Computing Hessenberg Matrix associated to self-similar measures

Carmen Escribano, Antonio Giraldo María Asunción Sastre, E. Torrano

Departamento de Matemática Aplicada, Facultad de Informática
Universidad Politécnica, Campus de Montegancedo
Boadilla del Monte, 28660 Madrid, Spain

Happy sixties Guillermo!

Summary

Objective: The obtention of the Hessenberg matrix associated to a self-similar measure with compact support in the complex plane in two different ways.

Summary

Objective: The obtention of the Hessenberg matrix associated to a self-similar measure with compact support in the complex plane in two different ways.

Outline of the talk:

(1) Preliminaries. Moment and Hessenberg matrices. Self-similar measures.

Summary

Objective: The obtention of the Hessenberg matrix associated to a self-similar measure with compact support in the complex plane in two different ways.

Outline of the talk:

(1) Preliminaries. Moment and Hessenberg matrices. Self-similar measures.
(2) Moment matrices of self-similar measures. Fixed point theorem for moment matrices of self-similar measures (EST 2007). Cholesky factorization.

Summary

Objective: The obtention of the Hessenberg matrix associated to a self-similar measure with compact support in the complex plane in two different ways.

Outline of the talk:

(1) Preliminaries. Moment and Hessenberg matrices. Self-similar measures.
(2) Moment matrices of self-similar measures. Fixed point theorem for moment matrices of self-similar measures (EST 2007). Cholesky factorization.
(3) Hesssenberg matrix of a sum of measures (generalization of Mantica's spectral techniques). Hessenberg matrix associated to a self-similar measure.

Summary

Objective: The obtention of the Hessenberg matrix associated to a self-similar measure with compact support in the complex plane in two different ways.

Outline of the talk:

(1) Preliminaries. Moment and Hessenberg matrices. Self-similar measures.
(2) Moment matrices of self-similar measures. Fixed point theorem for moment matrices of self-similar measures (EST 2007). Cholesky factorization.
(3) Hesssenberg matrix of a sum of measures (generalization of Mantica's spectral techniques). Hessenberg matrix associated to a self-similar measure.
(4) Examples.

Moment and Hessenberg matrices

Let μ be a positive measure in \mathbb{C} with compact support Ω.

Moment and Hessenberg matrices

Let μ be a positive measure in \mathbb{C} with compact support Ω.
(1) The hermitian moment matrix $M=\left(c_{j k}\right)_{j, k=0}^{\infty}$ given by

$$
c_{j k}=\int_{\Omega} z^{j} \bar{z}^{k} d \mu, \quad j, k \in \mathbb{Z}_{+}
$$

is the matrix of the inner product in the canonical basis.

Moment and Hessenberg matrices

Let μ be a positive measure in \mathbb{C} with compact support Ω.
(1) The hermitian moment matrix $M=\left(c_{j k}\right)_{j, k=0}^{\infty}$ given by

$$
c_{j k}=\int_{\Omega} z^{j} \bar{z}^{k} d \mu, \quad j, k \in \mathbb{Z}_{+}
$$

is the matrix of the inner product in the canonical basis.
(2) Let D be the infinite upper Hessenberg matrix of the multiplication by z operator in the basis of $\operatorname{ONPS} \widehat{P}_{n}(z)$ in the closure of the polynomials.

Moment and Hessenberg matrices

Let μ be a positive measure in \mathbb{C} with compact support Ω.
(1) The hermitian moment matrix $M=\left(c_{j k}\right)_{j, k=0}^{\infty}$ given by

$$
c_{j k}=\int_{\Omega} z^{j} \bar{z}^{k} d \mu, \quad j, k \in \mathbb{Z}_{+}
$$

is the matrix of the inner product in the canonical basis.
(2) Let D be the infinite upper Hessenberg matrix of the multiplication by z operator in the basis of $\operatorname{ONPS} \widehat{P}_{n}(z)$ in the closure of the polynomials.
(3) The Hessenberg matrix D is the natural generalization to the hermitian case of Jacobi matrix.

Self-similar Measures

An Iterated Functions System (IFS) (M. Barnsley 1988) is a family of contractive maps $\left\{\varphi_{s}\right\}_{s=1}^{k}$ on a complete metric space.
In all this work, assume that $\varphi_{s}(s=1, \ldots, k)$ are contractive similarities $(|\varphi(x)-\varphi(y)|=r|x-y|, 0 \leq r<1$, for all $x, y)$. The family $\left\{\varphi_{s}\right\}_{s=1}^{k}$ then, will be called an Iterated Functions System of Similarities (IFSS).

Self-similar Measures

An Iterated Functions System (IFS) (M. Barnsley 1988) is a family of contractive maps $\left\{\varphi_{s}\right\}_{s=1}^{k}$ on a complete metric space.
In all this work, assume that $\varphi_{s}(s=1, \ldots, k)$ are contractive similarities $(|\varphi(x)-\varphi(y)|=r|x-y|, 0 \leq r<1$, for all $x, y)$. The family $\left\{\varphi_{s}\right\}_{s=1}^{k}$ then, will be called an Iterated Functions System of Similarities (IFSS).
Given an IFSS $\left\{\varphi_{s}\right\}_{s=1}^{k}$ on a complete metric space, there exists a unique compactum K (self-similar set) satisfying

$$
K=\bigcup_{s=1}^{k} \varphi_{s}(K)
$$

Self-similar Measures

Examples of self similar sets

Self-similar Measures

Consider a probability vector $p=\left(p_{s}>0\right)_{s=1}^{k}$ with $\sum_{s=1}^{k} p_{s}=1$.

Self-similar Measures

Consider a probability vector $p=\left(p_{s}>0\right)_{s=1}^{k}$ with $\sum_{s=1}^{k} p_{s}=1$. Let T be the Markov operator defined over the set of Borel regular probability measures as $T \nu=\sum_{s=1}^{k} p_{s} \nu \varphi_{s}^{-1}$. Then, there exists a unique probability invariant measure μ.

Self-similar Measures

Consider a probability vector $p=\left(p_{s}>0\right)_{s=1}^{k}$ with $\sum_{s=1}^{k} p_{s}=1$. Let T be the Markov operator defined over the set of Borel regular probability measures as $T \nu=\sum_{s=1}^{k} p_{s} \nu \varphi_{s}^{-1}$. Then, there exists a unique probability invariant measure μ. We call μ the self-similar measure associated to the IFSS with probabilities $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} ; p_{1}, p_{2}, \ldots p_{k}\right\}$.

Self-similar Measures

Consider a probability vector $p=\left(p_{s}>0\right)_{s=1}^{k}$ with $\sum_{s=1}^{k} p_{s}=1$. Let T be the Markov operator defined over the set of Borel regular probability measures as $T \nu=\sum_{s=1}^{k} p_{s} \nu \varphi_{s}^{-1}$. Then, there exists a unique probability invariant measure μ.
We call μ the self-similar measure associated to the IFSS with probabilities $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} ; p_{1}, p_{2}, \ldots p_{k}\right\}$.
The support of μ is the self-similar set K and satisfies (Hutchinson, 1981,Mandelbrot, 1977)

$$
\mu=\sum_{s=1}^{k} p_{s} \mu \varphi_{s}^{-1}, \int_{\operatorname{Supp}(\mu)} f d \mu=\sum_{s=1}^{k} p_{s} \int_{\operatorname{Supp}(\mu)} f \circ \varphi_{s} d \mu
$$

for any continuous function f on K.

Moment matrix of the image of a measure by a similarity

E. Torrano (1987) obtained the following expression of the moment matrix of the transformation of a measure by a similarity.

Moment matrix of the image of a measure by a similarity

E. Torrano (1987) obtained the following expression of the moment matrix of the transformation of a measure by a similarity.
(1) Let M be the moment matrix of a measure μ in \mathbb{C}.

Moment matrix of the image of a measure by a similarity

E. Torrano (1987) obtained the following expression of the moment matrix of the transformation of a measure by a similarity.
(1) Let M be the moment matrix of a measure μ in \mathbb{C}.
(2) Let $\varphi(z)=\alpha z+\beta$, with $\alpha, \beta \in \mathbb{C}$ be a similarity .

Moment matrix of the image of a measure by a similarity

E. Torrano (1987) obtained the following expression of the moment matrix of the transformation of a measure by a similarity.
(1) Let M be the moment matrix of a measure μ in \mathbb{C}.
(2) Let $\varphi(z)=\alpha z+\beta$, with $\alpha, \beta \in \mathbb{C}$ be a similarity .
(3) Let M_{φ} be the moment matrix of the measure $\mu \circ \varphi^{-1}$.

Moment matrix of the image of a measure by a similarity

E. Torrano (1987) obtained the following expression of the moment matrix of the transformation of a measure by a similarity.
(1) Let M be the moment matrix of a measure μ in \mathbb{C}.
(2) Let $\varphi(z)=\alpha z+\beta$, with $\alpha, \beta \in \mathbb{C}$ be a similarity .
(3) Let M_{φ} be the moment matrix of the measure $\mu \circ \varphi^{-1}$.

Then,

$$
M_{\varphi}=A_{\varphi}^{H} M A_{\varphi}
$$

where A_{φ}^{H} denotes the conjugated transposed matrix of A_{φ} given by

$$
A_{\varphi}=\left(\begin{array}{ccccc}
\binom{0}{0} \alpha^{0} \beta^{0} & \binom{1}{0} \alpha^{0} \beta^{1} & \binom{2}{0} \alpha^{0} \beta^{2} & \binom{3}{0} \alpha^{0} \beta^{3} & \ldots \\
0 & \binom{1}{1} \alpha^{1} \beta^{0} & \binom{2}{1} \alpha^{1} \beta^{1} & \binom{3}{1} \alpha^{1} \beta^{2} & \ldots \\
0 & 0 & \binom{2}{2} \alpha^{2} \beta^{0} & \binom{3}{2} \alpha^{2} \beta^{1} & \ldots \\
0 & 0 & 0 & \binom{3}{3} \alpha^{3} \beta^{0} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Moment matrix of self-similar measures

Consider:

Moment matrix of self-similar measures

Consider:
(1) $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} ; p_{1}, p_{2}, \ldots p_{k}\right\}$ an IFSS with probabilities.
(2) μ the invariant measure.

Moment matrix of self-similar measures

Consider:
(1) $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} ; p_{1}, p_{2}, \ldots p_{k}\right\}$ an IFSS with probabilities.
(2) μ the invariant measure.

Then, the sections the moment matrix M of μ satisfy the following matricial relation

$$
M=\sum_{s=1}^{k} p_{s} A_{\varphi_{s}}^{H} M A_{\varphi_{s}}
$$

Moment matrix of self-similar measures

To obtain a fixed point theorem we will define a contractive map on a metric space of infinite matrices, making use of the following fact:

Moment matrix of self-similar measures

To obtain a fixed point theorem we will define a contractive map on a metric space of infinite matrices, making use of the following fact: Given
(1) $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} ; p_{1}, p_{2}, \ldots p_{k}\right\}$ an IFSS with probabilities.
(2) K_{Φ} and μ_{Φ} the self-similar set and measure, respectively.
(3) f a similarity map.

Moment matrix of self-similar measures

To obtain a fixed point theorem we will define a contractive map on a metric space of infinite matrices, making use of the following fact: Given
(1) $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} ; p_{1}, p_{2}, \ldots p_{k}\right\}$ an IFSS with probabilities.
(2) K_{Φ} and μ_{Φ} the self-similar set and measure, respectively.
(3) f a similarity map.

Then the set $f(K)$ and the measure $\mu_{\Phi} \circ f^{-1}$ are self-similar for the IFSS

$$
f \Phi f^{-1}=\left\{f \circ \varphi_{1} \circ f^{-1}, f \circ \varphi_{2} \circ f^{-1}, \ldots, f \circ \varphi_{k} \circ f^{-1} ; p_{1}, p_{2}, \ldots p_{k}\right\}
$$

and

$$
\mu_{f \Phi f-1}=\mu_{\Phi} \circ f^{-1}
$$

Moment matrix of self-similar measures

Remark

When the measure is supported in the unit ball, the moments are bounded. In any other case they are not bounded.

Moment matrix of self-similar measures

Remark

When the measure is supported in the unit ball, the moments are bounded. In any other case they are not bounded.

Consider the complete metric spaces

$$
\mathcal{M}_{\infty}=\left\{\left(m_{i j}\right)_{i, j=0}^{\infty}\left|\sup _{i, j}\right| m_{i j} \mid<\infty\right\} \quad \mathcal{M}_{1}=\left\{M \in \mathcal{M}_{\infty} \mid m_{00}=1\right\}
$$

Moment matrix of self-similar measures

Remark

When the measure is supported in the unit ball, the moments are bounded. In any other case they are not bounded.

Consider the complete metric spaces

$$
\mathcal{M}_{\infty}=\left\{\left(m_{i j}\right)_{i, j=0}^{\infty}\left|\sup _{i, j}\right| m_{i j} \mid<\infty\right\} \quad \mathcal{M}_{1}=\left\{M \in \mathcal{M}_{\infty} \mid m_{00}=1\right\}
$$

If $\operatorname{Supp}(\mu)=K \not \subset B_{1}(0)$, there exists a contractive map $f(z)=\alpha z$ such that $f(K) \subset B_{1}(0)$. Then,

$$
\mathcal{M}_{f}=\left\{M \mid A_{f}^{H} M A_{f} \in \mathcal{M}_{1}\right\} \text { with }\|M\|_{f}=\left\|A_{f}^{H} M A_{f}\right\|_{\text {sup }},
$$

is a complete metric space.

Fixed point theorem for moment matrix of self-similar measures

Theorem

Let $\Phi=\left\{\varphi_{s} ; p_{s}\right\}_{s=1}^{k}$ be an IFSS with probabilities. Let K_{Φ} and μ_{Φ} be the self-similar set and measure, respectively. Let $f(z)=\alpha z$ be a contractive central dilation such that $f(K) \in B_{1}(0)$. Let $\mathcal{T}_{f \Phi f-1}$: $\left(\mathcal{M}_{f},\|\cdot\|_{f}\right) \rightarrow\left(\mathcal{M}_{f},\|\cdot\|_{f}\right)$ be the transformation defined as

$$
\mathcal{T}_{f \Phi f-1}(M)=\sum_{s=1}^{k} p_{s} A_{f \varphi_{s} f-1}^{H} M A_{f \varphi_{s} f-1}
$$

Fixed point theorem for moment matrix of self-similar measures

Theorem

Let $\Phi=\left\{\varphi_{s} ; p_{s}\right\}_{s=1}^{k}$ be an IFSS with probabilities. Let K_{Φ} and μ_{Φ} be the self-similar set and measure, respectively. Let $f(z)=\alpha z$ be a contractive central dilation such that $f(K) \in B_{1}(0)$. Let $\mathcal{T}_{f \Phi f-1}$: $\left(\mathcal{M}_{f},\|\cdot\|_{f}\right) \rightarrow\left(\mathcal{M}_{f},\|\cdot\|_{f}\right)$ be the transformation defined as

$$
\mathcal{T}_{f \Phi f-1}(M)=\sum_{s=1}^{k} p_{s} A_{f \varphi_{s} f-1}^{H} M A_{f \varphi_{s} f-1}
$$

Then $\mathcal{T}_{f \Phi f-1}$ is a contractive map with the moment matrix of the self-similar measure μ_{Φ} as unique fixed point.
Moreover, the ratio of this contractive map is

$$
r=\sup \left\{\left|\alpha_{s}\right|, s=1,2, \ldots k\right\}
$$

Hessenberg Matrix. Cholesky Factoritation

Then we have the following algorithm

$$
\begin{array}{cccccccccc}
\nu & \rightarrow & \mathcal{T}(\nu) & \rightarrow & \mathcal{T}^{2}(\nu) & \rightarrow & \cdots & \mathcal{T}^{n}(\nu) & \rightarrow & \mu \\
\uparrow & & \uparrow & & \downarrow & & & \downarrow & & \uparrow \\
M_{\nu} & \rightarrow & \mathcal{T}_{\Phi}\left(M_{\nu}\right) & \rightarrow & \mathcal{T}_{\Phi}^{2}\left(M_{\nu}\right) & \rightarrow & \cdots & \mathcal{T}_{\Phi}^{\eta}\left(M_{\nu}\right) & \rightarrow & M_{\mu}
\end{array}
$$

Hessenberg Matrix. Cholesky Factoritation

Then we have the following algorithm

Since M and D are related (even for every PDH matrix M) by the formula

$$
D=T^{H} S_{R} T^{-H}
$$

where $M=T T^{H}$ is the Cholesky factorization and S_{R} is the shift-right matrix; we can approximate the n-section of D_{μ}

$$
M_{\mu, n} \rightarrow M_{\mu, n}=T_{n} T_{n}^{H} \rightarrow D_{\mu, n}=T_{n}^{-1} M_{\mu, n}^{\prime} T_{n}^{-H}
$$

Hessenberg Matrix associated to a sum of measures

From now on, we use the following notation.
(1) μ sum of measures, i.e., $d \mu=\sum_{i=1}^{m} p_{i} d \mu_{i}$, where $\sum_{i=1}^{m} p_{i}=1$.
(2) every measure μ_{i} has compact support on the complex plane.
(3) $D=\left(d_{i j}\right)_{i, j=1}^{\infty}$ the Hessenberg matrix associated to μ.
(9) $\left\{D^{(i)}\right\}_{i=1}^{m}$ its Hessenberg matrices of μ_{i}.

Hessenberg Matrix associated to a sum of measures

From now on, we use the following notation.
(1) μ sum of measures, i.e., $d \mu=\sum_{i=1}^{m} p_{i} d \mu_{i}$, where $\sum_{i=1}^{m} p_{i}=1$.
(2) every measure μ_{i} has compact support on the complex plane.
(3) $D=\left(d_{i j}\right)_{i, j=1}^{\infty}$ the Hessenberg matrix associated to μ.
(9) $\left\{D^{(i)}\right\}_{i=1}^{m}$ its Hessenberg matrices of μ_{i}.

We will give a technique to calculate D in terms of $\left\{D^{(i)}\right\}_{i=1}^{m}$.

Hessenberg Matrix associated to a sum of measures

From now on, we use the following notation.
(1) μ sum of measures, i.e., $d \mu=\sum_{i=1}^{m} p_{i} d \mu_{i}$, where $\sum_{i=1}^{m} p_{i}=1$.
(2) every measure μ_{i} has compact support on the complex plane.
(3) $D=\left(d_{i j}\right)_{i, j=1}^{\infty}$ the Hessenberg matrix associated to μ.
(9) $\left\{D^{(i)}\right\}_{i=1}^{m}$ its Hessenberg matrices of μ_{i}.

We will give a technique to calculate D in terms of $\left\{D^{(i)}\right\}_{i=1}^{m}$.

Remark

First note that the matrices $D^{(i)}$ are bounded in ℓ^{2} because the support of every μ_{i} is compact; second, remark that every matrix defines a subnormal operator in ℓ^{2} (Atzmon, 1975, TorranoGuadalupe, 1993, and Tomeo, 2003), due to the fact that the matrix of the inner produtc is a moment matrix. These two properties allow us to extend the spectral Mantica's techniques (2000).

Large recurrence formula

$D=\left(d_{j k}\right)_{j, k=1}^{\infty}$ upper Hessenberg matrix. The ONPS satisfy

$$
z \widehat{P}_{n-1}(z)=\sum_{k=1}^{n+1} d_{k, n} \widehat{P}_{k-1}(z), \quad n>1
$$

with $\widehat{P}_{1}(z)=0$ and $\widehat{P}_{1}(z)=1$ when $c_{00}=1$. Then

$$
d_{n+1, n} \widehat{P}_{n}(z)=\left(z-d_{n n}\right) \widehat{P}_{n-1}(z)-\sum_{k=1}^{n-1} d_{k, n} \widehat{P}_{k-1}(z), \quad n>1
$$

with $d_{2,1} \widehat{P}_{1}(z)=\left(z-d_{11}\right) \widehat{P}_{0}(z)$, for $n=1$.

Large recurrence formula

$D=\left(d_{j k}\right)_{j, k=1}^{\infty}$ upper Hessenberg matrix. The ONPS satisfy

$$
z \widehat{P}_{n-1}(z)=\sum_{k=1}^{n+1} d_{k, n} \widehat{P}_{k-1}(z), \quad n>1
$$

with $\widehat{P}_{1}(z)=0$ and $\widehat{P}_{1}(z)=1$ when $c_{00}=1$. Then

$$
d_{n+1, n} \widehat{P}_{n}(z)=\left(z-d_{n n}\right) \widehat{P}_{n-1}(z)-\sum_{k=1}^{n-1} d_{k, n} \widehat{P}_{k-1}(z), \quad n>1
$$

with $d_{2,1} \widehat{P}_{1}(z)=\left(z-d_{11}\right) \widehat{P}_{0}(z)$, for $n=1$.

For D subnormal, we can write

$$
d_{n+1, n} \widehat{P}_{n}(D)=\left(D-d_{n n} I\right) \widehat{P}_{n-1}(D)-\sum_{k=1}^{n-1} d_{k, n} \widehat{P}_{k-1}(D), \quad n>1
$$

Hessenberg Matrix associated to a sum of measures

Theorem (EST 2006, NTCAT06-ICM)
 Let $\mu,\left\{\widehat{P}_{n}\right\}_{n=1}^{\infty}, D=\left(d_{j k}\right)_{j, k=1}^{\infty}$ and $\left\{D^{(i)}\right\}$ be as above.

Hessenberg Matrix associated to a sum of measures

Theorem (EST 2006, NTCAT06-ICM)

Let $\mu,\left\{\widehat{P}_{n}\right\}_{n=1}^{\infty}, D=\left(d_{j k}\right)_{j, k=1}^{\infty}$ and $\left\{D^{(i)}\right\}$ be as above. Then the elements of $D=\left(d_{i j}\right)_{i, j=1}^{\infty}$ can be calculated recursively by

$$
\begin{align*}
& d_{k, n}=\sum_{i=1}^{m} p_{i}\left\langle D^{(i)} v_{n-1}^{(i)}, v_{k-1}^{(i)}\right\rangle, i=1, \ldots, m, k=1, \ldots, n \tag{1}\\
& w_{n}^{(i)}=\left[D^{(i)}-d_{n n} I\right] v_{n-1}^{(i)}-\sum_{k=1}^{n-1} d_{k, n} v_{k-1}^{(i)}, i=1, \ldots, m \tag{2}
\end{align*}
$$

Hessenberg Matrix associated to a sum of measures

Theorem (EST 2006, NTCAT06-ICM)

Let $\mu,\left\{\widehat{P}_{n}\right\}_{n=1}^{\infty}, D=\left(d_{j k}\right)_{j, k=1}^{\infty}$ and $\left\{D^{(i)}\right\}$ be as above. Then the elements of $D=\left(d_{i j}\right)_{i, j=1}^{\infty}$ can be calculated recursively by

$$
\begin{equation*}
d_{k, n}=\sum_{i=1}^{m} p_{i}\left\langle D^{(i)} v_{n-1}^{(i)}, v_{k-1}^{(i)}\right\rangle, i=1, \ldots, m, k=1, \ldots, n \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
w_{n}^{(i)}=\left[D^{(i)}-d_{n n} I\right] v_{n-1}^{(i)}-\sum_{k=1}^{n-1} d_{k, n} v_{k-1}^{(i)}, i=1, \ldots, m \tag{2}
\end{equation*}
$$

When $n=1$ we take $w_{1}^{(i)}=\left[D^{(i)}-d_{11} I\right] v_{0}^{(i)}, d_{11}=\sum_{i=1}^{m} p_{i} d_{11}^{(i)}$

$$
\begin{align*}
d_{n+1, n} & =\sqrt{\sum_{i=1}^{m} p_{i}\left\langle w_{n}^{(i)}, w_{n}^{(i)}\right\rangle}, \tag{3}\\
v_{n}^{(i)} & =\frac{w_{n}^{(i)}}{d_{n+1, n}}, \quad v_{0}^{(i)}=e_{0} \quad i=1, \ldots, m . \tag{4}
\end{align*}
$$

Recurrent algorithm

We have $\left\{v_{0}^{(i)}, v_{1}^{(i)}, \ldots, v_{n-1}^{(i)}\right\}_{i=1}^{m}, D_{n}=\left(\begin{array}{cccc}d_{11} & d_{12} & \ldots & d_{1 n} \\ d_{21} & d_{22} & \ldots & d_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & d_{n n}\end{array}\right)$

Recurrent algorithm

Hessenberg Matrix associated to a sum of measures

The theorem gains in interest if we realize that it can be written in a matricial way.

Corollary

Let $V^{(i)}$ denote the upper triangular matrix with the vectors $v_{0}^{(i)}$, $v_{1}^{(i)}, v_{2}^{(i)}, \ldots$ of ℓ^{2}, as columns (ie., $\left.V^{(i)}=\left(v_{0}^{(i)}, v_{1}^{(i)}, v_{2}^{(i)}, \ldots\right)\right)$. Then, we have

$$
D=\sum_{i=1}^{m} p_{i}\left[V^{(i)}\right]^{H} D^{(i)} V^{(i)}
$$

Hessemberg matrix associated to a self-similar measure

We use the following result of E. Torrano (1987) to apply the above result to self-similar measures.
(1) Let D be the Hessenberg matrix associated to a measure μ.
(2) Let $\varphi(z)=\alpha z+\beta$ be a similarity, where $\alpha, \beta \in \mathbb{C}$.
(3) Let μ_{φ} be the transformation of this measure by φ.
(9) Let D^{*} be the Hessenberg matrix associated to μ_{φ}.

Hessemberg matrix associated to a self-similar measure

We use the following result of E. Torrano (1987) to apply the above result to self-similar measures.
(1) Let D be the Hessenberg matrix associated to a measure μ.
(2) Let $\varphi(z)=\alpha z+\beta$ be a similarity, where $\alpha, \beta \in \mathbb{C}$.
(3) Let μ_{φ} be the transformation of this measure by φ.
(9) Let D^{*} be the Hessenberg matrix associated to μ_{φ}. then we have

$$
D^{*}=\alpha U^{H} D U+\beta I,
$$

where $U=\left(\delta_{j k} e^{(k-1) \theta i}\right)_{j, k=1}^{\infty}$, with $\alpha=|\alpha| e^{\theta i}$.

Hessemberg matrix associated to a self-similar measure

Corollary

Let $\Phi=\left\{\varphi_{i}(z)=\alpha_{i} z+\beta_{i} ; p_{i}\right\}$ be an IFSS with probabilities.
Let μ be the corresponding self-similar measure.

Hessemberg matrix associated to a self-similar measure

Corollary

Let $\Phi=\left\{\varphi_{i}(z)=\alpha_{i} z+\beta_{i} ; p_{i}\right\}$ be an IFSS with probabilities.
Let μ be the corresponding self-similar measure.
Then, the Hessenberg matrix D associated to the self-similar measure μ satisfies the following recurrent equation

$$
D=\sum_{i=1}^{m} p_{i}\left[V^{(i)}\right]^{H}\left[\alpha_{i}\left[U^{(i)}\right]^{H} D U^{(i)}+\beta_{i} I\right] V^{(i)},
$$

where $U=\left(\delta_{j k} e^{(k-1) \theta i}\right)_{j, k=1}^{\infty}$, with $\alpha=|\alpha| e^{\theta i}$.

Convergence to Hessemberg matrix

Then we have the following algorithm

Examples

Example I. Let \mathcal{L} be the normalized Lebesgue measure in the interval $[-1,1]$. This is a self-similar measure for the IFSS

$$
\Phi=\left\{\varphi_{1}(x)=1 / 2 x-1 / 2, \varphi_{2}(x)=1 / 2 x+1 / 2 ; p_{1}=p_{2}=1 / 2\right\} .
$$

Examples

Example I. Let \mathcal{L} be the normalized Lebesgue measure in the interval $[-1,1]$. This is a self-similar measure for the IFSS

$$
\Phi=\left\{\varphi_{1}(x)=1 / 2 x-1 / 2, \varphi_{2}(x)=1 / 2 x+1 / 2 ; p_{1}=p_{2}=1 / 2\right\} .
$$

Algorithm I.

$$
\mathcal{T}_{\Phi}\left(M_{\nu}\right)=\sum_{i=1}^{2} \frac{1}{2} A_{\varphi_{i}}^{H} M_{\nu} A_{\varphi_{i}}
$$

Examples

Example I. Let \mathcal{L} be the normalized Lebesgue measure in the interval $[-1,1]$. This is a self-similar measure for the IFSS

$$
\Phi=\left\{\varphi_{1}(x)=1 / 2 x-1 / 2, \varphi_{2}(x)=1 / 2 x+1 / 2 ; p_{1}=p_{2}=1 / 2\right\} .
$$

Algorithm I.

$$
\mathcal{T}_{\Phi}\left(M_{\nu}\right)=\sum_{i=1}^{2} \frac{1}{2} A_{\varphi_{i}}^{H} M_{\nu} A_{\varphi_{i}}
$$

If we iterate the transformation $\mathcal{T}_{\Phi} 30$ times starting with the sixth order identity matrix we obtain
$\left(\begin{array}{cccccc}1.0 & 0.0 & 0.33333333 & 0.0 & 0.20000000 & 0.0 \\ 0.0 & 0.33333333 & 0.0 & 0.20000000 & 0.0 & 0.14285714 \\ 0.33333333 & 0.0 & 0.20000000 & 0.0 & 0.14285714 & 0.0 \\ 0.0 & 0.20000000 & 0.0 & 0.14285714 & 0.0 & 0.11111111 \\ 0.20000000 & 0.0 & 0.14285714 & 0.0 & 0.11111111 & 0.0 \\ 0.0 & 0.14285714 & 0.0 & 0.11111111 & 0.0 & 0.09090909\end{array}\right)$.

Examples

Example I. Let \mathcal{L} be the normalized Lebesgue measure in the interval $[-1,1]$. This is a self-similar measure for the IFSS

$$
\Phi=\left\{\varphi_{1}(x)=1 / 2 x-1 / 2, \varphi_{2}(x)=1 / 2 x+1 / 2 ; p_{1}=p_{2}=1 / 2\right\} .
$$

Algorithm I.

$$
\mathcal{T}_{\Phi}\left(M_{\nu}\right)=\sum_{i=1}^{2} \frac{1}{2} A_{\varphi_{i}}^{H} M_{\nu} A_{\varphi_{i}}
$$

If we iterate the transformation $\mathcal{T}_{\Phi} 30$ times starting with the sixth order identity matrix we obtain
$\left(\begin{array}{cccccc}1.0 & 0.0 & 0.33333333 & 0.0 & 0.20000000 & 0.0 \\ 0.0 & 0.33333333 & 0.0 & 0.20000000 & 0.0 & 0.14285714 \\ 0.33333333 & 0.0 & 0.20000000 & 0.0 & 0.14285714 & 0.0 \\ 0.0 & 0.20000000 & 0.0 & 0.14285714 & 0.0 & 0.11111111 \\ 0.20000000 & 0.0 & 0.14285714 & 0.0 & 0.11111111 & 0.0 \\ 0.0 & 0.14285714 & 0.0 & 0.11111111 & 0.0 & 0.09090909\end{array}\right)$.

This matrix agrees with the 6 th order moment matrix $M_{\mathcal{L}}$.

Examples

Then, the 5 -section of Jacobi matrix $J_{\mathcal{L}, 5}$ is

Examples

Then, the 5 -section of Jacobi matrix $J_{\mathcal{L}, 5}$ is

0.0
0.5773502691
0.0
0.5773502693
0.0
0.5163977796

0.0
0.5163977795
0.0
$-0.7577722133 \cdot 10^{-9}$
$0.3023715782 \cdot 10^{-9}$
0.0
0.5070925551
0.0
0.0
0.5070925521
0.0
0.5039526136
0.0
$-0.2639315569 \cdot 10^{-8}$
0.0
0.5039526419
0.0

Algorithm II. $D=\sum_{i=1}^{m} p_{i}\left[V^{(i)}\right]^{H}\left[\alpha_{i}\left[U^{(i)}\right]^{H} D U^{(i)}+\beta_{i} I\right] V^{(i)}$

Examples

Then, the 5 -section of Jacobi matrix $J_{\mathcal{L}, 5}$ is

(
0.0
0.5773502693
0.0
0.5163977795
0.0
0.0
$-0.7577722133 \cdot 10^{-9}$
0.5773502691
0.0
0.5163977796
0.0
0.5070925551
0.0
$0.3023715782 \cdot 10^{-9}$
0.0
0.5070925521
0.0
0.5039526136
0.0

Algorithm II. $D=\sum_{i=1}^{m} p_{i}\left[V^{(i)}\right]^{H}\left[\alpha_{i}\left[U^{(i)}\right]^{H} D U^{(i)}+\beta_{i} I\right] V^{(i)}$

$$
D_{5}^{30}=\left(\begin{array}{ccccc}
0.0 & 0.5773502692 & 0.0 & -0.2133333332 \cdot 10^{-9} & 0.0 \\
0.5773502691 & 0.0 & 0.5163977796 & 0.0 & -0.1 \cdot 10^{-9} \\
0.0 & 0.5163977796 & 0.0 & 0.5070925526 & 0.0 \\
0.0 & 0.0 & 0.5070925529 & 0.0 & 0.5039526304 \\
0.0 & 0.0 & 0.0 & 0.5039526307 & 0.0
\end{array}\right)
$$

Examples

Example II. Let T be the Sierpinski triangle with basis on the $[-1,1]$ interval.
Consider the uniform measure μ on T, i.e., the $\quad \frac{\log 3}{\log 2}$-dimensional Hausdorff measure on T.

Examples

Example II. Let T be the Sierpinski triangle with basis on the $[-1,1]$ interval.
Consider the uniform measure μ on T, i.e., the $\quad \frac{\log 3}{\log 2}$-dimensional Hausdorff measure on T.

This is a self-similar measure for the IFSS given by
$\Phi=\left\{\varphi_{1}(z)=\frac{1}{2 z}-\frac{1}{2}, \varphi_{2}(z)=\frac{1}{2 z}+\frac{1}{2}, \varphi_{3}(z)=\frac{1}{2 z}+\frac{1 \sqrt{3}}{2 i} ; p_{i}=\frac{1}{3}\right\}$

Examples

Algorithm I. Applying $\mathcal{T}_{\Phi} 30$ times starting with the identity matrix we obtain an approximation of the 4 -section of the Hessenberg matrix of the measure μ :

$$
\left(\begin{array}{cccc}
0+0.5773502693 i & 0.3 \cdot 10^{-9}+0 i & 0-0.4182428890 i & -0.2457739408 \cdot 10^{-8}+0 i \\
0.6666666673+0.0 i & 0+0.5773502691 i & 0.1267731382 \cdot 10^{-8}+0 i & 0-0.3487499915 i \\
0+0 i & 0.7888106373+0 i & 0+0.5773502706 i & 0.1292460659 \cdot 10^{-8}+0 i \\
-0.406877 \cdot 10^{-9}+0 i & 0+0.279363 \cdot 10^{-9} i & 0.7737179471+0 i & 0+0.5773502588 i
\end{array}\right)
$$

Examples

Algorithm I. Applying $\mathcal{T}_{\Phi} 30$ times starting with the identity matrix we obtain an approximation of the 4 -section of the Hessenberg matrix of the measure μ :

$$
\left(\begin{array}{cccc}
0+0.5773502693 i & 0.3 \cdot 10^{-9}+0 i & 0-0.4182428890 i & -0.2457739408 \cdot 10^{-8}+0 i \\
0.6666666673+0.0 i & 0+0.5773502691 i & 0.1267731382 \cdot 10^{-8}+0 i & 0-0.3487499915 i \\
0+0 i & 0.7888106373+0 i & 0+0.5773502706 i & 0.1292460659 \cdot 10^{-8}+0 i \\
-0.406877 \cdot 10^{-9}+0 i & 0+0.279363 \cdot 10^{-9} i & 0.7737179471+0 i & 0+0.5773502588 i
\end{array}\right)
$$

Algorithm II. With only seven iterations, we have
$\left(\begin{array}{cccc}0+0.572839 i & -0.410^{-9}+0 i & 0-0.418197 i & -0.548635 \cdot 10^{-10}-0.635737 \cdot 10^{-20} i \\ 0.666692 & 0+0.572839 i & -0.110^{-9}-0.380415 \cdot 10^{-20} i & 0.106810 \cdot 10^{-19}-0.348729 i \\ 0 & 0.788866 & -0.108689 \cdot 10^{-19}+0.572839 i & -0.1610^{-9}-0.521858 \cdot 10^{-19} i \\ 0 & 0 & 0.773830-0.258454 \cdot 10^{-21} i & -0.797017 \cdot 10^{-19}+0.572839 i\end{array}\right)$

Examples

Example III. Let T be the Sierpinski triangle as above. Consider the invariant for the same IFSS with probabilities $p_{1}=\frac{1}{10}, p_{2}=\frac{1}{5}, p_{3}=\frac{1}{7}$.

Examples

Algorithm I. Applying $\mathcal{T}_{\Phi} 7$ times starting with the identity matrix we obtain an approximation of the 4 -section of the Hessenberg matrix of the measure μ :

$0.0992+1.2029 i$	$-0.2046-0.1459 i$	$-0.1799 \cdot 10^{-4}-0.3176 i-0.0123+0.0555 i$	
$0.5538+0.1359 \cdot 10^{-9} i$	$0.1439+0.8415 i$	$0.0208-0.0718 i$	$-0.0396-0.3027 i$
$0.5688 \cdot 10^{-9}+1.7342 \cdot 10^{-21} i$	$0.6848+0.5367 \cdot 10^{-9} i$	$0.0390+0.7027 i$	$0.0117-0.0461 i$
$0.5398 \cdot 10^{-8}+0.8097 \cdot 10^{-9} i$	$0.7127 \cdot 10^{-8}-0.2649 \cdot 10^{-9} i$	$0.7116-0.2392 \cdot 10^{-9} i$	$0.07365+0.6745 i$

$0.5398 \cdot 10^{-8}+0.8097 \cdot 10^{-9} i \quad 0.7127 \cdot 10^{-8}-0.2649 \cdot 10^{-9} \quad 0.7116-0.2392 \cdot 10^{-9} i \quad 0.07365+0.6745 i$

Examples

Algorithm I. Applying $\mathcal{T}_{\Phi} 7$ times starting with the identity matrix we obtain an approximation of the 4 -section of the Hessenberg matrix of the measure μ :
$\left.\begin{array}{cccc}0.0992+1.2029 i & -0.2046-0.1459 i & -0.1799 \cdot 10^{-4}-0.3176 i & -0.0123+0.0555 i \\ 0.5538+0.1359 \cdot 10^{-9} i & 0.1439+0.8415 i & 0.0208-0.0718 i & -0.0396-0.3027 i \\ 0.5688 \cdot 10^{-9}+1.7342 \cdot 10^{-21} i & 0.6848+0.5367 \cdot 10^{-9} i & 0.0390+0.7027 i & 0.0117-0.0461 i \\ 0.5398 \cdot 10^{-8}+0.8097 \cdot 10^{-9} i & 0.7127 \cdot 10^{-8}-0.2649 \cdot 10^{-9} i & 0.7116-0.2392 \cdot 10^{-9} i & 0.07365+0.6745 i\end{array}\right)$

Algorithm II. With seven iterations, we have
$\left.\begin{array}{cccc}0.099218+1.202963 i & -0.204629-0.145941 i & -0.0000179-0.317680 i & -0.012314+0.055542 i \\ 0.5538131313 & 0.143933+0.841541 i & 0.020889-0.0718614 i & -0.039695-0.302772 i \\ 0 & 0.684812+2.05958 \cdot 10^{-12} i & 0.0390029+0.702786 i & 0.011747-0.046155 i \\ 0 & 0 & 0.711680+1.54964 \cdot 10^{-12} i & 0.0736565+0.674541 i\end{array}\right)$

Examples

Example IV. Let C be the plane Cantor set.

Examples

Example IV. Let C be the plane Cantor set.

Consider the uniform measure μ on this set.

This measure is self-similar for de following IFSS

$$
\begin{aligned}
\Phi=\left\{\begin{array}{rl}
\varphi_{1}(z) & =\frac{1}{4} z+\frac{1+i}{2} z, \\
\varphi_{2}(z) & =\frac{1}{4} z+\frac{1-i}{2} z \\
\varphi_{3}(z) & =\frac{1}{4} z+\frac{-1+i}{2} z, \\
\varphi_{4}(z) & \left.=\frac{1}{4} z+\frac{-1-i}{2} z ; p_{i}=\frac{1}{4}\right\}
\end{array}, \$\right. \text {. }
\end{aligned}
$$

Examples

Algorithm I. Applying $\mathcal{T}_{\Phi} 10$ times starting with the identity matrix we obtain an approximation of the 5 -section of the Hessenberg matrix of the measure μ :
$\left(\begin{array}{ccccc}0 & 0 & 0 & -0.5534617900 & 0 \\ 0.7302967432 & 0 & 0 & 0 & -0.1728136409 \\ 0 & 0.7720611578 & 0 & 0 & 0 \\ 0 & 0 & 0.8042685429 & 0 & 0 \\ 0 & 0 & 0 & 0.6168489579 & 0\end{array}\right)$

Examples

Algorithm I. Applying $\mathcal{T}_{\Phi} 10$ times starting with the identity matrix we obtain an approximation of the 5 -section of the Hessenberg matrix of the measure μ :
$\left(\begin{array}{ccccc}0 & 0 & 0 & -0.5534617900 & 0 \\ 0.7302967432 & 0 & 0 & 0 & -0.1728136409 \\ 0 & 0.7720611578 & 0 & 0 & 0 \\ 0 & 0 & 0.8042685429 & 0 & 0 \\ 0 & 0 & 0 & 0.6168489579 & 0\end{array}\right)$

Algorithm II. With only seven iterations, we have
$\left(\begin{array}{ccccc}0+0 i & 0+0 i & 0+0 i & -0.5534617832+0 i & 0+0 i \\ 0.7302967446 & 0+0 i & 0+0 i & 0+0 i & -0.1728136428+0 i \\ 0 & 0.7720611608 & 0+0 i & 0+0 i & -4.0 \cdot 10^{-11}+0 i \\ 0 & 0 & 0.8042685477 & 0+0 i & 0+0 i \\ 0 & 0 & 0 & 0.6168489731 & 0+0 i\end{array}\right)$

