
425
978-1-4244-1881-7/08/$25.00 © 2008 IEEE

PROC. 26th INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2008), VOL 2, NIŠ, SERBIA , 11-14 MAY, 2008

A Reconfigurable Array Based Prototype of a
Specialised String Lookup Chip

Vukašin Pejović, Roćıo Gómez, Slobodan Bojanić and Juan Guillermo Lalinde

Abstract— Different strategies for performing string
lookups have been developed and deployed during the
evolutionary scientific process. These are the results of
both the development of technology and the need for im-
provement of previously existing solutions. Hence, the
string lookup problem has been well studied and the re-
spectful amount of good solutions is present. Due to
nature of the problem, most of the solutions are soft-
ware based. Nevertheless, in the modern computing en-
vironments, in which the amount of data to be searched
trough is increasingly growing, the problem re-arises de-
manding for the different type of approaches that could
target multi-gigabit throughput rates so as to perform
close to real-time string lookups. In that light, this
paper studies the potential of migrating, a well-known
and widely used, Boyer-Moore string lookup algorithm
to a hardware specific device capable of satisfying the
demanded throughput, by proposing and characteris-
ing the initial implementation option on a reconfigurable
platform.

I. Introduction

String Lookup problem is tightly coupled with the
notion of a string by itself. It can be simplified as: the
fastest way of establishing the number and positions of
all the occurrences of a certain sting in another string.
The string sought for is usually shorter in length and
is named ”a pattern”. The other string usually signif-
icantly longer is called ”a text”. These terms shall be
used throughout this paper.

An ordinary user of a PC, even on a daily bases, runs
a number of string lookups, either searching for a name
of a file or some content within the file. Therefore the
string lookup is omnipresent. In the daily usage the user
is generally ready to tolerate certain amount of latency
before it is presented with a result. But, if we were to
take a closer look at antivirus applications execution,
ongoing with other processing power demanding opera-
tions, we shall undoubtedly note that antiviruses run for
over an hour. With the growing size of antivirus data
bases and the growing amount of data stored on a hard
disk the need for speeding up the string lookup emerges
naturally. If to this example, we add the fact that high
speed networking intrusion detection systems, Snort [9]
as an example, are also based on string lookups and

V. Pejović, R. Gómez and S. Bojanić are with the Department
of Electronics, of Escuela Tcnica Superior de Inganieros de Tele-
comunicain of Universidad Politcnica de Madrid, Ciudad Univer-
sitaria s/n, 28040 Madrid, Spain. E-mail: vule@die.upm.es
J. G. Lalinde is with the Department of Informatics and Sis-

tems, Escuela de Ingenieŕıa, Universidad EAFIT, Cra. 49 N 7
Sur 50, Medelĺın, Colombia. E-mail: jlalinde@eafit.edu.co

cannot keep up with the throughput increases intro-
duced by the IEEE 802.3an [12] standard over copper,
bringing 10Gbps Ethernet, an additional motive for the
closer study of the improvements of the existing string
lookup algorithms is identified.

Full set of algorithms was designed to perform the
lookup. Starting from näıve brute-force approach in
which all the letters of both pattern and text are com-
pared, over more sophisticated algorithms that use dif-
ferent heuristics to speed up the search, such Knuth-
Morris-Pratt (KMP) [2] and Boyer-Moore (BM) [1].
The last one is probably the most well known as it is
the one most deployed. It is of special interest in high
throughput applications since it is used as a part of
Snort [9] real time Intrusion Detection system. Differ-
ent algorithms combining both BM and KMP strategies
were proposed since, Horspool [3] being probably the
best known. All the mentioned algorithms and their
respective implementations, customisations and modi-
fications are run in software as services of operative sys-
tem or in similar context. Thus, the execution can only
be sequential and remains constrained by other aspects
of software execution related to scheduling etc. An ap-
proach to use different forms of hardware accelerators
to bring the speed-up, hence, makes perfect sense.

The related work, that deals with the migration of
the string-lookup algorithms to hardware was mostly
aiming at the improvement of the intrusion detection
systems [6], wherein the string lookup is the fundamen-
tal part and the bottle-neck of these systems. In that
context, the attempts of näıve string lookup and KMP
string lookup in hardware have been studied and doc-
umented. The brute force approach is studied in the
work of Sourdis and Pnevamtikatos [4], while the KMP
work is present in the work of Baker and Prasanna [5].
In the light of the cited papers, this paper studies an ini-
tial step forward towards the migration, and thus util-
isation, of the Boyer-Moore algorithm in the hardware
domain, by presenting and FPGA targeted implemen-
tation as the first prototype.

This paper continues by giving the short reminder of
the basic BM algorithm, then by explaining the mod-
ifications that lead to the hardware implementation of
the same algorithm in Section II. The same section also
compares the two approaches by presenting the execu-
tion time measurements of the software and hardware
prototyped versions of the algorithm. The execution

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

426

times were measured on a representative test Text and
Pattern samples. Views at the future works together
with the conclusions in Section 3 close the paper.

II. Boyer Moore based approach

A. Original Algorithm

This subsection explains, in short, the original BM
algorithm, by giving an example.

Thence, assuming that the Pattern has a value conf
and the Text has a value reconfigurable, the Pattern
length, marked with M has the value of 4, whilst the
length of the Text, marked with N has a value of 14.
Letter case is of no importance for the purposes of this
example. BM starts the search by aligning the begin-
nings of both elements and first comparing the last char-
acter of the Pattern to the aligned character of the Text.
If a match ocurrs in this comparison the algorithm com-
pares the one character before the last character of the
Pattern with the one that aligns with it in the Text, and
continues to do so while all the consecutive characters
are matched and until the full instance of Pattern in
Text has been found. Else, in the case of a mismatch in
the first comparison, the algoritm will compare all the
remaining characters of the Pattern to the Text charac-
ter from the first comparison. If none of the characters
from the Pattern are mathced the algorithm moves M
positions. If, on the contrary, a match is encountered
the algoritm would jump to that position, which is by
its nature less then M.

In the case of the example values this looks like fol-
lowing and is illustrated in Fig. 1:
• First two characters compared are o from Text and f
from Pattern. No match is found, hence all the remain-
ing Pattern characters are compared to o.
• Since there is an o in Pattern, the two will be a match,
and then the algoritmh determines a jump so as to align
two matched characters. This jump has a value of 2
characters.
• After this jump a full match is found, by matching
the Pattern in character by character fashion from its
end. And the next jump has a value of four since the
full match was found.
• Two next steps give no matches at all, and the algo-
rithm jump by 4, which is actually M until processing
the entire Text.

Having explained the jumping actions BM performs,
it is obvious that the best case time complexity is
O(N/M). Worst case time complexity has been shown
not to be greater than O(3N) [10]. Table I summarises
the results.

B. Hardware Implementation

A next step towards a string look-up chip prototype
was the porting of the BM algorithm to a hardware plat-
form. With this goal in mind, a Field Programmable

Fig. 1. Original BM algorithm

Gate Array (FPGA) chip, XC4VFX12 [7] from Xilinx
was used for rapid prototyping of the device. This chip
is present on the Xilinx ML403 [8] development board,
which was accessible in our laboratory. This, hence per-
mitted to test the FPGA prototype in practice. The
design path used for the implementation consisted in
writing the VHDL code, then synthesizing it in Synplify
Premier 8.9, and then running place and route and bit
file generation phases in Xilinx ISE foundation 9.2. In
this way, during the whole implementation phase it was
possible to download the design directly to the board
and to physically verify the desired functionalities.

Upon the establishment of the destination platform
the main actions of the BM algorithm have been ported
to VHDL resulting in the string look-up functionality.
The illustration of the realised implementation struc-
ture is in Fig. 2. Besides the Pattern and the Text
blocks, which can be seen as input values of the im-
plementation, and present storage structures, namely
registers, the implementation has three more functional
blocks: Comparison, Coder and Shift-in Control.

Comparison block performs the character matching
functions. This block benefits greatly from the fact that
hardware by its nature allows for the usage of multiple
concurrent actions. Simply, the last fact is exploited
to perform a number of comparison simultaneously and
not in cycle-by-cycle fashion. Obvious consequence of
this is the increase of the area consumption. Hence, the
Comparison block contains the area for speed-up trade-
off, and directly influences on the time complexity of the
hardware based BM implementation.

Fig. 2. Structure of the hardware implemented BM

427

times were measured on a representative test Text and
Pattern samples. Views at the future works together
with the conclusions in Section 3 close the paper.

II. Boyer Moore based approach

A. Original Algorithm

This subsection explains, in short, the original BM
algorithm, by giving an example.

Thence, assuming that the Pattern has a value conf
and the Text has a value reconfigurable, the Pattern
length, marked with M has the value of 4, whilst the
length of the Text, marked with N has a value of 14.
Letter case is of no importance for the purposes of this
example. BM starts the search by aligning the begin-
nings of both elements and first comparing the last char-
acter of the Pattern to the aligned character of the Text.
If a match ocurrs in this comparison the algorithm com-
pares the one character before the last character of the
Pattern with the one that aligns with it in the Text, and
continues to do so while all the consecutive characters
are matched and until the full instance of Pattern in
Text has been found. Else, in the case of a mismatch in
the first comparison, the algoritm will compare all the
remaining characters of the Pattern to the Text charac-
ter from the first comparison. If none of the characters
from the Pattern are mathced the algorithm moves M
positions. If, on the contrary, a match is encountered
the algoritm would jump to that position, which is by
its nature less then M.

In the case of the example values this looks like fol-
lowing and is illustrated in Fig. 1:
• First two characters compared are o from Text and f
from Pattern. No match is found, hence all the remain-
ing Pattern characters are compared to o.
• Since there is an o in Pattern, the two will be a match,
and then the algoritmh determines a jump so as to align
two matched characters. This jump has a value of 2
characters.
• After this jump a full match is found, by matching
the Pattern in character by character fashion from its
end. And the next jump has a value of four since the
full match was found.
• Two next steps give no matches at all, and the algo-
rithm jump by 4, which is actually M until processing
the entire Text.

Having explained the jumping actions BM performs,
it is obvious that the best case time complexity is
O(N/M). Worst case time complexity has been shown
not to be greater than O(3N) [10]. Table I summarises
the results.

B. Hardware Implementation

A next step towards a string look-up chip prototype
was the porting of the BM algorithm to a hardware plat-
form. With this goal in mind, a Field Programmable

Fig. 1. Original BM algorithm

Gate Array (FPGA) chip, XC4VFX12 [7] from Xilinx
was used for rapid prototyping of the device. This chip
is present on the Xilinx ML403 [8] development board,
which was accessible in our laboratory. This, hence per-
mitted to test the FPGA prototype in practice. The
design path used for the implementation consisted in
writing the VHDL code, then synthesizing it in Synplify
Premier 8.9, and then running place and route and bit
file generation phases in Xilinx ISE foundation 9.2. In
this way, during the whole implementation phase it was
possible to download the design directly to the board
and to physically verify the desired functionalities.

Upon the establishment of the destination platform
the main actions of the BM algorithm have been ported
to VHDL resulting in the string look-up functionality.
The illustration of the realised implementation struc-
ture is in Fig. 2. Besides the Pattern and the Text
blocks, which can be seen as input values of the im-
plementation, and present storage structures, namely
registers, the implementation has three more functional
blocks: Comparison, Coder and Shift-in Control.

Comparison block performs the character matching
functions. This block benefits greatly from the fact that
hardware by its nature allows for the usage of multiple
concurrent actions. Simply, the last fact is exploited
to perform a number of comparison simultaneously and
not in cycle-by-cycle fashion. Obvious consequence of
this is the increase of the area consumption. Hence, the
Comparison block contains the area for speed-up trade-
off, and directly influences on the time complexity of the
hardware based BM implementation.

Fig. 2. Structure of the hardware implemented BM

Coder block interprets the results supplied by the
Comparison block. Depending on the matches found by
the Comparison block, Coder block is able to calculate
the value of the jump. The jump essentially represents
the amount of data that is to be read from the Text,
so that the comparisons could be performed in the next
cycle.

Shift-in control block has a role of ensuring that the
amount of data asked by Coder is fully provided. In
essence, it is a down-counter. This control is necessary,
because it is a common practice to supply data form on-
chip FIFO. In the case of Text, which can be of almost
unlimited length, this is especially the case, hence this
was embedded as the basic part of implementation.

Comparison block using concurrent capabilities, exe-
cutes two steps of comparisons. First, it verifies if the
last character of Pattern is found on the correct posi-
tion in Text. If so, it concurrently checks if the whole
Pattern is also found. Else it checks if the Text char-
acter that did not match the last character of Pattern
matches any other character from the Pattern. These
two comparison phases are pipe-lined, hence a single
clock cycle delay is induced.

Structurally, the implementation mimics the original
BM algorithm. Yet, the way the comparisons are per-
formed has a direct influence at the time complexity
of the implementation. The best case time complexity,
similarly as in the original case is O(N/M+1). Addi-
tional 1 is due to the latency induced in Comparison
block. Worst case complexity, however, has a value of
O(N+1). Additional 1 is, again, due to latency in Com-
parison block, and the basic value N is owned to the fact
that the hardware implementation is spending no more
than one clock processing each character of Text. Table
I summarises the results.

TABLE I

Time compexities of software and hardware

implementations of BM algorithm

Conditions Software Hardware
best case O(N/M) O(N/M + 1)
worst case O(3N) O(N+1)

C. Performance comparison

With an aim to characterise the gains that are ex-
pected to be induced according to the complexity cal-
culations, the performance was tested in practice. The
setup included: the mentioned ML403 board with Vir-
tex4FX12 chip, programmed to behave as described in
previous subsection and a PC with AMD Athlon 64 mi-
croprocessor at 2Ghz and with 1GB of RAM memory,
running BM C code written according to the original
algorithm, under Windows XP operative system. Both

the platform were expected to perform the same string
look-up task, whilst the execution time needed to ob-
tain the results was measured.

The look-up task consisted in searching for different
Patterns, Table II and Table III, in Text in English,
Romeo and Juliet from W. Shakespeare, and in Text
in Spanish, La Vida es Sueño, from Pedro Calderón de
la Barca. Both text have a lots of repetitive contents
and can be a good test-bench for the performance esti-
mation. The first text contains 6204 words, while the
second contains 8268 words. Number of characters in
the first text is 32681 and in the second 65387. Since
different languages have different character usage and
probability it was interesting to establish if that would
change any parameters in the performance.

TABLE II

Execution Times

Pattern Occurrences PC FPGA
Romeo 62 4.475470 0.45553
Juliet 25 4.383440 0.43973

Capulet 46 3.778130 0.42879
Montague 28 3.331720 0.42921
therefore 3 3.058910 0.42303

Enter Rome 2 2.482030 0.41761

Before performing the tests it was necessary to down-
load Texts to the FPGA. This was done by download-
ing Texts to the internal FPGA memory blocks. FPGA
was set to run with the clock of 100MHz, since this fre-
quency was available on the board. In the described
surrounding the hardware implemented algorithm out-
performed software between 11 and 9 times.

TABLE III

Execution Times

Pattern Occurrences PC FPGA
Segis 66 5.309690 0.89899
Clarin 43 4.304060 0.86117

Rosaura 46 4.044840 0.85417
Clotaldo 60 3.08984 0.83287

Segismund 66 3.122500 0.80373
Segismundo 66 3.31750 0.80813

In the last two lines of Table III one could notice how
execution times changes depending on the last character
of Pattern. Simply, since letter e is more probable in
Spanish than letter d, the addition of the former letter
prolongs the execution time.

In addition to the software vs. hardware compari-
son, the hardware based algorithm was characterised
in terms of maximum frequency. The result are given

428

in Figure 3. Same figure shows how the maximum fre-
quency scales with the length of Pattern. Two cases
were considered. First one, plotted with the dotted line,
shows the results of the implementation variant with
the Text in internal FPGA memory, while the contin-
uous line shows the results when the Text is fed from
the outside over FPGA pins.

Fig. 3. Performance Characterisation

Since, Shift-in Control block was implemented to
read a single character per clock cycle, if the charac-
ter encoding is ASCII, the throughput of the system
can be calculated by multiplying the number of bits
in character with maximum frequency. When data is
sourced from the outside of the chip, the throughput
would scale between 1.8 an 2.4 Gbps. The achievable
throughput is not too high, yet the results are produced
in initial phase of the work, and there remain a lot of
possibilities for improvement.

III. Conclusions and Future Work

A way to port string look-up functionality to a hard-
ware device was presented in this paper. Full prototype,
based on reconfigurable logic, was built and its perfor-
mance was characterised. It was then compared with
the performance of the equivalent software based sys-
tem. In direct comparison the hardware prototype was
showed to perform at least 9 times faster. The perfor-
mance improvement was due to the exploitation of the
intrinsic parallelism of hardware based platforms and
execution of multiple comparisons simultaneously.

The work, however is still far from an IC prototype.
Before getting there a number of problems needs to be
tackled. First in the line is certainly the problem of
the bottle-neck of the hardware implementation of the
system in the data Shift-in part. Besides that, it is of
great importance to improve internal performance of
the implementation. This would in practice mean that
the implementation need to be optimised in order to
achieve higher clock rate capabilities.

Another related question should target the multi-
pattern look-up. In other words, would it be possible

to have a simultaneous look-up of multiple strings in
hardware. One possible direction towards this answer
is to study Commentz-Walter [11] algorithm.

Independently of the string-lookup algorithm the fu-
ture IC needs to use some of the high speed IO buses to
be capable of delivering the throughput achieved. One
possible option could be the PCI Express bus, since it
is a point-to-point type of bus it allows a lots of flexi-
bility in combination with 2Gbps troughput per line of
communication.

Besides the fact that the quantity of the remaining
problems is respectable, the work presents an initial ef-
forts towards the BM based string look-up in hardware,
showing it to perform at least nine times faster than the
software implemented version of the algorithm. It also
gives a path towards further improvements with the
goal of reaching 10Gbps boundaries.

Acknowledgment

This work has been partially financed by the Tech-
nical University of Madrid under the project #AL07-
PID-047 and by Spanish Agency for International Co-
operation (AECI) under the project A/010916/07.

References

[1] R.S. Boyer and J.S. Moore, A Fast String Searching Algo-
rithm, Communications of the ACM, Vol 20, No 10, pp.
66-72, Oct. 1977.

[2] D.E. Knuth, J.H. Morris, and V.R Pratt, Fast Pattern
Matching in Strings, SIAM Journal on Computing, Vol 6,
No 2, pp. 323-350, June 1977.

[3] R. Horspool, Practical Fast Searching in Strings, Software -
Practice and Experience, vol. 10, pp. 501-506, 1980.

[4] I. Sourdis and D. Pnevmatikatos, Fast, Large-Scale String
Match for a 10Gbps FPGA-based Network Intrusion Detec-
tion System, 13th International Conference on Field Pro-
grammable Logic and Applications (FPL’03), pp. 880-889,
Lisbon, Portugal, September 2003.

[5] Z. Baker and V. K. Prasanna, Time and area efficient pat-
tern matching on FPGAs, Proceedings of ACM/SIGDA
International Symposium on Field-Programmable Gate A
(FPGA2004), pp. 223-232, February 2004.

[6] V. Pejović, S. Bojanić, C. Carreras, Structural Framework
for High Speed Intrusion Detection/Prevention Signature
Based System, International Journal of Computer Science
and Network Security, vol 6. no. 9b, pp. 175-181, Sept. 2006.

[7] Xilinx Inc., Xilinx Inc. Virtex 4 user guide v2.3, August
2007.

[8] Xilinx Inc., ML401/2/3 , May 2007.
[9] Snort - the de facto standard for intrusion detec-

tion/prevention, www.snort.org
[10] R. Cole, R. Hariharan, U. Zwick, and M.S. Paterson, Tighter

lower bounds on the exact complexity of string matching,
SIAM Journal on Computing, 24(1), pp. 30-45, 1995.

[11] B. Commentz-Walter A string matching algorithm fast on
the average, Proc. of 6th International Coll. on Automata,
Languages, and Programming, pp. 118-132, 1979.

[12] IEEE 802.3an-2006 Standard.

