

Evaluating Sequential Combination of Two Light-Weight Genetic Algorithm-

based Solutions to Intrusion Detection

Zorana Banković, Slobodan Bojanić and Octavio Nieto-Taladriz

ETSI Telecomunicación, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid

{zorana, slobodan, nieto}@die.upm.es

Abstract

In this work we have presented a genetic algorithm

approach for classifying normal connections and

intrusions. We have created a serial combination of two

light-weight genetic algorithm-based intrusion detection

systems where each of the systems exhibits certain

deficiency. In this way we have managed to mitigate the

deficiencies of both of them. The model was verified on

KDD99 intrusion detection dataset, generating a solution

competitive with the solutions reported by the state-of-

the-art, while using small subset of features from the

original set that contains forty one features. The most

significant features were identified by deploying principal

component analysis and multi expression programming.

Furthermore, our system is adaptable since it permits re-

training by using new data.

1. Introduction

Along with providing revolution in communication and

information exchange, Internet has also provided greater

opportunity for disruption and sabotage of data previously

considered secure. As most of the Internet service

protocols were designed at the time when Internet

environment was a non-hostile one, slight attention was

paid to the possibility of security flaws. The current

protocols are the upgrades of the previous ones and have

inherited all the security flaws which make them prone to

various types of attacks. Furthermore, operating systems

contain many bugs that make them susceptible to certain

types of attack. The attacks to Internet service providers

are carried out by exploiting these unknown weaknesses

or security flaws [1].

Computer networks are usually protected against

attacks by a number of access restriction policies that act

as a coarse grain filter (anti-virus software, firewall,

message encryption, secured network protocols, password

protection). Intrusion detection systems (IDS) are the fine

grain filter placed inside the protected network, looking

for known or potential threats in network traffic and/or

audit data recorded by hosts.

Intrusion detection systems have three common

problems: speed, accuracy and adaptability. The speed

problem arises from the extensive amount of data that

these systems need to monitor in order to perceive the

entire situation. Thus, we need to extract the most

important piece of information that can be deployed for

efficient detection of attacks. At this point we have used

the results obtained in our previous work [2] where we

deployed Principal Component Analysis (PCA) and the

results obtained in [3] deploying Multi Expression

Programming (MEP), in order to extract the most relevant

features of the data. The features used for describing

attacks are identified by deploying PCA technique, while

the features used for describing normal connections are

identified by MEP. In this way the total amount of data to

be processed is highly reduced. As an important benefit of

this arises the high speed of training the system and

afterwards of its testing thus providing the possibility of

real-time deployment.

Incorporation of learning algorithms provides a

potential solution for the adaptation and accuracy issues

of the intrusion detection problem [4]. In this work we are

presenting genetic algorithm (GA) approach for

classifying normal connections and intrusions. Genetic

Algorithm approach is one of the forthcoming approaches

in computer security and has only recently been

recognized as having potential in the intrusion detection

field [5], [6], mostly because of its suitability for dealing

with the classification of rare classes [7].

This work represents continuation of our previous one

[2] where we investigated the possibilities of applying GA

to intrusion detection when only small subset of features is

deployed. One of the systems was detecting only

intrusions without identifying the type of the attacks,

while the other one was able to identify the exact type of

an attack. An important characteristic of this system is its

simplicity. It is easy to understand and to train, as its

training is a straightforward one. These experiments have

confirmed the robustness of GA when deployed to

intrusion detection and inspired us to further continue

experimenting on the subject.

Here we have further investigated a combination of

two simple GA-based intrusion detection systems with the

opposite qualities in the terms of detection and false-

positive rate, as opposed to the existing single solutions

presented by the state-of-the-art [2], [5], [6], [8]. In

addition, we have used less-common serial combination of

two intrusion detection systems [9], opposing to the

commonly used parallel connection of multiple

classification systems deployed for intrusion detection

with various combinations for decision making [10]. Our

aim was to mitigate the negative aspects of a certain

system by supplementing another system with better

performances in the terms of the same aspect.

In our serial combination, the first system exhibits very

high detection rate but also high false-positive rate and the

second one exhibits very low false-positive rate (lower

than presented by the state-of-the-art), although lower

detection rate than the first one. The combination results

in significantly lower false-positive rate than the first one

exhibits while maintaining high level of detection rate. In

this way we have demonstrated that deploying serial

connection of two GA-based systems with opposite

qualities, the resulting system exhibits better

characteristics than both of the original ones.

For evolving tour GA-based system KDD99Cup

training and testing dataset was used [10]. KDD99Cup

dataset was found to have quite drawbacks [12], [13], but

despite of the shortcomings, it is still prevailing dataset

used for training and testing of IDSes due to its good

structure, i.e. every connection is described using 41

features and is labeled, thus providing the information

whether the connection is normal or it is a specific attack

type [5], [6].

In the following text Sections 2 gives the overview on

GAs and IDSes and the benefits of deploying GA to

intrusion detection field. Section 3 details the

implementation if the system. Section 4 introduces the

problem of classifying rare classes and the solutions to the

problem deployed in this work. Section 5 presents the

benchmark KDD99 dataset deployed for training and

testing and evaluates the performance of the system on the

benchmark dataset and discusses the results. Finally, the

conclusions are drawn in Section 6.

2. Genetic Algorithm Approach to Intrusion

Detection

Genetic algorithms (GA) are search algorithms based

on the principles of natural selection and genetics. The

bases of genetic algorithm approach are given by Holland

[14] and it has been deployed to solve wide range of

problems in computer science, engineering, economics,

mathematics and many others.

The most important idea that stands beyond the initial

creation of GAs is the aim of developing a system as

robust and as adaptable to the environment as the natural

systems are. GA operates on a population of potential

solutions applying the principle of the survival of the

fittest to produce better and better approximations to the

solution of the problem that GA is trying to solve. At each

generation, a new set of approximations is created by the

process of selecting individuals according to their level of

fitness value in the problem domain and breeding them

together using the operators borrowed from the genetic

process performed in nature, i.e. crossover and mutation.

This process leads to the evolution of the populations of

individuals that are better adapted to their environment

than the individuals that they were created from, just as it

happens in natural adaptation [15].

2.1. Intrusion Detection Systems – Types and

Issues

According to the detection mechanism they use, exist

two general categories of IDSes: misuse detection and

anomaly based. Misuse detection systems are most widely

used and they detect intruders with known patterns. As

only the attacks that already exist in the attack database

can be detected, this model needs continuous updating.

Their virtue is very low false positive rate. Anomaly

detection systems identify deviations from normal

behaviour and alert to potential unknown or novel attacks

without having any prior knowledge of them. They exhibit

higher rate of false alarms, but they have the ability of

detecting unknown attacks.

Another classification of IDSes is determined by the

resource they monitor. According to this classification,

IDSes are divided into two categories: host based and

network based. Host based intrusion detection systems

monitor host resources for intrusion traces whereas

network based intrusion detection systems try to find

intrusion signs in the network data. The current trend in

intrusion detection is to combine both host based and

network based information to develop hybrid systems and

therefore not rely on only one methodology.

As already stated in the introduction, IDSes have three

common problems: speed, accuracy and adaptability. The

speed problem arises from the extensive amount of data

that intrusion detection systems need to monitor in order

to perceive the entire situation. In order to cope with it,

the most important piece of information should be

extracted so to facilitate an efficient detection of attacks.

The adaptation and accuracy issues of the intrusion

detection can be solved by incorporating learning

algorithms. In the case of intrusion detection, learning

means discovering patterns of normal behaviour or pattern

of attacks. This formulation of intrusion detection problem

combines the advantages of signature-based and anomaly-

based IDS. Thanks to the generalisation capability of

learning algorithms, it is also possible to detect new

attacks that exploit the same vulnerabilities of known

attacks.

2.2. Genetic Algorithm Overview

GA evolves a population of initial individuals to a

population of high quality individuals, where each

individual represents a solution of the problem to be

solved. Each individual is called chromosome, and is

composed of a predetermined number of genes. The

quality of each rule is measured by a fitness function as

the quantitative representation of each rule’s adaptation to

a certain environment. The procedure starts from an initial

population of randomly generated individuals. Then the

population is evolved for a number of generations while

gradually improving the qualities of the individuals in the

sense of increasing the fitness value as the measure of

quality. During each generation, three basic genetic

operators are sequentially applied to each individual with

certain probabilities, i.e. selection, crossover and

mutation. Crossover consists of exchanging of the genes

between two chromosomes performed in a certain way,

while mutation consists of random changing of a value of

a randomly chosen gene of a chromosome. Both crossover

and mutation are performed with a certain possibility,

called crossover/mutation rate. The algorithm flow is

presented in Fig 1.

Figure1. Genetic algorithm flow

Determination of the following factors has the crucial

impact on the efficiency of the algorithm: selection of

fitness function, representation of individuals and the

values of GA parameters (crossover and mutation rate,

size of population, number of generations). This

determination usually depends on the application.

2.3. The Benefits of Deploying GA to Intrusion

Detection

Deployment of GA in the intrusion detection field

offers number of advantages, namely:

• GAs are intrinsically parallel, since they have

multiple offspring, they can explore the solution

space in multiple directions at once. If one path

turns out to be a dead end, they can easily

eliminate it and continue working on more

promising avenues, giving them a greater chance

by each run of finding the optimal solution.

• Due to the parallelism that allows them to

implicitly evaluate many schemas at once, GAs are

particularly well-suited to solving problems where

the space of all potential solutions is truly huge -

too vast to search exhaustively in any reasonable

amount of time, as network data is.

• Working with populations of candidate solutions

rather than a single solution and employing

stochastic operators to guide the search process

permit GAs to cope well with attribute interactions

and to avoid getting stuck in local maxima, which

together make them very suitable for dealing with

classifying rare class, as intrusions are.

• System based on GA can easily be re-trained, thus

providing the possibility of evolving new rules for

intrusion detection. This property provides the

adaptability of a GA-based system, which is an

imperative quality of an intrusion detection system

having in mind the high rate of emerging of new

attacks.

3. System Implementation

The implemented IDS is a serial combination of two

IDSes. The complete system is presented in Fig. 2. The

first part is a linear classifier whose false-positive rate

should be reduced. As having very low false-negative rate,

its decision on normal connections is considered correct.

But, for its high false-positive rate, its decision on attacks

is re-checked by the rule-based system. The rule-based

system filters the normal connections from the potential

attacks, as its rules are trained for detecting normal

connections. This part of the system exhibits very low

false-positive rate, i.e. the probability for an attack to be

incorrectly classified as a normal connection is very low.

In this way, the false-positive rate of the entire system is

significantly lower than the false-positive rate of the linear

classifier while exhibiting high detection rate.

Figure 2. Block Diagram of the Complete System

As already mentioned, the first part is a simple linear

classifier which classifies the connections based on the

linear combination of the three features identified as those

that have the highest possibility to take part in an attack by

deploying PCA [2]. The three selected features and their

explanations are presented in Table 1.

Table 1. The features used to describe the attacks
Name of the feature Explication

duration length (number of seconds) of the

connection

src_bytes number of data bytes from source

to destination

dst_host_srv_serror_rate percentage of connections that have

“SYN” errors

The linear classifier is evolved using GA algorithm as

described in the previous section. Each chromosome, i.e.

potential solution to the problem, in the population is

comprised of four genes, where the first three represent

coefficients of the linear classifier and the fourth one

represents the threshold value. The decision whether the

current connection is an attack is made according to the

formula (1):

gene(1)*con(duration)+gene(2)*con(src_bytes)+

gene(3)*con(dst_host_srv_serror_rate)<gene(4)

(1)

where con(duration), con(src_bytes) and

con(dst_host_srv_serror_rate) are the values of the

duration, src_bytes and dst_host_srv_serror_rate feature

of the current connection.

The linear classifier was trained using incremental, i.e.

the algorithm where the number of individuals is

increasing in every generation and a certain number of the

worst individuals is substituted in each generation with the

newly-bred ones. The population contained 1000

individuals which were trained during 300 generations.

The mutation rate was 0.1 while the crossover rate was

0.9. The previous numbers were chosen after certain

number of experiments. The size of the population and the

number of generations are selected in the manner that their

further increasing doesn’t bring significant performance

improvement nor overfitting. The type of crossover

deployed was uniform crossover, i.e. a new individual had

equal chances to contain either of the genes of both of its

parents. The performance measurement, i.e. the fitness

function, was the squared percentage of the correctly

classified connections, i.e. according to the formula:

2









=

numOfCon

count
fitness

 (2)

where count is the number of correctly classified

connections, while numOfCon is the number of

connections in the training dataset. The squared

percentage rather than the simple percentage value was

chosen because it exhibited better. The result of this GA

was its best individual which forms the first part of the

system presented in Fig.2.

The second part of the system presented in Fig. 2 is a

rule-based system, where simple if-then rules for

distinguishing normal connections are evolved. For that

reason, the most important features for a normal

connection are identified using Multi Expression

Programming [3]. These three features and their

explanations are listed in Table 2.

Table 2. The features used to describe normal
connections

Name of the

feature

Explication

service Destination service (e.g. telnet, ftp)

hot number of hot indicators

logged in 1 if successfully logged in; 0 otherwise

An example of a rule can be the following one:

if (service=”http” and hot=”0” and logged_in=”0”)

 then normal;

The rules were trained using incremental GA, 500

individuals that were trained during 300 generations, with

crossover and mutation rate 0.9 and 0.1 respectively. The

selection of the number of generations and the population

size is performed analogously to the linear classifier. In

this case simple one–point crossover was used because the

change of the crossover type doesn’t make a difference in

this case. The result of the training was a set of 200 best-

performed rules. The performance measurement (the

fitness function) in this case was the F-value with the

parameter 0.8:

FNTP

TP
recall

FPTP

TP
precision

recallprecision

precisionrecall
fitness

+

=

+

=

+

=

*8.0

**8.1

(3)

where TP, FP and FN make parts of a confusion matrix

typically used to evaluate performance of a machine

learning algorithm presented in Table 3. In classification

problems, class “C” is the class of the interest, i.e. that

class that is being detecting (in this case normal

connections) and “NC” as a conjunction of all the other

classes. Parameter value of 0.8 was chosen after

performing few experiments with different values as the

value that provided the best performances of the system in

the terms of both detection and false-positive rate.

Table 3. Confusion matrix for defining four possible
outcomes when classifying class “C”

 Predicted Class “C” Predicted Class “NC”

Actual Class

“C”

True Positives (TP) False Negative (FN)

Actual Class

“NC”

False Positives (FP) True Negative (TN)

The algorithm was performed as presented in Section

2. The system presented here was implemented in C++

programming language. The software for this work used

the GAlib genetic algorithm package, written by Matthew

Wall at the Massachusetts Institute of Technology [16].

The time of training the implemented system is 185

seconds while the testing process takes 45 seconds. The

system was demonstrated on AMD Athlon 64 X2 Dual

Core Processor 3800+ with 1GB RAM memory on its

disposal.

4. Imbalanced Classes Problem in Intrusion

Detection

The task of detecting intrusions belongs to the problem

of detecting so-called rare or imbalanced classes since

intrusions occur rarely, i.e. in real-world the percentage of

intrusive data is very small comparing to the percentage of

normal data. Besides, some intrusions occur more rarely

than the others, which make the classification task even

more complicated. Conventional learning techniques

exhibit certain deficiencies when dealing with rare classes

[7]. The most important shortcoming is the tendency for

generalization, which usually results in wrong

classification of the instances of rare classes.

As stated before, genetic algorithms are global search

techniques that work with populations of candidate

solutions rather than a single solution and employ

stochastic operators to guide the search process. These

characteristics permit genetic algorithms to cope well with

attribute interactions and avoid getting stuck in local

maxima. In this way both generalization and data

fragmentation are avoided which are both inappropriate

for dealing with rare classes. Besides this intrinsic

capability of GAs, we have deployed F-measure as the

evaluation metrics that is proven to be very suitable when

dealing with imbalanced classes [7]. F-measure is a

combination of precision and recall. The precision of a

classification rule, or set of rules, is the percentage of

times the predictions associated with the rule(s) are

correct. If these rules predict class X then recall is the

percentage of all examples belonging to X that are covered

by these rule(s). Rare cases and classes are valued when

using these metrics because both precision and recall are

defined with respect to the positive (rare) class.

5. Results

Learning algorithms have a training phase where they

mathematically ’learn’ the patterns in the input dataset.

The input dataset is also called the training set which

should contain sufficient and representative instances of

the patterns being discovered. A dataset instance is

composed of features, which describe the dataset instance.

Learned patterns can be used to make predictions on a

new dataset instance based on its diversity from normal

patterns or its similarity to known attack patterns or a

combination of both.

In order to promote the comparison of advanced

research in the area of intrusion detection, the Lincoln

Laboratory at MIT, under DARPA sponsorship,

conducted the 1998 and 1999 evaluation of intrusion

detection [17]. Based on binary TCP dump data provided

by DARPA evaluation, millions of connection statistics

are collected and generated to form the training and test

data in the Classifier Learning Contest organized in

conjunction with the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

1999 (KDD-99) [11]. The learning task was to build a

detector (i.e. a classifier) capable of distinguishing

between “bad” connections, called intrusions or attacks,

and “good” or normal connections.

5.1. Training and Testing Datasets

The dataset contains 5,000,000 network connection

records. A connection is a sequence of TCP packets

starting and ending at some well defined times, between

which data flows from a source IP address to a target IP

address under some well defined protocol [18]. The

training portion of the dataset (labelled as

“kdd_10_percent”) contains 494,021 connections of

which 20% are normal. Each connection record contains

41 independent fields and a label (normal or type of

attack). Each attack belongs to one of the four attack

categories: user to root, remote to local, probe, and denial

of service. The testing dataset (labelled “corrected”)

provides a dataset with a significantly different statistical

distribution than the training dataset and contains an

additional 14 (unseen) attacks not included in the training

dataset. The basic characteristics of the datasets are given

in Table 4.

Table 4. The basic characteristics of KDD99 datasets

Dataset Label Number of

Attacks

Number of Normal

Connections

kdd_10_percent 396743 97277

corrected 250436 60593

5.2. Dataset Issues

The most important flaws of the mentioned dataset are

the following ones [12]:

• The dataset contains biases that may be reflected in

the performance of the evaluated systems.

• None of the sources explaining the dataset contains

any discussion of the data rate, and its variation with

time is not specified.

• The skewed nature of the attack distribution may

represent a bias that affects the results of the

evaluation.

• There is no discussion of whether the quantity of

data presented is sufficient to train a statistical

anomaly system or other learning-based system.

Furthermore, in [13] is demonstrated that the

transformation model used for transforming raw

DARPA’s network data to a well-featured data item set is

‘poor’. Here ‘poor’ refers to the fact that some attribute

values are the same in different data items that have

different class labels. Due to this, some of the attacks

can’t be classified correctly.

5.3. Obtained Rates

The system was trained using “kdd_10_percent” and

tested on “corrected” dataset. The obtained results are

summarized in Table 5. Presented rates of the linear

classifier and whole system are the rates for detecting

attacks, while the rates of the rule-based system are for

detecting normal connections. The last column gives the

value of classical F-measure so that learning results could

be easily compared with a unique feature for both recall

and precision. Our previous statement of high reducing of

the false-positive rate while maintaining high detection

rate is confirmed, as the false-positive rate is reduced from

40.7% to 2.7%, while the detection rate has reduced for

only 0.15%. The increasing of F-value is also exhibited.

The adaptability of the system was tested as well by

first training the system with a subset of

“kdd_10_percent” (250,000 connections out of 491,021).

The generated rules were taken as the initial generation

and re-trained with the remaining data of

“kdd_10_percent” dataset. Both of the systems were

tested on “corrected” dataset. The system exhibited

improvements in both detection and false positive rate.

The improvements are presented in the Table 6.

Table 5. The performances of the whole system and its
parts separately

Detection rate False Positive

Rate

System

Num. Per.

(%)

Num. Per.

(%)

F-measure

Linear

Classifier

231030 92.25 24628 40.7 0.913

Rule-

based

45504 75.1 5537 2.2 0.815

Whole

system

230625 92.1 862 1.4 0.96

5.4. Discussion

The final results are similar to those presented in [5]

and [6], although we have used smaller subset of features.

Hence, our system can perform the training process and

the process of detecting intrusions faster while

maintaining high detection rates.

Table 6. The performance of the system after re-training

Detection rate False

Positive

Rate

System

Num. Per

(%)

Num Per

(%)

F-

meas

ure

Whole system

after trained with

a subset of

“kdd_10_percent”

183060 73.1 1468 2.4 0.84

Whole system

after re-trained

with the rest of the

data from

“kdd_10_percent”

231039 92.3 862 1.4 0.96

The drawbacks of the dataset have influenced the

gained rates. As reported in [13], some of the newly

introduced attacks from the testing dataset are very similar

to the normal connections which make them very prone to

incorrect classification. As comparison, the detection rate

of the system tested on the same data that it was trained

on, i.e. “kdd_10_percent”, is 99.2% comparing to the

detection rate of 92.1% after testing the system using

“corrected” dataset. The decreasing of detection rate by

8% is obtained due to the significantly different statistical

distribution of the datasets. In addition, the distribution of

the attacks and normal connection in the datasets is not

very realistic [12], i.e. only 20% of the training data set

makes normal connections while in real world the

situation is quite opposite, as the percentage of normal

packets highly exceeds the percentage of intrusive ones.

This distribution is highly inconvenient for training

anomaly systems (as this system is). Thus, everything

stated here had negative effect on the rates obtained in this

work.

The adaptability of the system was also tested by

training the system first with a fraction of

“kdd_10_percent” and after that training the obtained

system with the rest of the dataset. Improvements in both

detection and false-positive rates were achieved as

presented in Table 6. Thus, it is demonstrated that the

system is adaptive since it exhibited improvements after

being trained with new data.

6. Conclusions

In this work a serial combination of two GA-based

IDSes with opposite qualities is introduced. The

properties including adaptability of the resulting system

were analyzed. The proposed combination is

demonstrated to be very favorable for mitigating the

negative aspects of the first system in the series. As our

system uses only six features to describe the data, its time

of training and decision making is considerably reduced,

thus providing the possibility of real-world deployment.

As previously stated in the Introduction, three common

problems of intrusion detection systems are speed,

accuracy and adaptability. In this work, the problem of the

speed in addressed by deploying small subsets of features

for describing network connections. In this way, the

periods of training and testing a certain system have been

highly decreased. Introducing incremental genetic

algorithm as the approach for evolving the population has

also very positive impact on the time of training since the

populations contains small number of individuals at the

beginning of the process of evolution. Next, the gained

performances of the presented systems demonstrate high

accuracy of the implemented system. Finally, adaptability

of the implemented system has been tested by re-training

the systems with additional data. After the process of re-

training, enhancement of performances has been

confirmed. Thus, it is demonstrated that the system

implemented in this work has successfully addressed and

solved the problems of intrusion detection systems.

The benefits of deploying GAs to intrusion detection

have also been demonstrated. Due to their possibility of

fast searching of the space of the possible solutions high

detection rate was achieved within small amount of time.

The possibility of re-training the results obtained after a

process of evolution has resulted in high adaptability of

the system to the changes of environment. Unfortunately,

due to the dataset used for training and testing whose

distribution of data is not very realistic (only 20% of data

are normal connections) the possibility GAs of detecting

rare events couldn’t be demonstrated. Part of our future

work will be dedicated to the proper adjustment of the

dataset, since simple over-sampling and under-sampling

are reported to exhibit weaknesses [7] resulting in

degraded performances of the trained system.

As real-world network data is unlabeled, and

considering that labeling network data would be an

extensive engineering task, the algorithm could be adapted

to be able to work with unlabeled data. This can be

performed only by defining appropriate fitness function.

The fitness function should be able to properly define the

performance of the individual without previously knowing

whether a connection is an attack or not.

The principal idea of this work was to indicate the

advantages of deploying such a system in intrusion

detection. Our future work will consist in pursuing a real

application of the system presented here, thus we will be

able to provide the results based on real-world network

data.

6. Acknowledgements

This work has been partially funded by the Spanish

Ministry of Education and Science under project

TEC2006-13067-C03-03 and also by the European

Community Research Programme under the FastMatch

project which is partially supported by the European

Community under the Information Society Technologies

(IST) priority of the 6th Framework Programme for R&D

(IST—27095, www.fastmatch.org).

7. References

[1] McHugh, J., Christie, A., Allen, J.: Defending Yourself: The

Role of Intrusion Detection Systems, IEEE Software, Sept./Oct.

2000, pp. 42-51

[2] Z. Banković, D. Stepanović, S. Bojanić, and O. Nieto-

Taladriz, “Improving Network Security Using Genetic

Algorithm Approach”, to be published in Computers &

Electrical Engineering, Elsevier

[3] C. Grosan, A. Abraham, and M. Chis, “Computational

Intelligence for light weight intrusion detection systems”,

International Conference on Applied Computing (IADIS'06),

San Sebastian, Spain, ISBN: 9728924097, 2006. pp. 538-542,

[4] C.Elkan, “Results of the KDD’99 Classifier Learning”,

ACM SIGKDD Explorations, 1, 2000, 63-64.

[5] R. H Gong, M. Zulkernine, P. Abolmaesumi, “A Software

Implementation of a Genetic Algorithm Based Approach to

Network Intrusion Detection”, Proceedings of the Sixth

International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing

and First ACIS International Workshop on Self-Assembling

Wireless Networks (SNPD/SAWN`05), 2005.

[6] A. Chittur, “Model Generation for an Intrusion Detection

System Using Genetic Algorithms”, http://

www1.cs.columbia.edu/ids/publications/gaids-thesis01.pdf,

accessed in 2006.

[7] G. Weiss,”Mining with rarity: A unifying framework”.

SIGKDD Explorations 6(1):7–19. 2004

[8] W. Lu, I. Traore, “Detecting New Forms of Network

Intrusion Using Genetic Programming”, Computational

Intelligence, Volume 20, Number 3, pp. 470-490, 2004.

[9] E. Tombini, H. Debar, L. Me, M. Ducasse, “A Serial

Combination of Anomaly and Misuse IDSes Applied to HTTP

traffic”, Proceedings of the 20th Annual Computer Security

Applications Conference (ACSAC’04)

[10] G. Giacinto, F. Roli and L. Didaci, Fusion of multiple

classifiers for intrusion detection in computer networks. Pattern

Recog. Lett. 24 12 (2003), pp. 1795–1803.

[11] KDD Cup 1999 data.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,

October 1999

[12] J .McHugh, “Testing Intrusion Detection Systems: A

Critique of the 1998 and 1999 DARPA IDS Evaluation as

Performed by Lincoln Laboratory”, ACM Trans. on Information

and System security, Vol. 3, No.4, Pages 262-294, November

2000.

[13] Y. Bouzida and F. Cuppens, “Detecting known and novel

network intrusion”, IFIP/SEC 2006 21st IFIP TC-11

International Information Security Conference Karlstad

University, Karlstad, Sweden. May 2006.

[14] J. Holland, Adaptation in natural and artificial system,

Ann Arbor, The University of Michigan Press (1975)

[15] D. E Goldberg, Genetic algorithms for search,

optimization, and machine learning. Addison-Wesley (1989)

[16] GAlib A C++ Library of Genetic Algorithm Components,

http://lancet.mit.edu/ga/

[17] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R.

Kendall, D. McClung, D. Weber, S.E. Webster, D. Wyschogrod,

R.K Cunningham., M.A. Zissman, “Evaluating Intrusion

Detection Systems: the 1998 DARPA Off-Line Intrusion

Detection Evaluation”, Proceedings of the 2000 DARPA

Information Survivability Conference and Exposition, 2 (2000)

[18] Hettich, S., Bay., S. D: The UCI KDD Archive. Irvine, CA:

University of California, Department of Information and

Computer Science., 1999. http://kdd.ics.uci.edu

