
An FPGA Implementation of the Powering Function with
Single Precision Floating-Point Arithmetic∗

Pedro Echeverŕıa, Marisa López-Vallejo
Department of Electronic Engineering, Universidad Politécnica de Madrid (Spain)

Email: {petxebe, marisa}@die.upm.es

Abstract

In this work we present an FPGA implementation of a single-precision floating-point arith-
metic powering unit. Our powering unit is based on an indirect method that transforms xy

into a chain of operations involving a logarithm, a multiplication, an exponential function and
dedicated logic for the case of a negative base. This approach allows to use the full input range
for the base and exponent without limiting the range of the exponent as in direct methods.
A tailored hardware implementation is exploited to increase the accuracy of the unit reducing
the relative errors of the operations while high performance is obtained taking advantage of
the FPGA capabilities for parallel architectures. A careful design of the pipeline stages of the
involved operators allows a clock cycle of 201.3 MHz on a Xilinx Virtex-4 FPGA.

1 Introduction

With the speed and size of current digital circuits increasing at the rate of Moore’s law, FP-
GAs enable more developers to implement very sophisticated algorithms traditionally done
in software running on slower general purpose processors. Moreover, FPGAs are specially
characterized by their flexibility at a suitable low cost. For these reasons, FPGAs are now ex-
panding their traditional prototyping roles to help offload computationally intensive functions
from the processor.

On the other hand, many of these computationally intensive applications that are good
candidates for hardware acceleration require high precision, floating point (f.p.) arithmetic.
In this context, developing f.p. designs on FPGAs is still challenging, because the hardware
implementation of f.p. operators requires very large areas and extremely deep pipelines.

There are numerous previous works on the implementation of f.p. arithmetic operators on
FPGAs [1, 2]. Nevertheless, they are mainly focused on the four basic mathematical operators:
Addition/Subtraction, Multiplication, Division and Square Root.

Other operators have not been studied so deeply, basically due to their enormous complexity.
Among these operators we can find the trigonometric functions or other complex arithmetic
operators as the exponential function or the logarithm. This is the case of the powering
function xy, implemented in this work, a computationally intensive function widely used in
scientific computing, computer 3D graphics or signal processing. Due to the its complexity, the

∗This work has been partly funded by BBVA under contract P060920579 and by the Spanish Ministry of
Education and Science through the project TEC2006-00739.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

direct implementation in hardware of the powering function unit with single f.p. arithmetic is
not feasible. In previous literature we can only find some approximations to the xy function. A
technique and a hardware architecture for powering functions is presented in [3], however this
implementation only deals with a previously known constant exponent. This work is extended
in [4] allowing configurable exponents that can be integers or the inverse of an integer.

In this paper we present a complete powering function that allows any base or exponent
in the range provided by single-precision floating-point arithmetic. Instead of using a direct
approach to xy, our unit is based on the decomposition of the powering function into a chain
of operators. The main contributions of this work are the following:

• Complete implementation of single-precision f.p. xy, with no reduction in the input
ranges of the function.

• High-performance and standard single-precision f.p. implementation of the two complex
operators required for computing xy, the logarithm and the exponential function.

• Tailored implementation of the f.p. operators that allows reduced area and improved
working frequency.

• Improved accuracy obtained by extending the precision of the partial results.

This paper is composed as follows: in section 2 the method employed to calculate the pow-
ering function is analyzed, while the architecture developed is exposed in section 3. Section 4
details the experimental results and finally some conclusions are drawn.

2 Powering function

The complexity of the powering function, xy (where x is the base and y the exponent),
makes very difficult to implement an efficient and accurate operator in a direct way without
any range reduction. However it can be reduced to a combination of other operations and
calculated straightforward with the transformation:

z = xy = ey×ln x (1)
A direct implementation of this approach with three sub-operators (a logarithm, a multiplier

and an exponential) presents three main problems that have to be effectively handled:

• The enormous complexity of both exponential and logarithm functions. However, the
use of table-driven methods in combination with range reduction algorithms [5, 6] makes
possible their implementation.

• The computation with a negative base results in Not a Number even though the powering
function is defined for negative bases and integer exponents, see Section 2.2.

• Equation 1 can lead to a large relative error in the result. Although the sub-operators
were almost exact (upto half ulp) the relative error from each sub-operator spreads
through the equation generating a final large relative error [7]. Extending the precision of
the partial results is an effective way to minimize these relative errors, see Section 3.2.1.

2.1 Single-Precision Floating-Point Arithmetic

In the IEEE Standard for binary f.p. arithmetic each number is composed of a sign (s), a
mantissa (m) and an exponent (exp), being the value of a number:

s×m′ × 2exp′ = s× h.m× 2exp−bias

where h, also called hidden bit, can be 0 or 1 and bias is a constant that depends on the
bit-width of the exponent, (e), being its value 2e−1−1. The precision of the number, single or

Input Range Output Range
function f.p. denormalized function f.p. denormalized

ex (−∞,∞) (-103.98, 88.72) No (0,∞) (0,∞) Yes

ln x (0,∞) (0,∞) Yes (−∞,∞) (-103.27,88.72) No

× (−∞,∞) (−∞,∞) Yes (−∞,∞) (−∞,∞) Yes

Table 1. Sub-operators Range Analysis.

double, determines its bit-width, 32 or 64 bits. For single precision (32 bits), 1 bit corresponds
to s, 8 to exp and 23 to m. With this number representation f.p. format presents up to five
different types of numbers: Normalized (the common numbers, where h is 1), Denormalized
(numbers very close to zero, h is 0), signed Zeros and Infinities, and Not a Number, NaN,
(to indicate exceptions). The combination of the exponent and mantissa values determines
when we are working with one type of number or another. Handling five types of numbers
implies an increase of the complexity of the operators working with f.p. arithmetic because
in addition to the calculation unit itself, preprocessing and postprocessing of the input and
output numbers is required.

The use of denormalized numbers is responsible of most of the prenormalization and post-
normalization algorithms. Generally, f.p. arithmetic operations need a normalized value for-
mat s × 1.m × 2exp′ for the calculation. Denormalized numbers have to be converted to
normalized ones in the preprocessing (also called prenormalization) requiring the detection
of the most significant bit (msb) of the mantissa and an adjustment of the exponent and
mantissa values depending of the position of the msb.

During postprocessing (also called postnormalization), the result of the calculation unit has
to be analyzed to determine to which type of number corresponds and to make adjustments
to its exponent and mantissa. Again, most postprocessing algorithms deal with denormalized
numbers.

2.2 Operators Analysis

One of the key issues of the proposed xy implementation is the analysis of the input and
output ranges of the sub-operators in single-precision f.p. arithmetic. From this analysis,
summarized in Table 1, we can improve the performance and accuracy of the powering function
on an FPGA, see Section 3.2.1. For each sub-operator, we have analyzed the input and
output ranges of the functions and the resolution allowed with single precision f.p. arithmetic,
and specifically if they have resolution for denormalized numbers. The output range of the
exponential function, (0,∞) is achieved with a reduced input range of (-103.98, 88.72), as
it tends quickly to zero for negative inputs and to infinity for positive ones. We can also
notice that for any number smaller than 2−24 the result is always 1. This means that the
denormalized numbers, at the input, have no resolution as their result is equal to e0 = 1
and therefore can be treated as a zero input. For lnx, as it is the inverse function of ex, its
analysis is exactly the same as for ex just by interchanging inputs for outputs, not generating
now denormalized numbers at the output. Finally the multiplication operation has no special
feature, using the complete range for both input and output including denormalized numbers.

Looking to the operation ranges from Table 1 and equation 1, it can be thought that the
input ranges for xy would be (0,∞) for the base and (−∞,∞) for the exponent. However,
the analysis of the powering function presents a variation respect the range expected from
its sub-operators. The real input range of the base and exponent of the powering function
includes the full range, (−∞,∞), for both base and exponent. However, some limitations
have to be introduced due to the type of results that can be obtained when that range is used.

For positive bases there is no problem and the result will be positive real numbers. But for
a negative base, the common result is a complex number unless the exponent is an integer
number, being the result in this case a positive real number when the exponent is even and a
negative real number when it is an odd number. This circumstance can be effectively handled
in a FPGA with just some extra logic, as will be explained in Section 3.2.

3 Architecture

The feasibility of our approach depends on the achievement of high-performance units
for the three operators involved in the powering function. While FPGA single precision
f.p. arithmetic multipliers are well known and there exist several implementations, very few
implementations of both exponential and logarithm units can be found in the literature.

3.1 Exponential and Logarithm functions

To the best of our knowledge there are only two previous works focused on the exponential
function [8] [9], and only one for the logarithm function [10] (from the same authors of [9]).
The first one [8], employs an algorithm that does not exploit the FPGA characteristics, and
consequently presents poor performance. The other two implementations [9, 10] are part of
a common work and are designed suiting with FPGA flexibility (using internal tailored fixed
arithmetic and exploiting the parallelism features of the FPGA) achieving much better results.
They are parameterizable implementations that, additionally to single f.p. format, also allow
smaller exponent and mantissa bit-widths and are both based on input range reduction and
table-driven methods to calculate the function in the reduced range. Our ex and lnx units,
based on these units, include the following innovative features:

• Single precision f.p. arithmetic extension. [9, 10] were designed considering only nor-
malized numbers, not denormalized. Additional logic has been introduced to handle
denormalized numbers at the output of ex and the input of lnx.

• Redesign of units to deal only with single precision. The feature of bit-width config-
urability of the base designs has been removed. Thus, the resources needed have been
reduced because specific units, just for single precision, have been developed.

• Simplification of constant multiplications. As suggested in [9], conventional multipliers
have been removed where the multiplications involved constant coefficients, improving
performance and reducing size.

• Unsigned arithmetic. In [9, 10] internal fixed arithmetic with sign is used. However,
some operations (like the ones involving range reduction and calculation of the exponent
for the result in ex) are consecutive and related, and the sign of the result can be inferred
from the input sign. For such operations signed arithmetic has been replaced by unsigned
arithmetic with the corresponding logic reduction.

• Improved pipelining. The speed is enhanced by systematically introducing pipeline
stages to the datapath of the exponential and logarithm units and their subunits.

3.1.1 Exponential function

The algorithm used to compute ex [9] combines an approximated calculation of the exponent
of the result ±1 (k in Figure 1) with an input range reduction technique to obtain a smaller
number range for the exponential computation. Applying the following expression to x the
f.p. exponential function is greatly simplified:

x ≈ k ln 2 + y → ex ≈ 2key

Figure 1. Exponential function unit.

being y the number that verifies that transformation. This way the computation of the
exponent and the mantissa of the result is split. The used algorithm is as follows. The
exponential function works internally from a fixed number of 35 bit-width, x fixed. This bit-
width is determined by the upper bound of the function (achieved with msb corresponding to
26 as seen in Section 2.2) and that the result of the f.p. exponential for any number smaller
than 2−24 is always equal to 1. Due to the exponential property:

ea+b = eaeb

the bits of the input number corresponding to an exponent smaller than -24 will have no
impact on the result. This way the bit-width needed for x fixed will be of 31 bits, but four
additional bits are included as guards for the internal operations. k is calculated multiplying
x fixed by 1

ln 2 and rounding the result, while y is obtained subtracting k× ln 2 from x fixed.
The calculation of ey, that will generate the mantissa of the result, also involves a second

range reduction as y can be split: ey = ey1ey2 , corresponding y1 to the most significant bits
of y and y2 to the least significant bits. The calculation of both exponentials is based on
table-driven methods being ey1 calculated directly while ey2 is calculated using the Taylor
formula:

T (y2) ≈ ey2 − 1− y2 → ey2 ≈ 1 + y2 + T (y2)

ey = ey1ey2 = ey1 + ey1(y2 + T (y2))

as can be seen in the bottom part of Figure 1. Finally the exponent of the result is adjusted
depending on the mantissa value and then the postnormalization of the result is applied.

Figure 2. Logarithm unit.

3.1.2 Logarithm function

Due to the logarithm properties of ln(ab) = ln(a) + ln(b) and ln ab = b ln(a) the logarithm of
a normalized number can be computed as:

y = lnx → y = ln(1.mnt) + (exp− bias) ln 2

During the direct computation of this formula a catastrophic cancellation of the two terms
may happen. Consequently, the internal architecture of the unit will need very large bit-widths
for internal variables and very large operators to maintain error bounds.

To avoid this problem, the algorithm centers the output range of the function around zero:

• y = ln(1.mnt) + (exp− bias) ln 2 when 1.mnt ∈ {1,
√

2)

• y = ln(1.mnt
2) + (1 + exp− bias) ln 2 when 1.mnt ∈ {√2, 2)

where we can denote the first element as lnM and the second element (once multiplied by
ln2) as E, see Figure 2.

This way the input range of lnM is reduced to M ∈ [
√

2
2 ,
√

2), with an output range of
[− ln 2

2 , ln 2
2). The calculation of lnM is done with polynomial methods and, to achieve less

than one ulp error at smaller cost, lnM is not calculated in only one step but in two. When
M is close to 1, lnM is close to M−1 so, instead of computing lnM , less resources are needed
if f(M) = ln M

M−1 is calculated and then lnM reconstructed by multiplying by M − 1.

3.2 Powering function

As seen previously in 2.2, the xy function requires not only three sub-operators, but also
some additional hardware to efficiently handle the case of negative bases and integer exponents.

In Figure 3 the solution adopted is shown. The chain of operators is completed with an
exceptions control unit, that analyzes the base and exponent to detect when the exponent is
an integer (and in that case if it is odd or even to decide the sign of the result) and all the
other exceptions of the powering function such as∞0, 0y, 0∞, 1∞, NaN input, etc. Meanwhile,

Figure 3. Powering unit.

the chain of operators will always work with a positive base x′ to avoid the logarithm NaN
result for negative bases. Finally the x′y result obtained, the activated exceptions flags and
the result sign calculated will be analyzed together to obtain xy.

This way, a first implementation of the powering function will require minor changes in the
three sub-operators as only some changes in the internal analysis of exceptions are required.

3.2.1 Improved Implementation
Some modifications have been introduced on the sub-operators to simultaneously obtain two
objectives:

• Improving the accuracy of the result by diminishing the relative error in the partial
results and therefore the global relative error.

• Diminishing the FPGA resources used by removing unnecessary logic.

A first modification is the extension of the output precision of the logarithm unit. This
unit generates the mantissa of the result with an accuracy of 29 bits, the 24 required in
single precision f.p. arithmetic (including the hidden bit) and 5 guard bits used to ensure a
faithfully rounding in single f.p. arithmetic to the required 24 bits mantissa. However, we can
eliminate the rounding, and its corresponding logic, to work in the next operator with a 29
bits mantissa instead of the standard 24 bits mantissa so the relative error associated to the
logarithm function is reduced.

A second modification will be the redesign of the multiplier unit to take advantage of the
type of the partial results that are produced in the modified logarithm unit (not denormalized
numbers and 29 bits mantissa precision) and the numbers that are handled in the exponential
unit (no resolution for denormalized numbers and conversion of input into a fixed number
of 35 bit-width). As seen in Section 2.2, the logarithm unit does not generate denormalized
numbers, so the logic needed to the prenormalization of that input operand can be eliminated.
Additionally the multiplier has to be redesigned to work with the 29 bits mantissa input
generated in the modified logarithm unit. The same circumstances happen with the result of
the multiplier, as the exponential function does not have input resolution for denormalized
numbers. The logic used in the multiplier for the postnormalization of denormalized results
can be also eliminated handling them as zeros. Additionally, the result generated by the
multiplier, before rounding, will have a mantissa bit-with of 52 bits plus a carry bit with
an accuracy of half ulp, while the exponential unit works transforming its input into a 35
bit-width fixed number. So, the rounding stage can be eliminated and we can directly use a
multiplier output of 35 bits mantissa precision.

Slices 18x18 Mult. Block RAMs Clock [MHz] Stages

[9] 1037 0 0 149.0 19

Standard v1 1285 0 0 250.2 19

Standard v2 543 4 1 259.9 17

Improved xy 577 4 1 252.1 17

Table 2. Exponential Operator.
Slices 18x18 Mult. Block Rams Clock [MHz] Stages

[10] 1090 0 3 172.8 13

Standard v1 1361 0 3 233.2 21

Standard v2 933 5 2 241.6 18

Improved xy 848 5 2 241.1 16

Table 3. Logarithm Operator.

Consequently, the last modification to achieve the aforementioned objectives will be the
adaptation of the exponential unit to the new inputs with 35 bits mantissa. This affects to
the conversion of the input into the internal fixed number required. In the standard operator,
although the fixed number obtained has a 35 bit-width it was limited to a real resolution of up
to the 24 bits of the mantissa. Now, as the mantissa has a 35 bits resolution the fixed number
can also have up to 35 bits resolution. In this way the relative error of the exponential and
multiplication units is reduced and therefore the global relative error.

4 Experimental Results

The architecture of the powering unit and its sub-operators has been implemented on a
Xilinx Virtex-4 XC4VF140-11 FPGA. The results are divided into two main parts. Firstly,
the results for the sub-operators for both a direct implementation of xy or the improved
architecture are described. Also the exponential and the logarithm operators are compared
with the base implementations [9, 10]. Secondly, the results for the complete xy are presented.

4.1 Sub-operators: Exponential function, Logarithm and Multiplier

Table 2 summarizes the results obtained for the exponential operator for four different
implementations we have carried out. The first three implementations correspond to single
precision f.p. arithmetic units, a pipelined version of the selected base implementation [9] and
our redesigned units with two configurations. To make a fair comparison with [9], standard v1
uses the same type of FPGA resources as [9], while standard v2, is the optimal configuration
using embedded multipliers, block RAMS and KCM multipliers. The fourth implementation
corresponds to our exponential unit modified for the improved version of xy.

Comparing [9] with v1, it can be observed that the speed of the unit has been substantially
increased by a 67.8% without having increased the number of stages of the pipelined archi-
tecture while the logic used is only 23.9% bigger. This increase is due to the redesign of the
datapath and the multipliers (including new pipeline stages and the use of faster but more ex-
pensive architectures) and the implementation of the logic needed for handling denormalized
numbers that were not considered in [9]. On the other hand, the use of unsigned arithmetic
for consecutive operations instead of signed arithmetic has eliminated unnecessary stages and
logic.

For the optimal implementation, v2, introducing embedded multipliers to replace the biggest
LUT based multiplier in the unit (which is responsible for almost half of the unit area, 592
slices), KCM multipliers where possible and a block RAM for the largest LUT exponent

Slices 18x18 Mult. Block Rams Clock [MHz] Stages

Standard 484 4 0 213.4 8

Improved xy 250 4 0 224.7 6

Table 4. Multiplier.

Slices 18x18 Mult. Block Rams Clock [MHz] Stages

Direct 2019 13 3 201.3 43

Improved 1732 13 3 201.3 37

Table 5. Powering Unit.

table [9] reduces significatively the logic needed, in a 47.6% with respect to the base im-
plementation and 57.7% with respect to v1. Moreover, two pipeline stages are eliminated
replacing the LUT based multiplier while speed is increased in another 3.8%. Finally, the
improved implementation (the adaptation of v2 to the input mantissas of 35 bits precision)
means an increase of a 6.2% of logic used, as the shifter unit in charge of transforming the f.p.
number into a fixed one has to work with a bigger mantissa, and a loss of a 2.6% of speed.

The same comparison, with the same four types of implementations, has been realized for
the logarithm. Now, as can be observed in Table 3, improving the speed of the unit by a
34.9%, has much more impact on the resources used and the number of pipeline stages, using
v1 24.9% more logic than [10] and requiring eight more stages.

For our optimal configuration, v2, now two LUT multipliers are replaced using five em-
bedded multipliers while a coefficient table is implemented as a LUT table instead of using a
Block RAM as its size is very small and it requires few resources. Now the reduction achived
in the resources used has been of 14.4% with respect to [10] and 31.4% with respect to v1,
while three stages are removed in the multipliers and also obtaining an additional increase of
3.6% in the speed. And finally, the version of the logarithm operator for the improved xy,
means another logic reduction of 9.1% and the reduction of two stages as the rounding logic
has been removed.

Table 4 compares our standard implementation of a single-precision f.p. multiplier with the
modified implementation used for the improved xy. The elimination of the logic needed for
denormalized numbers (at the multiplier output and the input corresponding to the logarithm
output) and for rounding, improves the performance of the multiplier, reducing a 48.3% the
logic used and two stages of the pipeline, while the working frequency is speeded up a 5.3%.

4.2 Powering function

Finally, the global results for our powering unit are summarized in Table 5 for two pos-
sible implementations. The first one, named as direct, would be the equivalent to a single
precision software xy calculated straightforward from equation (1) with the modifications
needed to correctly compute negative bases. This way it is composed of the optimal standard
implementations of the sub-operators (v2) and the logic required for exceptions.

On the other hand, the improved implementation includes the proposed modifications to
reduce the relative error and also improve the performance, and is composed of all the modified
sub-operators. As can be observed, in addition to reduce the relative error of the result, the
logic needed for the improved implementation, is 14.2% smaller while the pipeline architecture
is reduced in 6 stages. Considering the sub-operators individually this reduction should be
of only four stages (two from the logarithm and two from the multiplier). An additional
reduction of two stages is obtained parallelizing the last stages of the logarithm with the
multiplier prenormalization logic.

Finally, even though the FPGA used is one of the largest of the family we can remark that
the resources needed for our improved xy represent just a 2% of the logic, 6% of the embedded
multipliers and 0.5% of the block RAMs. Therefore, plenty of resources are left available for
the implementation of other logic where the xy can be integrated.

5 Conclusions

This work has presented an FPGA implementation of the powering function with single
f.p. arithmetic. Our implementation computes xy as a chain of sub-operators, a logarithm, a
multiplier and an exponential function. This approach allows the hardware implementation
of xy without limiting the input range of the base and exponent of the operation while the
introduction of additional logic handles the cases where xy is defined for a negative base.
High performance single f.p. sub-operators have been designed and modified to achieve an
improved xy with the goal of reducing the relative error associated to the approach used. Our
FPGA operator achieves high performance due to a pipelined architecture with a 201.3 MHz
clock and a throughput of one sample per cycle on a Xilinx Virtex-4 FPGA.

References

[1] G. Govindu, R. Scrofano and V. K. Prassana, “A library of parametereizable floating-
point cores for FPGAs and their application to scientific computing,” in The International
Conference on Engineering of Reconfigurable Systems and Algorithms, 2005, pp. 137–148.

[2] X. Wang, S. Braganza and M. Leeser, “Advanced components in the variable precision
floating-point library,” in IEEE Symposium on Field-Programmable Custom Computing
Machines, 2006.

[3] J. A. Pieiro, J. D. Brugera and J. M. Muller, “FPGA implementation of a faithful poly-
nomial approximation for powering function computation,” in Euromicro Symposium on
Digital System Design, 2001, pp. 262–269.

[4] J. A. Pieiro, M. D. Ercegovac and J. D. Bruguera, “Algorithm and architecture for
logarithm, exponential and powering computation,” IEEE Transactions on Computers,
vol. 53, no. 9, pp. 1085–1096, 2004.

[5] P. Tang, “Table-driven implementation of the exponential function in IEEE floating-point
arithmetic,” ACM Transactions on Mathematical Software, vol. 15, no. 2, pp. 144–157,
1989.

[6] ——, “Table-driven implementation of the logarithm function in IEEE floating-point
arithmetic,” ACM Transactions on Mathematical Software, vol. 16, no. 4, pp. 378–400,
1990.

[7] J. Muller, Elementary Functions. Algorithms and Implementation., Birkhauser, Ed., 1997.
[8] C. C. Doss and R. L. Riley, “FPGA-Based implementation of a robust IEEE-754 ex-

ponential unit,” in IEEE Field-Programmable Custom Computing Machines, 2004, pp.
229–238.

[9] J. Detrey and F. de Dinechin, “A parameterized floating-point exponential function for
FPGAs,” in IEEE International Conference Field-Programmable Technology, 2005, pp.
27–34.

[10] ——, “A parameterized floating-point logarithm operator for FPGAs,” in Signals, Sys-
tems and Computers, 2005. Conference Record of the Thirty-Ninth Asilomar Conference,
2005, pp. 1186–1190.

