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Summary

Objective: The obtention of the Hessenberg matrix associated to a
self-similar measure with compact support in the complex plane in
two different ways.

Outline of the talk:

1 Preliminaries. Moment and Hessenberg matrices. Self-similar
measures.

2 Moment matrices of self-similar measures. Fixed point
theorem for moment matrices of self-similar measures (EST
2007).Cholesky factorization.

3 Hesssenberg matrix of a sum of measures (generalization of
Mantica’s spectral techniques ). Hessenberg matrix associated
to a self-similar measure.

4 Examples.
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Moment and Hessenberg matrices

Let µ be a positive measure in C with compact support Ω.

1 The hermitian moment matrix M = (cjk)∞j ,k=0 given by

cjk =

∫
Ω

z jzkdµ, j , k ∈ Z+

is the matrix of the inner product in the canonical basis.

2 Let D be the infinite upper Hessenberg matrix of the
multiplication by z operator in the basis of ONPS P̂n(z) in
the closure of the polynomials.

3 The Hessenberg matrix D is the natural generalization to the
hermitian case of Jacobi matrix.

C. Escribano, A. Giraldo, M. A. Sastre, E. Torrano Computing Hessenberg Matrix associated to self-similar measures



IWOPA2008Summary Preliminares Fixed point theorem Sum of measures Hessemberg of self-similar measures Examples

Moment and Hessenberg matrices

Let µ be a positive measure in C with compact support Ω.

1 The hermitian moment matrix M = (cjk)∞j ,k=0 given by

cjk =

∫
Ω

z jzkdµ, j , k ∈ Z+

is the matrix of the inner product in the canonical basis.

2 Let D be the infinite upper Hessenberg matrix of the
multiplication by z operator in the basis of ONPS P̂n(z) in
the closure of the polynomials.

3 The Hessenberg matrix D is the natural generalization to the
hermitian case of Jacobi matrix.

C. Escribano, A. Giraldo, M. A. Sastre, E. Torrano Computing Hessenberg Matrix associated to self-similar measures



IWOPA2008Summary Preliminares Fixed point theorem Sum of measures Hessemberg of self-similar measures Examples

Moment and Hessenberg matrices

Let µ be a positive measure in C with compact support Ω.

1 The hermitian moment matrix M = (cjk)∞j ,k=0 given by

cjk =

∫
Ω

z jzkdµ, j , k ∈ Z+

is the matrix of the inner product in the canonical basis.

2 Let D be the infinite upper Hessenberg matrix of the
multiplication by z operator in the basis of ONPS P̂n(z) in
the closure of the polynomials.

3 The Hessenberg matrix D is the natural generalization to the
hermitian case of Jacobi matrix.

C. Escribano, A. Giraldo, M. A. Sastre, E. Torrano Computing Hessenberg Matrix associated to self-similar measures



IWOPA2008Summary Preliminares Fixed point theorem Sum of measures Hessemberg of self-similar measures Examples

Moment and Hessenberg matrices

Let µ be a positive measure in C with compact support Ω.

1 The hermitian moment matrix M = (cjk)∞j ,k=0 given by

cjk =

∫
Ω

z jzkdµ, j , k ∈ Z+

is the matrix of the inner product in the canonical basis.

2 Let D be the infinite upper Hessenberg matrix of the
multiplication by z operator in the basis of ONPS P̂n(z) in
the closure of the polynomials.

3 The Hessenberg matrix D is the natural generalization to the
hermitian case of Jacobi matrix.

C. Escribano, A. Giraldo, M. A. Sastre, E. Torrano Computing Hessenberg Matrix associated to self-similar measures



IWOPA2008Summary Preliminares Fixed point theorem Sum of measures Hessemberg of self-similar measures Examples

Self-similar Measures

An Iterated Functions System (IFS) (M. Barnsley 1988) is a family
of contractive maps {ϕs}ks=1 on a complete metric space.
In all this work, assume that ϕs (s = 1, . . . , k) are contractive
similarities (|ϕ(x)− ϕ(y)| = r |x − y |, 0 ≤ r < 1, for all x , y). The
family {ϕs}ks=1 then, will be called an Iterated Functions System
of Similarities (IFSS).

Given an IFSS {ϕs}ks=1 on a complete metric space, there exists a
unique compactum K (self-similar set) satisfying

K =
k⋃

s=1

ϕs(K ).
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Self-similar Measures

Examples of self similar sets
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Self-similar Measures

Consider a probability vector p = (ps > 0)k
s=1 with

k∑
s=1

ps = 1.

Let T be the Markov operator defined over the set of Borel regular

probability measures as Tν =
k∑

s=1

psνϕ
−1
s . Then, there exists a

unique probability invariant measure µ.
We call µ the self-similar measure associated to the IFSS with
probabilities Φ = {ϕ1, ϕ2, . . . , ϕk ; p1, p2, . . . pk}.
The support of µ is the self-similar set K and satisfies (Hutchinson,
1981,Mandelbrot, 1977)

µ =
k∑

s=1

psµϕ
−1
s ,

∫
Supp(µ)

fdµ =
k∑

s=1

ps

∫
Supp(µ)

f ◦ ϕsdµ,

for any continuous function f on K .
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Moment matrix of the image of a measure by a similarity

E. Torrano (1987) obtained the following expression of the moment
matrix of the transformation of a measure by a similarity.

1 Let M be the moment matrix of a measure µ in C.
2 Let ϕ(z) = αz + β, with α, β ∈ C be a similarity .
3 Let Mϕ be the moment matrix of the measure µ ◦ ϕ−1 .

Then,
Mϕ = AH

ϕMAϕ

where AH
ϕ denotes the conjugated transposed matrix of Aϕ given by

Aϕ =
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Moment matrix of self-similar measures

Consider:

1 Φ = {ϕ1, ϕ2, . . . , ϕk ; p1, p2, . . . pk} an IFSS with probabilities.

2 µ the invariant measure.

Then, the sections the moment matrix M of µ satisfy the following
matricial relation

M =
k∑

s=1

psAH
ϕs

MAϕs
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Moment matrix of self-similar measures

To obtain a fixed point theorem we will define a contractive map on
a metric space of infinite matrices, making use of the following fact:

Given

1 Φ = {ϕ1, ϕ2, . . . , ϕk ; p1, p2, . . . pk} an IFSS with probabilities.

2 KΦ and µΦ the self-similar set and measure, respectively.

3 f a similarity map.

Then the set f (K ) and the measure µΦ ◦ f −1 are self-similar for the
IFSS

f Φf −1 = {f ◦ϕ1 ◦ f −1, f ◦ϕ2 ◦ f −1, . . . , f ◦ϕk ◦ f −1; p1, p2, . . . pk},

and
µf Φf −1 = µΦ ◦ f −1.
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Moment matrix of self-similar measures

Remark

When the measure is supported in the unit ball, the moments are
bounded. In any other case they are not bounded.

Consider the complete metric spaces

M∞ = {(mij)
∞
i ,j=0 | sup

i ,j
|mij | <∞} M1 = {M ∈M∞|m00 = 1} .

If Supp(µ) = K 6⊂ B1(0), there exists a contractive map f (z) = αz
such that f (K ) ⊂ B1(0). Then,

Mf = {M|AH
f MAf ∈M1} with ||M||f = ||AH

f MAf ||sup,

is a complete metric space.
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such that f (K ) ⊂ B1(0). Then,

Mf = {M|AH
f MAf ∈M1} with ||M||f = ||AH

f MAf ||sup,

is a complete metric space.
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Fixed point theorem for moment matrix of self-similar
measures

Theorem

Let Φ = {ϕs ; ps}ks=1 be an IFSS with probabilities. Let KΦ and µΦ

be the self-similar set and measure, respectively. Let f (z) = αz be
a contractive central dilation such that f (K ) ∈ B1(0). Let Tf Φf −1 :
(Mf , || · ||f )→ (Mf , || · ||f ) be the transformation defined as

Tf Φf −1(M) =
k∑

s=1

psAH
f ϕs f −1MAf ϕs f −1 .

Then Tf Φf −1 is a contractive map with the moment matrix of the
self-similar measure µΦ as unique fixed point.
Moreover, the ratio of this contractive map is

r = sup{|αs |, s = 1, 2, . . . k}
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Hessenberg Matrix. Cholesky Factoritation

Then we have the following algorithm

ν → T (ν) → T 2(ν) → · · · T n(ν) → µ
l l l l l

Mν → TΦ(Mν) → T 2
Φ (Mν) → · · · T n

Φ (Mν) → Mµ

Since M and D are related (even for every PDH matrix M) by the
formula

D = T HSRT−H

where M = TT H is the Cholesky factorization and SR is the
shift-right matrix; we can approximate the n-section of Dµ

Mµ,n → Mµ,n = TnT H
n → Dµ,n = T−1

n M ′µ,nT−H
n
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Hessenberg Matrix associated to a sum of measures

From now on, we use the following notation.

1 µ sum of measures, i.e., dµ =
∑m

i=1 pidµi , where
∑m

i=1 pi = 1.

2 every measure µi has compact support on the complex plane.

3 D = (dij)
∞
i ,j=1 the Hessenberg matrix associated to µ.

4 {D(i)}mi=1 its Hessenberg matrices of µi .

We will give a technique to calculate D in terms of {D(i)}mi=1.

Remark

First note that the matrices D(i) are bounded in `2 because
the support of every µi is compact; second, remark that every
matrix defines a subnormal operator in `2 (Atzmon, 1975, Torrano-
Guadalupe, 1993, and Tomeo, 2003), due to the fact that the matrix
of the inner produtc is a moment matrix. These two properties allow
us to extend the spectral Mantica’s techniques (2000).
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Large recurrence formula

D = (djk)∞j ,k=1 upper Hessenberg matrix. The ONPS satisfy

zP̂n−1(z) =
n+1∑
k=1

dk,nP̂k−1(z), n > 1.

with P̂1(z) = 0 and P̂1(z) = 1 when c00 = 1. Then

dn+1,nP̂n(z) = (z − dnn)P̂n−1(z)−
n−1∑
k=1

dk,nP̂k−1(z), n > 1.

with d2,1P̂1(z) = (z − d11)P̂0(z), for n = 1.

For D subnormal, we can write

dn+1,nP̂n(D) = (D − dnnI )P̂n−1(D)−
n−1∑
k=1

dk,nP̂k−1(D), n > 1
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Hessenberg Matrix associated to a sum of measures

Theorem (EST 2006, NTCAT06-ICM)

Let µ, {P̂n}∞n=1, D = (djk)∞j ,k=1 and {D(i)} be as above.

Then the
elements of D = (dij)

∞
i ,j=1 can be calculated recursively by

dk,n =
m∑

i=1

pi 〈D(i)v
(i)
n−1, v

(i)
k−1〉, i = 1, . . . ,m, k = 1, . . . , n (1)

w
(i)
n =

[
D(i) − dnnI

]
v

(i)
n−1 −

n−1∑
k=1

dk,nv
(i)
k−1, i = 1, . . . ,m (2)

When n = 1 we take w
(i)
1 =

[
D(i) − d11I

]
v

(i)
0 , d11 =

∑m
i=1 pid

(i)
11

dn+1,n =

√√√√ m∑
i=1

pi 〈w
(i)
n ,w

(i)
n 〉, (3)

v
(i)
n =

w
(i)
n

dn+1,n
, v

(i)
0 = e0 i = 1, . . . ,m. (4)
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Recurrent algorithm

We have {v (i)
0 , v

(i)
1 , . . . , v

(i)
n−1}

m
i=1,Dn =


d11 d12 . . . d1n

d21 d22 . . . d2n
...

...
...

...
0 0 . . . dnn



Dn v
(i)
0 , v

(i)
1 , . . . , v

(i)
n−1

?
�����

w
(i)
n =

[
D(i) − dnnI

]
v

(i)
n−1 −

n−1∑
k=1

dk,nv
(i)
k−1 (2)

?

dn+1,n =

√√√√ m∑
i=1

pi 〈w
(i)
n ,w

(i)
n 〉 (3)

?

v
(i)
n =

w
(i)
n

dn+1,n
(4)

v
(i)
0 , v

(i)
1 , . . . , v

(i)
n−1

XXXXXXXz

�
�
�	dk,n+1 =

m∑
i=1

pi 〈D(i)v
(i)
n−1, v

(i)
k−1〉 (1)
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Hessenberg Matrix associated to a sum of measures

The theorem gains in interest if we realize that it can be written in
a matricial way.

Corollary

Let V (i) denote the upper triangular matrix with the vectors v
(i)
0 ,

v
(i)
1 , v

(i)
2 , . . .,of `2, as columns (i.e., V (i) = (v

(i)
0 , v

(i)
1 , v

(i)
2 , . . .)).

Then, we have

D =
m∑

i=1

pi [V (i)]HD(i)V (i).
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Hessemberg matrix associated to a self-similar measure

We use the following result of E. Torrano (1987) to apply the above
result to self-similar measures.

1 Let D be the Hessenberg matrix associated to a measure µ.

2 Let ϕ(z) = αz + β be a similarity, where α, β ∈ C.

3 Let µϕ be the transformation of this measure by ϕ.

4 Let D∗ be the Hessenberg matrix associated to µϕ.

then we have
D∗ = α UHDU + βI ,

where U =
(
δjke(k−1)θi

)∞
j ,k=1

, with α = |α|eθi .

C. Escribano, A. Giraldo, M. A. Sastre, E. Torrano Computing Hessenberg Matrix associated to self-similar measures



IWOPA2008Summary Preliminares Fixed point theorem Sum of measures Hessemberg of self-similar measures Examples

Hessemberg matrix associated to a self-similar measure

We use the following result of E. Torrano (1987) to apply the above
result to self-similar measures.

1 Let D be the Hessenberg matrix associated to a measure µ.

2 Let ϕ(z) = αz + β be a similarity, where α, β ∈ C.

3 Let µϕ be the transformation of this measure by ϕ.

4 Let D∗ be the Hessenberg matrix associated to µϕ.

then we have
D∗ = α UHDU + βI ,

where U =
(
δjke(k−1)θi

)∞
j ,k=1

, with α = |α|eθi .

C. Escribano, A. Giraldo, M. A. Sastre, E. Torrano Computing Hessenberg Matrix associated to self-similar measures



IWOPA2008Summary Preliminares Fixed point theorem Sum of measures Hessemberg of self-similar measures Examples

Hessemberg matrix associated to a self-similar measure

Corollary

Let Φ = {ϕi (z) = αiz + βi ; pi} be an IFSS with probabilities.
Let µ be the corresponding self-similar measure.

Then, the Hessenberg matrix D associated to the self-similar
measure µ satisfies the following recurrent equation

D =
m∑

i=1

pi [V (i)]H
[
αi [U

(i)]HDU(i) + βi I
]

V (i),

where U =
(
δjke(k−1)θi

)∞
j ,k=1

, with α = |α|eθi .
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Let Φ = {ϕi (z) = αiz + βi ; pi} be an IFSS with probabilities.
Let µ be the corresponding self-similar measure.
Then, the Hessenberg matrix D associated to the self-similar
measure µ satisfies the following recurrent equation

D =
m∑

i=1

pi [V (i)]H
[
αi [U

(i)]HDU(i) + βi I
]

V (i),

where U =
(
δjke(k−1)θi

)∞
j ,k=1

, with α = |α|eθi .
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Convergence to Hessemberg matrix

Then we have the following algorithm

ν −→ T (ν) −→ T 2(ν) · · · T n(ν) −→ µ
l l l l l

Mν
meth 1−→ TΦ(Mν)

meth 1−→ T 2
Φ (Mν) · · · T n

Φ (Mν)
meth 1−→ Mµ

l l l l l
D0

meth 2−→ D1
meth 2−→ D2 · · · Dn

meth 2−→ Dµ
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Examples

Example I. Let L be the normalized Lebesgue measure in the
interval [−1, 1]. This is a self-similar measure for the IFSS

Φ = {ϕ1(x) = 1/2x − 1/2, ϕ2(x) = 1/2x + 1/2; p1 = p2 = 1/2}.

Algorithm I. T Φ(Mν) =
2∑

i=1

1

2
AH
ϕi

MνAϕi .

If we iterate the transformation T Φ 30 times starting with the sixth
order identity matrix we obtain

1.0 0.0 0.33333333 0.0 0.20000000 0.0

0.0 0.33333333 0.0 0.20000000 0.0 0.14285714

0.33333333 0.0 0.20000000 0.0 0.14285714 0.0

0.0 0.20000000 0.0 0.14285714 0.0 0.11111111

0.20000000 0.0 0.14285714 0.0 0.11111111 0.0

0.0 0.14285714 0.0 0.11111111 0.0 0.09090909

 .

This matrix agrees with the 6th order moment matrix ML.
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Examples

Then, the 5-section of Jacobi matrix JL,5 is
0.0 0.5773502693 0.0 0.0 0.0

0.5773502691 0.0 0.5163977795 0.0 −0.7577722133 · 10−9

0.0 0.5163977796 0.0 0.5070925551 0.0

0.3023715782 · 10−9 0.0 0.5070925521 0.0 0.5039526136

0.0 −0.2639315569 · 10−8 0.0 0.5039526419 0.0



Algorithm II. D =
m∑

i=1

pi [V (i)]H
[
αi [U

(i)]HDU(i) + βi I
]

V (i)

D30
5 =


0.0 0.5773502692 0.0 −0.2133333332 · 10−9 0.0

0.5773502691 0.0 0.5163977796 0.0 −0.1 · 10−9

0.0 0.5163977796 0.0 0.5070925526 0.0

0.0 0.0 0.5070925529 0.0 0.5039526304

0.0 0.0 0.0 0.5039526307 0.0
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Examples

Example II. Let T be
the Sierpinski triangle
with basis on the [−1, 1]
interval.
Consider the uniform
measure µ on T , i.e.,

the
log3

log2
-dimensional

Hausdorff measure on T .

This is a self-similar measure for the IFSS given by

Φ =

{
ϕ1(z) =

1

2z
− 1

2
, ϕ2(z) =

1

2z
+

1

2
, ϕ3(z) =

1

2z
+

1
√

3

2i
; pi =

1

3

}
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Algorithm I. Applying T Φ 30 times starting with the identity matrix
we obtain an approximation of the 4-section of the Hessenberg
matrix of the measure µ:

0 + 0.5773502693i 0.3 · 10−9 + 0i 0 − 0.4182428890i −0.2457739408 · 10−8 + 0i

0.6666666673 + 0.0i 0 + 0.5773502691i 0.1267731382 · 10−8 + 0i 0 − 0.3487499915i

0 + 0i 0.7888106373 + 0i 0 + 0.5773502706i 0.1292460659 · 10−8 + 0i

−0.406877 · 10−9 + 0i 0 + 0.279363 · 10−9 i 0.7737179471 + 0i 0 + 0.5773502588i



Algorithm II. With only seven iterations, we have
0 + 0.572839i −0.410−9 + 0i 0 − 0.418197i −0.548635 · 10−10 − 0.635737 · 10−20 i

0.666692 0 + 0.572839i −0.110−9 − 0.380415 · 10−20 i 0.106810 · 10−19 − 0.348729i

0 0.788866 −0.108689 · 10−19 + 0.572839i −0.1610−9 − 0.521858 · 10−19 i

0 0 0.773830 − 0.258454 · 10−21 i −0.797017 · 10−19 + 0.572839i
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Example III. Let T be
the Sierpinski triangle
as above. Consider the
invariant for the same
IFSS with probabilities

p1 =
1

10
, p2 =

1

5
, p3 =

1

7
.
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Algorithm I. Applying T Φ 7 times starting with the identity matrix
we obtain an approximation of the 4-section of the Hessenberg
matrix of the measure µ:

0.0992 + 1.2029i −0.2046 − 0.1459i −0.1799 · 10−4 − 0.3176i −0.0123 + 0.0555i

0.5538 + 0.1359 · 10−9 i 0.1439 + 0.8415i 0.0208 − 0.0718i −0.0396 − 0.3027i

0.5688 · 10−9 + 1.7342 · 10−21 i 0.6848 + 0.5367 · 10−9 i 0.0390 + 0.7027i 0.0117 − 0.0461i

0.5398 · 10−8 + 0.8097 · 10−9 i 0.7127 · 10−8 − 0.2649 · 10−9 i 0.7116 − 0.2392 · 10−9 i 0.07365 + 0.6745i



Algorithm II. With seven iterations, we have
0.099218 + 1.202963i −0.204629 − 0.145941i −0.0000179 − 0.317680i −0.012314 + 0.055542i

0.5538131313 0.143933 + 0.841541i 0.020889 − 0.0718614i −0.039695 − 0.302772i

0 0.684812 + 2.05958 · 10−12 i 0.0390029 + 0.702786i 0.011747 − 0.046155i

0 0 0.711680 + 1.54964 · 10−12 i 0.0736565 + 0.674541i
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Examples

Example IV. Let C be the
plane Cantor set.

Consider the uniform measure µ
on this set.
This measure is self-similar for de
following IFSS

Φ =

{
ϕ1(z) =

1

4
z +

1 + i

2
z ,

ϕ2(z) =
1

4
z +

1− i

2
z ,

ϕ3(z) =
1

4
z +
−1 + i

2
z ,

ϕ4(z) =
1

4
z +
−1− i

2
z ; pi =

1

4

}
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Examples

Algorithm I. Applying T Φ 10 times starting with the identity matrix
we obtain an approximation of the 5-section of the Hessenberg
matrix of the measure µ:

0 0 0 −0.5534617900 0

0.7302967432 0 0 0 −0.1728136409

0 0.7720611578 0 0 0

0 0 0.8042685429 0 0

0 0 0 0.6168489579 0



Algorithm II. With only seven iterations, we have
0 + 0i 0 + 0i 0 + 0i −0.5534617832 + 0i 0 + 0i

0.7302967446 0 + 0i 0 + 0i 0 + 0i −0.1728136428 + 0i

0 0.7720611608 0 + 0i 0 + 0i −4.0 · 10−11 + 0i

0 0 0.8042685477 0 + 0i 0 + 0i

0 0 0 0.6168489731 0 + 0i
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