMC stated
in [5, p. 157]).

V. AN EXTENSION TO IMPORTANCE SAMPLING

In this section, we discuss a straightforward generalization of
NBMC to IS that preserves its bias properties. Unfortunately,
this generalization lacks the feature of guaranteed relative pre-
cision, due to the variability introduced by the weighting in IS.
However, we will see that this degradation is approximately the
same as that in the fixed-size case.

Let be a vector containing the random variables that consti-
tute the input of the system at the th realization, with joint prob-
ability density function (pdf) (independent of ). With IS,
the pdf of is changed, or “biased,” to . In fixed-size IS
(FSIS) with sample size , is estimated as ,
where denotes the set of successful realizations, and

is the weight that must be applied to each hit so
as to unbias the estimation [8].

Fig. 5. N and maximum p for guaranteed confidence level in NBMC.
(a) Minimum N that guarantees confidence level. (b) Maximum p for
guaranteed confidence level.

The stopping rule for MC introduced in Section II can directly
be applied to IS. realizations are carried out to obtain hits,
and is estimated as

(17)

We will term this method negative-binomial IS (NBIS).
The two factors in (17) are statistically independent, because

the weight associated with a successful realization depends only
on the input variables of that realization. Due to the IS biasing,
the simulation actually generates hits with a probability dif-
ferent (usually larger) than . The first factor in (17) can be seen
as an NBMC estimator of . Defining as the region of input
values that produce a hit, the mean of the second factor can be
computed as

(18)
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This implies that the normalized bias in NBIS coincides with
that of an NBMC estimator of . The relative precision, how-
ever, is degraded with respect to NBMC, because of the vari-
ability introduced by the second factor.

The squared relative precision in NBIS is computed as fol-
lows. Let and denote, respectively, the MSE and the mean-
square value of the associated NBMC estimator of . Let
denote the conditional variance of the weight in a successful re-
alization, and denote the coefficient of variation
of the conditional weight. Taking into account that

(19)

the following expression is obtained:

(20)

According to (20), the relative precision in NBIS is expressed
as that in the underlying NBMC process, , augmented
by a factor that depends on the conditional weight distribution
only through . The referred factor indicates, for a given and

, how efficiently we are sampling the region . In view of
this, we can define the efficiency factor of an IS technique
(whether NBIS or FSIS) as the relative precision in the under-
lying MC process, divided by the actual relative precision with
IS. In the following, we compare the efficiency factor in NBIS
and in FSIS.

As seen in Section III, , with
for all of practical interest, and thus
. With this approximation, (20) is transformed into

(21)

Since NBMC is approximately unbiased,
, and, therefore

(22)

On the other hand, in FSIS with a given sample size

(23)

where and is the MSE in FSMC
with probability [see (1)]. It is observed that the efficiency
factor in FSIS and in NBIS is approximately the same, namely

. In both estimation methods, the best input dis-
tributions, in the sense of the efficiency factor, are proportional
to the original distribution across , so that ; any such
input distribution produces a relative precision equal to that in
the underlying MC process.

Clearly, the efficiency factor alone does not characterize the
relative precision of the IS estimation method. In FSIS, for and

given, relative precision can always be improved by increasing
(i.e., concentrating the input distribution on ), as stems

from (23) and (1). In NBIS, for and given, increasing

Fig. 6. Relative precision in NBIS example. (a) Variance scaling. (b) Mean
translation.

is also beneficial, since it reduces simulation time while main-
taining a given relative precision. Consequently, the techniques
that have been developed for the design of good biasing (i.e., for
achieving small and large ) in FSIS [1] are fully applicable
to NBIS.

In order to assess the degradation in NBIS, we have simu-
lated two simplified estimation experiments, in which is the
event that a normalized Gaussian random variable exceeds a
given threshold, and the input distribution is biased using vari-
ance scaling or mean translation, respectively. In either case, the
simulation consists of a number of trials of the NBIS exper-
iment (each with a number of realizations determined by the
stopping rule). The th trial yields a value of the estimator,
and the MSE is estimated as . is chosen
as .

Fig. 6 shows the resulting relative precision for several values
of with as a parameter, as well as the bound (8) for
NBMC. Note that in our examples, determines the threshold,
and is related to the scaled variance or the translated mean,
with corresponding to no biasing, i.e., NBMC. Table I
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TABLE I
c IN NBIS EXAMPLES

shows the computed . The relative precision is similar to that
of the associated NBMC when mean translation is used, because

is low, and is larger for variance scaling, with higher values
of . In both cases, for not too small ( ), the relative
precision deviates more from NBMC as is increased. This
is because a greater implies, in our examples, a larger .
For small ( ) this behavior changes, because the ap-
proximations leading to (22) are less accurate. Compared with
FSMC with sample size (see Fig. 2), NBIS shows some
degradation, which is larger for variance scaling. The reduced
MSE in mean translation compared with variance scaling is in
accordance with general behavior in FSIS [2].

VI. CONCLUSIONS AND FURTHER WORK

A stopping rule has been proposed for MC simulation which
estimates a probability without any a priori information, in
particular without knowledge of the required sample size. The
rule consists in simulating as many realizations as necessary to
obtain hits. The resulting method, NBMC, is essentially un-
biased, and its relative precision is bounded irrespective of .
Under very mild conditions, the estimator also guarantees a cer-
tain confidence level for a given error margin. The quality of
the estimation can thus be fixed a priori by properly selecting

. NBMC achieves similar performance (either in terms of rela-
tive precision or confidence for an error margin) to that obtained
in FSMC with perfect knowledge of the necessary sample size.
The sample size in NBMC is random, with mean and coef-
ficient of variation bounded by , for a single simulation;
in a series of simulations, this variability is reduced by the law
of large numbers.

The estimation method is applicable for simulations com-
posed of independent realizations. An example is static (“snap-
shot”) simulations, as used in system-level analyses of mobile
cellular networks. In particular, NBMC has been successfully
used for estimating the outage probability in code-division mul-
tiple-access systems [9]. When statistical dependence (system
memory) needs to be modeled, the technique of event simula-
tion, introduced in [10], can be exploited to attain independent
realizations.

A generalization to IS has been proposed. NBIS retains good
bias properties, but its relative precision is not guaranteed. The
degradation of relative precision, compared with NBMC is ap-
proximately the same as in the fixed-size case, as are the design
criteria for the IS biasing.

Further work is required to relax the sufficient conditions
stated in (8) and in (13)–(15). An interesting line of research is
also the analysis of other generalizations of NBMC to IS. An IS
method that guarantees precision or confidence level would be
highly valuable. Another topic for future research is the possi-
bility to incorporate adaptive IS techniques [11] into this frame-
work.

APPENDIX A
COMPUTATION OF AND BIAS IN NBMC

Let denote for a given , let be its
-transform

(24)

and let denote . Dividing (24) by
and integrating from 1 to yields

(25)

This integral is computed carrying out a partial fraction expan-
sion of the integrand, and (3) results.

We point out that for close to 1, (3) contains large terms
that partially cancel, making its numerical evaluation difficult.
In this case, a more convenient expression can be derived, noting
that and using a Taylor expansion of

, with in (3).
The lower bound in (6) will hold if and only if

and . To prove the first inequality, we note
that for any positive random variable

(26)

Applying (26) to the variable and taking into account that
, the desired result is obtained. To establish the

second inequality, we introduce the following notation:
, . Since ,

from (2), it stems that

(27)
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Using (2) and (27) we express for as

(28)

The upper bound in (6) is equivalent to , and
is established as follows. We observe that for and

, the inequality holds. With the substitution
, the foregoing inequality is transformed into

for . Using this to bound the integral
in (25), the desired result is obtained as

(29)
Since is a derivable function of , it will be monoton-

ically decreasing with if and only if . The
integrand in (25) is derivable, and thus, from the Leibnitz rule

(30)

From (3), the following relationship is obtained for :

(31)

Using (31), (30) is transformed into

(32)

which is negative because of (29).
Using (31) and (29), we can write

(33)

which establishes the increasing character of with .

APPENDIX B
MEAN-SQUARE ERROR IN NBMC

The MSE in NBMC can be expressed as

(34)

Using the notation introduced in Appendix A, the term
is given by

(35)

Considering that , for the following
bound is obtained from (35):

(36)

According to (26)

(37)

From (34), (36), (37), and the lower bound in (6), it stems that

(38)

with and
.

We will show that for , whereas
for . Computing

(39)

and solving for , it is seen that only one solution
exists in , given by

(40)

with for and for
. and if

, which implies that for , .
is a decreasing function with ,

and thus for . Therefore, (38) assures
that (7) holds for .

The behavior of implies that is concave,
and solving for yields 0 and 1/3. Thus
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for , and then (38) implies (8) for this range
of values.

APPENDIX C
CONFIDENCE LEVEL IN NBMC

In the following, we denote, for convenience,
and .

Proof of (12)

Let denote the binomial probability function with
parameters and evaluated at . From the relationship between
binomial and negative binomial distributions [7, p. 96]

(41)

(42)

(43)

(44)

Let denote the Poisson probability function with param-
eter evaluated at . Since and as ,
the Poisson theorem [7, p. 113] implies that and

, with ,
. This establishes (12).

Proof of (13) and (14)

We first consider the term . For a given , which
corresponds to in the interval , it is seen
from (41) that is a continuous, differentiable function
of . In addition, is monotonically increasing in the re-
ferred interval, as we now show. It is easily seen that the term

is monotonically increasing with for ,
and decreasing for . If , we have that

, which substituted
into the inequality implies that .
Therefore, all terms in (41) are decreasing, and
is increasing. If , implies that ,
therefore all terms in (42) are increasing, and so is

.
Let be the binomial distribution with parameters ,

, and the Poisson distribution with parameter . The in-
formation divergence between these distributions sat-
isfies [12, Th. 12]

(45)
For a binomial distribution with parameters ,

, can be computed in a similar manner

to that used in [12] for . Let , and let
denote the Poisson distribution with parameter . Then

(46)

Using (46), (45), and the inequality ,
can be bounded as

(47)
From (45), using Pinsker’s inequality [12, Sec. 2] and taking

into account that , we obtain

(48)

Likewise

(49)
Since is a continuous, monotonic increasing function
in , is upper bounded in that interval
by . Taking into account
that and

, we obtain from (48) and (49)

(50)

(51)

Since , we can write

(52)

(53)

Therefore, can be bounded as

(54)

A similar approach can be used for . If , (11)
implies that , and therefore, . Let us
assume that . The interval of corresponding to a
given is . Applying analogous
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arguments as before, with replacing , replacing ,
, and , we

obtain

(55)

(56)

and

(57)

From inequalities (54) and (57), we obtain (13) for .
If , we have , so that ,
and (14) results.

Proof of (15)

We consider a set of parameters , , , and , with .
First, we will show that for

, i.e., for . Then we will show that
for , i.e., for ,
and as in (15). Combining these results, we will obtain the
inequality .

In order to prove that , let us consider an arbi-
trary , and the corresponding interval for ,

. As noted in the proof of (13) and (14), since
, each of the terms in

(41) is a continuous, monotonically decreasing function of in
that interval. Therefore, is monotonically increasing in
that interval, and thus it suffices to consider .
We will show that increases with for

, i.e., that
for , . In view of (41), this will estab-
lish that decreases with , and thus

.
Let us define

with . We need to show that
for . Computing as if were a continuous
variable and taking into account that , it
is seen that . Therefore, it suffices to show that

. In the following, we denote .
is an infinitely derivable function of for , with a

minimum at . Let us denote

(58)

Using Taylor’s theorem, we can express for as

(59)

with . It is easily verified that the last term in (59) is
positive. Therefore, it suffices to prove that the sum of the other
two terms is nonnegative, i.e., that

(60)

Applying Taylor’s theorem to and substituting
we can write

(61)

Similarly, with we have

(62)
In view of (61) and (62), a sufficient condition for inequality
(60) to hold is

(63)

We now show that, for , the sum of the last two terms
within the brackets, which will be denoted as , is negative.
Expressing

(64)

it is easily seen that the roots of numerator and denominator are
lower than , and .
Thus, for , is negative. Then (63)
can be replaced by the sufficient condition

(65)

which holds for , i.e., for .
In order to prove that , let us consider an arbitrary

and the corresponding interval for ,
. Since , each of

the terms in (44) is a continuous, monotonically
increasing function of in that interval. Therefore, is also
monotonically increasing in that interval, and thus, it suffices to
consider . From (44), we can write

(66)
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We will show that
for , . In view of (66), this

will establish that increases with , and thus
.

Let us define in analogy with

with . We need to show that for
. is minimum for , defined

as is minimum for , and for

(67)

(68)

with . Now the last term in (67) is not positive [as
it was in (59)]; however, it is a decreasing function of , and
therefore, we can bound

(69)

Let . We now show that for
. Considering as a function of , from (68), we

compute

(70)

(71)

(72)

with

(73)

Expressing , it can be seen that
all the coefficients of , as well as the term , are negative
for . Thus for . Therefore, (72) is
also negative, and (71) is a decreasing function of , so that

(74)
Then (70) is an increasing function, with

(75)

and thus, . Using Taylor expansions of the log-
arithms in (68), we can express

(76)

with , and therefore,
.

From (69), as

(77)

It is easily seen that, for , the right-hand side of
(77) decreases with . Thus, for as in (15), i.e., for

, (77) implies that

(78)

Multiplying (78) by , it stems that the
inequality will be satisfied if

(79)

which is easily seen to hold for , i.e., for as given
in (15).
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