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Abstract
1
 

Test normalization (T-Norm) is a score normalization 

technique that is regularly and successfully applied in the 

context of text-independent speaker recognition. It is less 

frequently applied, however, to text-dependent or text-

prompted speaker recognition, mainly because its 

improvement in this context is more modest. In this paper we 

present a novel way to improve the performance of T-Norm 

for text-dependent systems. It consists in applying score T-

Normalization at the phoneme or sub-phoneme level instead of 

at the sentence level. Experiments on the YOHO corpus show 

that, while using standard sentence-level T-Norm does not 

improve equal error rate (EER), phoneme and sub-phoneme 

level T-Norm produce a relative EER reduction of 18.9% and 

20.1% respectively on a state-of-the-art HMM based text-

dependent speaker recognition system. Results are even better 

for working points with low false acceptance rates.    

1. Introduction 

Automatic Speaker Recognition (SR) aims to recognize the 

speaker that produces a particular speech utterance. Depending 

on the constraints imposed on the linguistic content of the 

utterance, there is text-independent speaker recognition, in 

which the linguistic content of the speech recording is 

unknown by the system, and text-dependent speaker 

recognition, in which the linguistic content of the speech is 

known by the system. In the latter case the text could be a 

password set by the user during training or a random text that 

is generated by the system and prompted to the user (text-

prompted). A combination of both systems (first requesting a 

user-defined password and then a system generated prompt) 

provides increased security in voice authentication.  

Despite its potential applications in interactive voice 

response systems, text-dependent SR has developed at a 

slower pace than text-independent SR. One of the reasons for 

this difference is the absence of competitive evaluation 

campaigns (such as the text-independent SR evaluations 

organized almost yearly by NIST [1,2]). Other reason is the 

lack of challenging benchmarks. For years YOHO [3, 4] has 

been the better known database for evaluation of text-

dependent SR.  

                                                           
1 This work was funded by the Spanish Ministry of Science 

and Technology under project TEC2006-13170-C02-01. 

In the field of text-dependent SR there are two methods 

that have been used for years: Dynamic Time Warping (DTW) 

and Hidden Markov Models (HMMs). DTW is simpler, but 

less flexible. For instance it is difficult, though not impossible 

[5], to build a text-prompted system with DTW. HMMs on the 

other hand may be a bit more complex, but provide greater 

flexibility and at least comparable results. Perhaps for this 

reason it is the most commonly used technique in text-

dependent SR. Among the first researchers that advocate for 

the use of HMMs for text-dependent SR we should mention 

Matsui and Furui [6]. Later Genoud et al. proposed the 

combination of HMMs and DTW for improved performance 

[7]. Different configuration parameters in HMM based text-

dependent SR were extensively tested within the context of the 

CAVE project [8]. The information from the alignment was 

proposed as an additional discriminative feature in [9]. More 

recently, the HMM framework has been combined with 

boosting [10] for improved performance. 

In this paper we focus on text-dependent SR using HMMs, 

and in particular on the application of T-Norm score 

normalization. The use of T-Norm for text-dependent SR has 

received little attention until very recently [11, 12]. Of 

particular interest for this paper is the work in [12], where the 

authors propose the effect of the lexical mismatch as one of 

the reasons for the modest performance of T-Norm in text-

dependent SR. In [12] the authors propose a technique for 

smoothing the normalization that improves the results. Here 

we present an alternative way of improving the performance of 

normalization, by performing T-Norm at the phoneme or sub-

phoneme levels instead of at the utterance level.  

The rest of the paper is organized as follows: section 2 

describes the baseline algorithm used for text-dependent SR 

with HMMs. Section 3 describes the three different 

alternatives considered for performing T-Norm, and section 4 

presents experimental results. Finally, section 5 presents some 

conclusions.  

2. General framework for text-dependent SR 

based on phonetic HMMs 

The general framework used in this paper for text-dependent 

SR is defined by a common parameterization; a speaker-

dependent sentence HMM of the utterance to be verified (λD), 

constructed from its phonetic transcription by concatenating a 

set of corresponding speaker-dependent phoneme models; a 

speaker-independent sentence HMM (λI), constructed in the 



same way and used for log-likelihood score normalization; and 

a common way of scoring with all this information. 

2.1. Parameterization 

All the systems presented in this paper use a common signal 

processing front-end. After pre-emphasis, the signal is 

windowed using 25 ms. Hamming windows with a window 

shift of 10 ms. From each window 13 Mel Frequency Cepstral 

Coefficients (MFCCs) are extracted (including C0), and their 

first and second-order differences are calculated, for a total of 

39 features per frame. We will represent the parameterized 

utterance as },...,,{ 21 NoooO = , where N is the number of 

frames. 

2.2. Speaker-independent HMM, λI 

For each utterance we wish to verify we need to construct a 

speaker-independent HMM. To allow for total flexibility in 

the selection of utterances, we have trained 39 English 

context-independent phonetic HMM models on the TIMIT 

corpus [15]. Each phonetic model has the same topology (3 

states, left-to-right with no skips). We have trained models 

with different complexities (1 to 80 Gaussians/state) to analyze 

the influence of this parameter. The phonetic models are 

combined into word models using a phonetic lexicon and the 

word models into an utterance HMM model via a grammar 

that allows only one sequence of words (the expected text in 

the utterance) with optional silences between them. We refer 

to this composite sentence HMM as λI to denote that it is a 

speaker-independent model of the utterance.  

2.3. Speaker-dependent HMM, λD 

For each utterance to be verified we need to construct a 

speaker-dependent sentence HMM. This sentence HMM is 

composed of speaker-dependent context-independent phonetic 

HMMs obtained from a small amount of speech (enrollment 

data) from that speaker. These speaker-dependent phonetic 

HMMs are structurally equivalent to the speaker-independent 

HMMs – they have the same topology and same number of 

Gaussians per state. There are different ways to obtain 

speaker-dependent HMMs. We have explored two of them: 

performing Baum-Welch reestimation [13] of the speaker-

independent phonetic HMMs on the enrollment data, and 

adapting the speaker-independent HMMs using Maximum 

Likelihood Linear Regression (MLLR) [14]. The last option 

yields better results for limited amounts of enrolment data and 

has the additional advantage that only the MLLR adaptation 

matrices need to be stored as the speaker model, which 

represents a considerable amount of storage saving. These 

speaker-dependent phonetic models are combined into a 

sentence HMM model in exactly the same way as with the 

speaker-independent ones. We represent the speaker-

dependent sentence HMM as λD.   

2.4. Scoring 

Given a test sentence (of which we know the text) and a 

speaker model, scoring proceeds as follows. We first 

parameterize the sentence obtaining a sequence of feature 

vectors, },...,,{ 21 NoooO = . We then construct a speaker-

independent sentence HMM model (λI) and a speaker-

dependent sentence model (λD). Two different state 

segmentations are obtained through Viterbi decoding from 

both the speaker independent model, λI, and the speaker 

dependent model, λD. This decoding is almost a forced 

phonetic alignment (the only exceptions are the optional 

silences) because no alternative pronunciations are considered. 

At this stage, given the set of observations O these two Viterbi 

alignments produce the following information: 

(i) The best state per frame given O and λI or λD: 

 { }),|(maxarg},...,,{ 21 I
I
N

II
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Q

==  (1) 

 { }),|(maxarg},...,,{ 21 D
D
N

DD
D PsssS λOQ

Q

== , (2) 

where },...,,{ 21 Nqqq=Q represents any possible state 

sequence.  

This information can also be represented as a sequence of 

state labels (possibly spanning several frames) and a state 

segmentation 
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where IL and DL are the total number of decoded states for the 

speaker independent and dependent models, X
isl  are the 

labels of the states and X
ist  the number of the frame at which 

state X
isl  ends plus one ( Xst0 is 0). 

From these state sequences we can obtain the 

corresponding phoneme labelings and segmentations 
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where IK and DK are the number of phonemes and silences 

found with the speaker independent and dependent models, 
X
ipl  represents  the phone and silence labels and X

ipt is the 

ending frame number of phoneme X
ipl  plus one ( Xpt0 is 0).  

 (ii) The acoustic scores per frame (considering the best 

state sequence only) for the speaker independent and speaker 

dependent models: 
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where X

s X
i

π represents the initial state probabilities of the 

HMMs (normally only one of these probabilities is 1 and the 

rest are 0), X

ss
X
i

X
i

a
1−

represents the transition probabilities from 

state X
is 1− to state X

is in the HMMs and )( i
D

s D
i

b o represents the 

probability of observing io in state X
is , according to the 

HMM. 



With all this information at hand it is relatively 

straightforward to produce scores measuring the similarity of 

the sequence of feature vectors to be verified and the speaker 

model, λD. The simplest measure may be the normalised log-

likelihood score obtained from the difference between the 

average acoustic score per frame for the utterance, given the 

speaker dependent model (λD), and the average acoustic score 

from the speaker-independent (λI) model: 
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The possible contribution of initial, final and inter-word 

silences to the score in eq. (9) carries no information that is 

valuable for speaker discrimination. Consequently, to improve 

its discriminative capabilities silence frames should be 

excluded from the score. Thus we obtain:  
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Where SIL is the set of silence labels and *
DN and *

IN are the 

number of non-silence frames found in the Viterbi with the 

speaker-dependent model and speaker-independent model, 

respectively.  

In spite of the score normalization provided by the use of 

speaker-independent scores, which can be viewed as similar 

to a UBM (Universal Background Model) and cohort-

normalisation, the speaker-dependent score variation and the 

need for speaker-independent decision thresholds usually 

requires the inclusion of further score normalization 

techniques (Z-norm, T-norm, …). In this sense we can 

describe Eq. (10) as defining the scoring mechanism 

employed to compute the unnormalized scores in our text-

dependent speaker verification system. 

3. T-Norm for text-dependent SR at the 

utterance, phoneme and state levels 

In text-independent SR it is very common to use T-

Normalization by comparing the score obtained with a test 

segment, not only to the model of the speaker in the test 

segment, but also against the models of other speakers (i.e. 

against a cohort of impostors).  

3.1. Utterance-level T-Norm  

The direct translation of this approach to text-dependent SR is 

what we call utterance-level T-Norm, to distinguish it from the 

novel T-Normalization schemes proposed in following 

sections. In utterance-level T-Norm for text-dependent SR we 

need to create a cohort of M speaker sentence HMM models 

for the utterance, },...,,{ 21 M
DDDOC λλλ= . This set of sentence 

HMMs needs to be created from the textual content of each 

test utterance using the speaker-dependent phonetic HMMs of 

each of the speakers in the cohort, as explained in sections 2.2 

and 2.3.  

Once these models are in place we can use eq. (10) to 

compute the score of the test utterance against each speaker in 

the cohort, )},(),...,,(),,({ 2
2

2
1

2
M
DDD scscsc λOλOλO , compute 

the mean, O
Cµ , and the standard deviation, O

Cσ , of these scores 

and T-Normalize the score as usual, 
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3.2. Phoneme-level T-Norm  

One problem with the utterance-level T-Norm scheme applied 

to text-dependent SR is that we are trying to normalize an 

average score computed on parts of the test utterance that can 

be very different (for instance computed on different 

phonemes). For that reason it makes sense to try to normalize 

the scores for similar segments before averaging the scores.  

To achieve this goal, we first realize that the sequence of 

phonemes (excluding silences) produced by the Viterbi 

decodings is the same for all the models ( Dλ , M
DDD λλλ ,...,, 21 , 

and Iλ ), as discussed in sections 2.2 and 2.3. Let us define 

this common sequence of phonemes as 

},...,,{ 21
All
K

AllAll
All plplplPL = . We can now find mapping 

functions that map the indices 1, … , K into the index 

corresponding to the same phoneme in each of the Viterbi 

decodings. Let us call these mappings 

)(imD , )(),...,(),( 21 imimim M
DDD , and )(imI . With these 

mappings we propose to approximate Eq. (10) as  











=≈ ∑

=

K

i

DpDpD isciN
N

scsc
1

*

*2 ),,()(
1

),(),( λOλOλO , (12) 

where *N is the average number of non-silence frames found 

with the speaker-dependent and speaker-independent models, 

2/)]()[()( 1)()(1)()(
* I

im
I

im
D

im
D

im IIDD
ptptptptiN −− −+−= , (13) 

is the average number of frames found for phoneme All
ipl in 

the speaker dependent and speaker independent decodings, 
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is the speaker recognition score produced only by phoneme 
All
ipl .  

After this small transformation we can compute the scores 

for each of the phonemes (i) in AllPL  against the speaker 

model, ),,( isc Dp λO , and also against each of the T-Norm 

cohort models, ),,(),...,,,(
1

iscisc
M
DpDp λOλO . Now we can 

compute a T-Normalized score for each of the phonemes in 

AllPL , ),,( isc D
TNorm
p λO , and then combine the T-Normalized 

phonetic scores as in eq. (12).  

When compared to utterance-level T-Norm, this scheme, 

that we call phoneme-level T-Norm, has the advantage that the 

scores used to estimate the distribution of impostor scores and 

the score we wish to normalize are always produced with the 

same lexical content (the same phoneme), and are normalized 



prior to compute the global average, which should lead finally 

to a better score normalization.    

3.3. State-level T-Norm  

As shown in section 2.4, Viterbi decodings produce a 

phoneme labelling and segmentation and also a more detailed 

HMM state labelling and segmentation. Following an 

argumentation parallel to that presented in section 3.2 we can 

define a speaker recognition score for each state found in the 

decoding that does not correspond to a silence, and also an 

approximation to eq. (10) very similar to eq. (12) to compute 

the overall score from those state-level scores. After having 

presented the phoneme-level T-Norm it is quite obvious that 

this idea can easily be extended to a state-level T-Norm 

scheme in very much the same way as in section 3.2. With 

respect to the lexical content of the utterances state-level T-

Norm has no theoretical advantage over phoneme-level T-

Norm. However, the main reason to introduce more than one 

state in an HMM is co-articulation (the initial part of the 

phoneme is very much affected by the preceding phoneme and 

the final part by the following phoneme). Therefore, 

performing state-level T-Norm is a way of more finely treating 

co-articulation in T-Norm, and theoretically there are reasons 

to consider it better than phoneme-level T-Norm.   

4. YOHO experimental protocol 

For the experiments we have used YOHO [3], probably the 

most widely used and well known benchmark for system 

comparison and assessment. It consists of 96 utterances for 

enrolment collected in 4 different sessions and 40 utterances 

for testing collected in 10 sessions for each of a total of 138 

speakers, 106 male and 32 female. Each utterance is a different 

set of three digit pairs (e.g. “12-34-56”). The results presented 

on YOHO are based on the following experimental protocol. 

Speaker models are trained using 6 utterances from session 1, 

the 24 utterances from session 1 or the 96 utterances from the 

4 sessions. Our main focus was on the single session, 6 

utterances, since it is the closest to what we expect to find in 

realistic operational conditions. Speaker verification is 

performed using a single utterance from the test subset. The 

target scores are generated by matching each speaker-

dependent phone HMM with all the test utterances from that 

user, leading to a total of 138 x 40 = 5,520 scores. The 

impostor scores are computed by comparing each speaker 

model with a single utterance randomly selected from those of 

all other users, which yields 138 x 137 = 18,906 trials. For all 

impostor trials the sentence HMMs are produced using the 

actual text spoken to simulate a text-prompted system in which 

the impostors know what they have to say. 

For experiments using T-Norm the experimental protocol 

has been slightly modified. In particular, we have reserved 10 

male and 10 female speakers to build a 20-speaker cohort for 

T-Normalization. This way the number of target scores is 

reduced to 118 x 40 = 4,720, and the number of impostor 

scores to 118 x 117 = 13,806. 

5. Results 

We have organized this section into two subsections. The first 

one compares results without score normalization using 

MLLR and Baum-Welch to obtain the speaker model. The 

second focuses on the three different ways of performing T-

Normalization that we have proposed above.   

5.1. Results with MLLR and retraining  

In this section we compare MLLR adaptation and Baum-

Welch re-estimation for different amounts of enrolment 

speech. In particular, we have compared the best results 

achieved by MLLR adaptation and Baum-Welch retraining for 

the condition of 6 utterances from the first training session, 24 

utterances from the first training session, and of all 96 

utterances in the 4 training sessions. Table 1 and Figure 1 

show the best results obtained after an optimization performed 

on the number of Gaussians per state, the number of iterations 

of Baum-Welch re-estimation and the number of regression 

classes in MLLR adaptation. For Baum-Welch re-estimation 

the number of Gaussians per state was varied  between 1 and 5 

and the number of re-estimation iterations was either 1 or 4. 

For MLLR adaptation the number of Gaussians per state was 

varied between 5 and 80 in steps of 5 and the number of 

regression classes between 1 and 32 in power-of-2 steps. Our 

best results show that, even in the cases with the largest 

amount of data, MLLR adaptation outperforms Baum-Welch 

re-estimation in text-dependent speaker recognition. In fact, 

the difference in favour of MLLR tends to increase as the 

amount of enrolment material increases. The reason for this 

may be that the amount of enrolment material, even using the 

96 utterances for training, is still very limited for Baum-Welch 

re-estimation. MLLR adaptation seems to be more adequate 

for the whole range of enrolment speech considered.   

 
Figure 1: DET curves obtained on YOHO with MLLR adaptation 

and Baum-Welch re-estimation, using as enrolment material 6, 24 

and 96 utterances. 

 
Table 1. EERs (%) obtained on YOHO with MLLR adaptation 

and Baum-Welch re-estimation, using as enrolment material 6, 24 

and 96 utterances.  

 

Enrolment utterances 

(and sessions) 

MLLR             

Adaptation 

Baum-Welch     

Re-estimation 

6 (1 session) 4,6 5,6 

24 (1 session) 2,1 3,2 

96 (4 sessions) 0,9 1,9 



5.2. Results with utterance, phoneme and state-level T-

Norm 

In the work we describe in this section we have focused on the 

speaker-dependent models that produced the best results in the 

former section, the MLLR adapted models, and on user 

enrolment with 6 utterances, which we consider the most 

realistic case. With these settings we have tested the different 

schemes for T-Normalization described in section 3.  

Figure 2 compares the results obtained by not using T-

Norm with those obtained using utterance-level T-Norm (i.e. 

the usual way in which T-Norm is applied in text-independent 

SR). Results not using T-Norm are equivalent to those 

presented in Figure 1 and Table 1. There are, however, small 

differences due to the slightly different experimental protocol 

(we set aside 20 speakers as our T-Norm cohort). Results with 

utterance-level T-Norm are slightly worse for most of the 

DET curve. This unexpected worsening could be due 

primarily to the small cohorts used. Regarding this factor, we 

were very limited by YOHO because we only have 36 female 

speakers and we couldn’t set aside more speakers for the 

cohort. We tried, however, to perform T-Normalization with 4 

models per speaker, trained on the first 6 sentences of each 

training session for each speaker. Results using this utterance-

level T-Norm with a cohort of 80 models (from 20 speakers) 

are presented in Figure 3. In this case, results with T-Norm 

are slightly better than results without T-Norm, but the overall 

improvement achieved with T-Norm probably does not justify 

the increase in computational cost. 

Figure 4 compares the results obtained by not using T-

Norm with those using phoneme-level T-Norm with a cohort 

of 20 speaker models (i.e. same condition as Figure 2). 

Results show noticeable improvements when using phoneme-

level T-Norm. Results not using T-Norm in Figure 4 are 

obtained with the approximation given by eq. (12). This 

explains the small differences between the DET curve for no 

T-Norm in Figures 2 and 4.  

 

 

 

 

 
Figure 2: DET curves with and without T-Norm (at the utterance 

level). Results obtained on YOHO (with only 6 utterances from a 

single session as enrollment material) using MLLR adaptation. 

 
Figure 3: DET curves with and without T-Norm (at the utterance 

level) with 4 models per speaker in the cohort. Results obtained on 

YOHO (with only 6 utterances from a single session as enrollment 

material) using MLLR adaptation. 

 

Finally, Figure 5 compares the results obtained by not 

using T-Norm with those using state-level T-Norm with a 

cohort of 20 speaker models (i.e. same condition as in Figures 

2 and 4). These results show even greater improvements than 

those achieved using phoneme-level T-Norm. Again, results 

not using T-Norm in Figure 5 are obtained with an 

approximation for states similar to that of eq. (12). For this 

reason this curve is again different to the corresponding 

curves in Figures 2 and 4.  

Table 2 summarizes the results achieved. For each type of 

T-Norm tested we present the Equal Error Rate and the 

relative improvement over the baseline (No T-Norm). Since 

the effect of T-Norm tends to be more evident in the area of 

low false acceptances, we also present in the table the False 

Rejection rate for a False Acceptance of 1% (FR@FA=1%). 

For the No T-Norm condition we have chosen the results 

shown in Figure 2 (i.e. those obtained applying eq. (10)). 

Results for the approximations in Figures 4 and 5 are worse in 

terms of the FR@FA=1% and similar in terms of EER. 

 

 
Figure 4: DET curves with and without T-Norm (at the phoneme 

level). Results obtained on YOHO (with only 6 utterances from a 

single session as enrollment material) using MLLR adaptation. 

 



 
Figure 5: DET curves with and without T-Norm (at the state 

level). Results obtained on YOHO (with only 6 utterances from a 

single session as enrollment material) using MLLR adaptation. 

 
Table 2 shows clearly that utterance-based T-Norm is not 

working properly for this text-dependent task, producing 

drops in performance levels, probably due to lexical 

mismatch. Phoneme-based and state-based T-Norm produce 

relative improvements of nearly 20% in terms of EER and 

over 25% in terms of FR@FA=1%. These results show that 

both phoneme-level and state-level T-Norm are superior to 

the standard (utterance-level) T-Norm. State-level T-Norm is 

slightly better than phoneme-level T-Norm, probably due to 

its ability to normalize scores taking into greater account the 

effect of coarticulation.  

6. Conclusions 

We have proposed and evaluated two new different methods to 

apply T-Norm in the context of text-dependent speaker 

recognition. T-Norm is regularly applied in text-independent 

speaker recognition. However, in text-dependent speaker 

recognition the T-Norm does not perform as expected, perhaps 

due to the problem of the lexical mismatch. We have proposed 

applying T-Norm at the phoneme level and also at sub-

phoneme level (in particular at the level of HMM states). 

These methods provide different score normalization values 

(means and standard deviations) for different segmental units 

and, as we have shown empirically, they produce much better 

results than utterance-level T-Norm in a text-dependent 

speaker recognition task (YOHO).   
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Table 2. EERs and False Rejection (FR) rate at a False 

Acceptance (FA) rate of 1% obtained on YOHO (with only 6 

utterances from a single session as enrollment material) using MLLR 
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