

Human-Readable and Machine-Readable Knowledge Bases

Using Specialized Word Processors

Martin Molina
Departamento de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid, Spain

mmolina@fi.upm.es

Gemma Blasco
EADS CASA European Aeronautic

Defence and Space Company -
Construcciones Aeronáuticas S.A, Spain

gemma.blasco@eads.com

Abstract

The maintenance of knowledge bases is one of the
crucial activities in the life cycle of knowledge systems.
This paper describes an innovative approach to write
complex and large knowledge bases using specialized
word processors. According to this, a knowledge model is
represented as a conventional document that is written
following the standard operations of word processors.
Following this approach, domain experts that are not
familiar with computer languages could easier read and
write complex knowledge models. In addition to that, the
processor is able of interpreting the content of the
document to automatically perform tasks of the
knowledge model. The paper describes the basic
characteristics of the document and its specialized word
processor and presents our experience following this
approach for a knowledge system in the domain of
hydrology.

1. Introduction

The creation and maintenance of knowledge bases can
be carried out with the help of specialized software tools
that guide developers in writing the models and keeping
its consistency. However, when the domain presents large
and complex knowledge bases as it happens in modern
knowledge systems, the existing approaches for these
types of tools present certain deficiencies that receive
even more importance when the system maintenance is
intended to be done by domain experts that are no
familiar with computer languages and knowledge
engineering techniques. This is a case where the ultimate
goal is that domain experts themselves should be able of
creating and maintaining knowledge bases using their
own language instead of artificial and complex symbolic
languages. This general need has been already underlined
as a significant unsolved problem. For example, the need

of knowledge development tools usable by non-experts in
knowledge engineering was formulated by AI researchers
within the semantic web context as one of the challenges
for the twenty-first century AI research [8].

As an answer to this, we describe here an innovative
solution based on specialized word processors and
standard documents. Word processors are software tools
with well-known procedures for document manipulation.
Our approach takes the advantage of the extended and
common use of this type of tool and proposes to use it as
a solution to write knowledge bases in the same way
persons write on a document knowledge about certain
problem solving tasks, following certain syntactic and
organizational conventions. The proposal considers a
special type of word processor that helps users in writing
part of a document that represents the whole knowledge
model. The tool supervises and constraints the changes
made by the user according to a limited freedom for
writing. The resulting knowledge base formulated with
the help of this type of word processor is operational, i.e.,
able to be interpreted by the corresponding inference
procedures to automatically solve the problems related to
the tasks described in the document.

The main aim of this paper is to summarize the results
of our research work in specialized word processors for
knowledge modeling. This corresponds to a line of work
in our research group about knowledge modeling tools in
parallel with the development of real-world knowledge
systems in civil engineering domains (hydrology, road
transport, etc.).

 The paper shows the general approach of using
specialized word processors as knowledge modeling
tools. Then, we describe the characteristics of the
document that corresponds to the knowledge model.
Then, the paper illustrates the proposal with the case of
the KATS tool that we developed in the domain of
hydrology following the general approach. Finally, we
present a discussion that summarizes the contribution of
the proposal and compares the approach to related work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Specialized word processors as knowledge
modeling tools

In the field of knowledge engineering, different types
of software tools have been proposed to help developers
in building and maintaining a complete operational
knowledge base. These types of tools include: (1) general
tools for basic knowledge representations, that
correspond to the traditional shells for the development of
expert systems with one knowledge representation, (2)
method-based knowledge modeling tools, such as MOLE
[6] for diagnosis systems with the cover-and-differentiate
method, or SALT [11] for design systems with the
propose-and-revise method, (3) domain-based tools that
include prefixed knowledge about the domain in which
the knowledge base is developed (e.g., SIRAH [1] for
prediction tasks in hydrology), (4) general knowledge
modeling tools that assist developers in the application of
a modeling methodology (for example, KREST [10] and
KSM [4]), and (5) ontology management tools such as
Protégé-2000 [13] and Ontolingua [7].

When the previous approaches are directly applied to
complex problem solving tasks certain difficulties may
arise. We have experienced these difficulties in our group
during the development of complex knowledge systems.
For example, the SAIDA system was developed to assist
operators for emergency management in the context of
floods in river basins. This system includes different
types of tasks (assessment, prediction and scheduling)
with several types of knowledge representation
formalisms (rules, frames, uncertainty with bayesian
networks, logic clauses, temporal and spatial
representation, etc.). SAIDA was initially developed for a
particular river basin but it was required to be easily
portable to other river basins. In this context, a
knowledge modeling tool was needed with a language
and a level of abstraction close the way the domain
experts describe their knowledge in their particular
professional area. According to our experience in this
domain, the main difficulties that we found using the
existing approaches were:
• Excessive technicality. Each particular knowledge

base uses a specific symbolic language (rules,
frames, functions, attributes with temporal
references, bayesian networks, etc.). These languages
follow a declarative approach that provides flexibility
to accept changes but, still, domain experts perceive
them as artificial programming languages.

• Heterogeneous representation. The diversity of
knowledge bases with different representation
languages offers a heterogeneous view of the model
that makes more difficult to be learned by end users.

• Limited perception. The knowledge base was also
viewed as a kind of complex and large data base that

the user could change with the help of prefixed
windows. However, since the existing approaches
presented limited views about knowledge roles, it
was difficult to anticipate the impact of changes in
the knowledge base.

• Non-standard operation procedures. Most of the
approaches for knowledge modeling tools follow
certain operation procedures that are very specific
and must be learned by domain experts with
additional learning effort.

In order to cope with these problems we designed and
developed an original solution based on specialized word
processors for knowledge modeling. In general, word
processors are well known tools with which a user can
easily read and modify documents, changing margins, or
adding, deleting, and relocating entire blocks of text,
graphics and images. Currently, a word processor is one
of the most widely used software tools with standard and
well-known edition procedures.

 However, the implementation of specialized word
processors for knowledge modeling presents important
technical difficulties (in the extreme case, it should
require a complete solution for natural language
interpretation, which it is still an unsolved problem).
Thus, we have developed the first part of our research
work in this area by focus on method-specific word
processors. With this alternative, the word processor
allows the user to read a complete knowledge model but
only domain knowledge can be modified in the form of
document-based representations (tables, formulas, text
paragraphs, etc.). The word processor assumes prefixed
problem-solving methods that are explicitly described in
the document but cannot be modified by the user.

3. Standard documents for knowledge models

According to commonly extended knowledge
engineering methodologies (e.g., [15]) a knowledge
model can be formulated as a collection of tasks with a
set of problem-solving methods and domain knowledge.
For example (figure 1), a knowledge model in the domain
of hydrology may include, among others, the task
evaluate state, that interprets the measures of sensors in
order to evaluate the severity of a flood problem. This
task can be carried out with the method abstract & match,
an adapted version of the heuristic classification method
[3]. The figure also shows how this model could be
described following a standard document representation
(we call standard document a human-readable document
as it is explained below). In the following, we describe
the main components of a knowledge model and, then,
how they could be represented following a document-
based approach to be used by a specialized word
processor.

…
2.1. Task evaluate state

The goal of the task evaluate state is to identify the current state of the system. The
task evaluate state starts from observables (e.g., inflow, level and discharge of
reservoir) and generates as a result the state (e.g., state of reservoir). For this
purpose, the method performs the following tasks in linear sequence:

1. abstract data,
2. match state.

The task abstract data starts from observables (e.g., inflow, level and discharge of
reservoir) and generates as a result abstractions (e.g., current volume and volume
trend of reservoir). For this purpose, the task abstract data applies abstraction criteria
(table 2.1 and formula 2.1).
…

The task match state starts from abstractions (e.g., current volume and volume trend
of reservoir) and generates as a result the state (e.g., state of reservoir). For this
purpose, the task match state applies state descriptions (table 2.2). This task is done
by a method that selects the value that satisfies the conditions of the row of table 2.2.

volume trend current volume S
= 0 < target volume + safe threshold normal
= 0 > target volume + safe threshold alert
> 0 < target volume - safe threshold normal
> 0 >= target volume - safe threshold alert
< 0 - normal
Table 2.2: Table to determine the value of state of reservoir.

Table 2.2 describes how the value of S (state) of reservoir can be deduced from the
values of T (volume trend) and V (current volume) of reservoir. Exclusive conditions
are assumed.
…

Figure 1: Partial example of a knowledge model and its
representation as a standard document. The underlined
words in the document are recognized by the word
processor as specific elements of the model (tasks,
concepts, attributes, etc.).

3.1. The components of a knowledge model

The knowledge model of figure 1 shows the main

components of a knowledge model. In general, problem-
solving knowledge is described by tasks (what to do) and
methods (how to do it). These components are used
recursively developing a task-method hierarchy that
shows a functional view of the model. Input and outputs

of tasks are described with input and output roles. The
problem solving knowledge also includes method
assumptions to describe properties that must be satisfied
by the domain knowledge for a correct operation of the
method.

FOR ALL Reservoir:
trend =
infllow - discharge.
…

evaluate state

CONCEPT:
reservoir
ATTRIBUTES:
inflow, discharge,
level.

terminology attr. dependency models

CONCEPT:
reservoir
ATTRIBUTES:
trend, volume.
…

terminology

We consider that domain knowledge includes
terminologies and attribute dependency models. A
terminology expresses the basic terms of a domain in the
form of concepts, attributes with values and relations
between concepts (e.g., the concept reservoir with the
attributes inflow, discharge, level, volume, etc.). Concepts
can be organized into classes, subclasses and instances.
We call an attribute dependency model to a model that
relates values of certain attributes with the values of other
attributes, based on a functional dependency (with a
similar approach to [5]). For example, causal relations or
rule bases are cases of attribute dependency models. As
examples of this type of models, figure 1 shows part of
the rules used to determine the value of the attribute state
of reservoir or the arithmetic expression to compute the
value of volume trend of reservoir. The domain model
also includes domain assumptions that express certain
properties that domain knowledge must accomplish (for
example, physical laws or properties such as that the
capacity of reservoir must be greater than its target-
volume).

To relate the domain model to the problem solving
model role mappings are used. This informs about the
role that the domain knowledge plays in the reasoning
process. For example, figure 1 shows that the discharge
and the level of a reservoir play the role of observables in
the inference abstract.

3.2. The document-based representation

In our approach, we have considered that the

document that represents the knowledge model should
satisfy the following two basic requirements:

• Human-readable, the content of the document must
be comprehensible by readers who are not
specialized in computer languages. Users should be
able to manually perform the described tasks by
reading the instructions of the document;

• Machine-readable, the content of the document
must be able to be interpreted by a program that can
perform automatically the tasks described in the
document.

 According to this, the knowledge model should be
written as a conventional document with the following
characteristics:
1) Document-based representation. The document is

written with text paragraphs in natural language
together with additional document-based
representations (e.g., tables, figures, illustrations,
etc.). This provides a well-known and uniform global

observables abstract

abstract & match

abstraction criteria

inference

put rolein

IF trend = 0 and
volume >
target-volume + 10

THEN
state = normal …

attr.dependency models

CONCEPT:
reservoir
ATTRIBUTES:
state
{normal, alert}.

terminology

abstractions match state

state descriptions

task

method

document
representation

knowledge model

standard document

output role

input role
(static)

task task

inference

input role
(static)

do
m

ai
n

kn
ow

le
dg

e

FOR ALL reservoir: capacity > target-vloume, …

domain assumptions

pr
ob

le
m

-s
ol

vi
ng

 k
no

w
le

dg
e

ro
le

m
ap

pi
ng

representation to describe problem-solving tasks.
This characteristic assumes the absence of computer-
oriented symbolic representations (rules, bayesian
networks, logic clauses, etc.).

2) Document-based organization. The document is
organized according to the usual document parts
(chapters, sections, subsections, etc.). It is assumed
that the document reading starts from the beginning
of the text and develops a linear description of the
content, following a top-down approach (from
general to specific) with redundant complementary
views such as summaries or glossaries. This follows
a natural organization of the document with
progressive understanding by introducing first
general views that are later developed with details.
The terminology used to organize the content of the
document must be commonly understood by general
users. This terminology should avoid abstract
concepts of knowledge engineering or software
engineering (agents, objects, processes, messages,
etc.).

3) Complete knowledge model. The document describes
the complete knowledge required to perform
problem-solving tasks. This includes both domain
and problem-solving knowledge describing inference
procedures. This guarantees that the reader does not
require additional knowledge sources to understand
the content of the document. However, to be natural,
the word processor may assume a minimum level of
professional commonsense. For example, in the
domain of hydrology, the document should not
describe too obvious knowledge about temporal
representation of physical magnitudes.

In order to represent domain knowledge, the document
is written following document-based representations
according to standard conventions. We have identified a
collection of these representations that are familiar to
general users that are not experts in computer languages.
We have analyzed several problem-solving tasks in
different domains to study the way experts use these
representations to formulate domain knowledge. Based on
the analysis, we have generalized a set of document-based
representations (see figure 2) for each of type of
knowledge that can automatically be translated into
symbolic representations. These representations include
text paragraphs, tables, formulas and illustrations such as
schematic diagrams, graphs, 2D graphics, etc.

The combination of such representations provides
appropriate expressiveness to represent knowledge in
complex domains. We do not claim that this set of
representations is complete (i.e., totally expressive for any
kind of problem) but they cover a representative number
of complex cases of real-world knowledge systems and it
is general to be applied to different domains. In addition
to that, it follows an open approach, i.e., this set of

representations is open to include in the future new
representations according to the specific needs of
particular problems.

Type of
knowledge

Document-
based

represent-
tation

Description

Structured
paragraph
for
terminolo-
gies

Formatted text paragraph in natural language to
describe explicitly or implicitly a concept, an
attribute of a concept or a relation between
concepts.

Table of
instances

Table to define particular instances of a class
(e.g. the instances of reservoir in the domain of
hydrology) with specific values for certain
attributes (e.g., volume of each particular
reservoir, etc.).

Graph of
relations

Graph with nodes that represent concepts and
arcs that represent relations. This is useful to
present a global image of the relations between a
set of instances.

Terminologies

Schematic
diagram

An image with lines that associate components
or parts of the picture to names of concepts
(classes or instances) or attributes.

Decision
table

Table that includes conditional relations to be
used in logical decisions. The decision table can
adopt different shapes according to the amount
of elements to be presented.

Simple
formula

Formula with arithmetic operators (+,-,/,*)
and/or standard functions (sin(x), cos(x), etc.).
The formula can be defined either for the
attribute of a particular concept (specific) or for
the attribute of a class (general).

Iterative
formula

Formula that is defined using an iteration
(summatory Σ, productory Π, etc) on a set (or
sets) of reference that is explicitly formulated in
a table or implicitly defined in an attribute
whose content is a list of values.

Qualitative
number line

A set of consecutive segments on a line with
linguistic labels to describe a qualitative
interpretation of a quantitative dimension.

Table of
causal
relations

Table that shows a set of types of relations
between variables that are causes and variables
that are effects. This is especially useful to
formulate bayesian causal models in the domain
of hydrology.

Attribute
dependency
models

Others
Decision tree, graph of dynamic components
(word bound graph, production chain, work-
flow), 2D graphics, state transitions, etc.

Domain-
specific
assumptions

Structured
paragraph
for
assumptions

Formatted text paragraph in natural language to
describe specific domain assumptions such as
the maximum number of instances, the type of
dependency model associated to an attribute, etc.

Role mappings

Structured
paragraph
for role
mappings

Formatted text paragraph in natural language to
associate inference roles of problem-solving
methods to domain knowledge.

Figure 2: Summary of document-based representations.

Figure 3 shows an example of text paragraph that

describes a concept with attributes (this example is a
direct translation from the original text in Spanish). It is
formulated using specific natural language patterns with
local editors that guide and constraint the way of writing
these sentences. For this purpose, the word processor
includes a grammar with a set of preformatted types of
text paragraphs to explicitly define: (a) classes
corresponding to categories of concepts, (b) attributes
with allowed values and (c) relations between concepts.

In order to avoid repetitive non-natural sentences,
different patterns can be used for the same type of
component.

The term reservoir is used to identify an artificial lake storing water. It is a
component of river basin. It includes the following characteristics:

• The volume of the reservoir is the stored quantity of water. It is a physical
magnitude measured in Hm3.

• The capacity of the reservoir is the maximum volume. Its units are the
same as volume. The range goes from 10 until 400 Hm3.
…

• The inflow discharge of the reservoir is the input flow. It is a physical
magnitude measured in m3/seg.

• The outflow discharge of the reservoir is the output flow. It is a physical
magnitude measured in m3/seg.

• The significant discharge of the reservoir is a threshold that indicates the
minimum value of outflow discharge able of producing damages. Its units
are the same as outflow discharge. The default value is 100 m3/seg.

• The river of the reservoir is the river where the reservoir is located.
For every reservoir, the values for capacity and river must be known. For every
reservoir, the outflow must be computed with a formula. Subtypes of reservoir
are: small reservoir (range of capacity [10, 50]) and big reservoir (range of
capacity [100,400]).

Figure 3: Example of text paragraph for basic
terminology in the domain of hydrology.

The initial example of figure 1 also shows a case of a

simple decision table in the hydrologic domain to
determine the state of a reservoir using other values about
volume trend and current volume. A decision table must
be consistent with the terminology, i.e. only the defined
attributes in the document can be used in columns and
only allowed comparison operators can be used according
to the allowed values for those attributes. Note that the
reference of the table is described in the document with a
text paragraph that shows details about its format and
assumptions (e.g., exclusive conditions are assumed). In
general, each particular component includes prefixed
constraints formulated as natural language sentences that
can be selected and adapted by the user.

Formulas can be used to relate the values of
quantitative attributes. The user can write formulas with
usual types of functions (arithmetic, trigonometric,
statistics, etc.). A formula can be associated to a table. For
example, figure 4 shows a case of formula related to a
table. This is the case of formula with a summatory where
the index covers the total number of elements of the table.
In this case, each row corresponds to an element of the set
and columns identify values that can be used in the
formula.

Images as illustrations and other graphics can be also
included in the text for domain knowledge: qualitative
number lines (a graphical view of qualitative
interpretation), graph of relations (graphical description
of relations), 2D graphic (quantitative relation between
two magnitudes), etc.

In the document, there are natural language paragraphs
to describe tasks, input-output roles, methods and
method assumptions. This is prefixed text in the
document that cannot be modified by the user but its

explicit presence is very important to provide a complete
view of domain knowledge to understand (1) the role of
domain knowledge in the global problem solving process
and (2) method assumptions and general domain
assumptions. The user can modify role mappings, i.e., the
user can associate domain knowledge to prefixed input
and output roles. For example, as it is shown by figure 1,
this is represented by writing between parentheses the
names of attributes next to the name of the role (note that
these roles are defined for classes, i.e. every instance
inherits the general role description).

The value of the average rainfall of an area is computed using the following formula:

 Ri = Σ αj Pj

where, according to the table 6.2, Ri is the average rainfall of area i, αj is the weight j,
and Pj is the current rain of pluviometer j.

area pluviometer weight

Guadalteba pluviometer 0.2
Conde pluviometer 0.2
La Real pluviometer 0.3
Becerro pluviometer 0.2

Guadalteba area

La Encantada pluviometer 0.1
Fuente Piedra pluviometer 0.4

Colmenar pluviometer 0.4
El Torcal pluviometer 0.3 Guadalhorce area

Becerro pluviometer 0.3
El Torcal pluviometer 0.1

Paredones pluviometer 0.2
Casarabonela pluviometer 0.2

Fahala pluviometer 0.2

Cartama area

Coin pluviometer 0.3
 Table 6.2: Table of pluviometers of the rainfal areas.

Figure 4: Example of formula associated to a table.

4. A specialized word processor for
hydrologic knowledge models

This section summarizes the KATS word processor,

one of the software tools that we developed following the
general approach described in this paper (a preliminary
version of this tool was described in [12]). KATS was
developed to help in building and maintaining the
knowledge model of an emergency management system
called SAIDA. SAIDA is a knowledge system that assists
operators of river basin control centers during flash flood
problems. SAIDA was initially developed for a particular
river basin but it was required to be portable for other
basins.

The SAIDA’s knowledge model includes different
types of tasks (assessment, prediction, scheduling) with
21 different types of knowledge bases that can be
instantiated for 3 types of agents. For example, in the case
of Júcar river in Spain, there are a total of 36 agents, each
one with up to 6 types of knowledge representations
(using rules, frames, uncertainty bayesian networks, logic
clauses, temporal and spatial references, etc.). The
SAIDA’s knowledge model was represented as a
conventional document as it is described in this paper.

The resulting document (initial version for the Júcar river
basin) includes 70 pages with 4 chapters, 8 sections and 9
subsections (with 25 paragraphs for concepts, 55
paragraphs for attributes, 18 tables for instances, 1 graph
of relations, 16 formulas, 43 number lines, 29 decision
tables and 1 causal table).

Figure 5: Example of screen presented by the KATS tool.
The tool presents the knowledge model showing different
pages of a document as it is shown by standard word
processors. Specific local windows guide the user in
writing the different parts of the document keeping
consistency between different components (concepts,
attributes, tables, formulas, etc.).

With the KATS tool, the user may read and write the

document corresponding to the knowledge model. The
user can read the entire document but, since the
specialized word processor assumes a prefixed set of
problem-solving methods, the user can only change the
part of the document corresponding to the domain model.
The word processor assumes a fixed structure of the
document (chapters, sections, etc.) following a top-down
description according to the task-method organization.
The word processor also assumes the presence of prefixed
text paragraphs corresponding to problem-solving
knowledge that the user cannot change.

During the creation and maintenance of the document
the user writes domain knowledge and the word processor
makes the following automatic procedures for assistance:
(1) syntax checking, to verify that each component of the
document (text paragraph, table, formula, etc.) satisfies
the corresponding valid grammar, (2) consistency
checking, to verify whether the information written by the
user verifies method assumptions and general domain
assumptions, (3) guidance, the word processor uses
domain specific assumptions written by the user to guide
the user in the construction of the model (for example, the

user can declare that the number of instances of reservoirs
in the Júcar basin is 7 before writing any particular
instance), and (4) changes propagation, when the
developer writes a certain part of the document, the word
processor writes automatically other parts of the
document to create complementary views of the
knowledge model that help to better understand the model
with summaries and views at different levels of
abstraction.

The user interface of KATS was designed according to
the standards of the most extended word processors. The
main window of the user interface shows an image of the
document as it will be printed out on paper. When the
user wants to modify a variable part of the document, she
or he clicks directly on it (double click) and automatically
a specialized editor window is presented. For example, if
the user clicks on a text paragraph for attributes, an
additional window corresponding to the editor for
attributes is presented. This editor allows the user to
describe an attribute by selecting menu options and
completing prefixed natural language sentences.
Similarly, if the user clicks on a decision table, a
specialized editor for decision tables is presented. The
window for each particular editor has a similar
appearance to the way the content is presented in the
document, together with certain buttons and resources for
manipulation.

With these local editors, the word processor checks the
consistency of the document and guides the user. Thus,
for example, the editor of a decision table constraints the
potential content of the table. The table only can include
columns (or arrows) that have been defined as attributes
of concepts and the content of the table is constrained
with the allowed types of values for those attributes.

In order to be operational (to be interpreted by
inference procedures) the content of the document is
translated by KATS into a knowledge base with
conventional symbolic structures (rules, frames, etc.). The
complete document is formally written using a formal
language. A specific compiler program designed for this
purpose automatically translates this source language into
symbolic languages (rules, frames, etc.) that can be
interpreted by the inference procedures. Basically, this
compiler translates the representation resources of the
document in the following way: (1) paragraphs for term
description, graphs for relations, tables of instances are
translated into hierarchies of classes, subclasses with
attributes and values and also sets of agents (2) formulas
and iterative formulas are translated into functional
expressions with temporal extensions, (3) decision tables
are translated into rules and frame-like patterns, (4)
number lines are translated into attributes and rules, (5)
tables of causal relations are translated into models based
on bayesian networks, and (6) graphs of processes are
translated into a temporal causal network. For example,

the symbolic version for the Júcar river basin includes the
following components: 25 classes, 150 attributes, 204
instances, 173 nodes of a causal network, 1510 rules, 264
frame-like patterns, 346 nodes of Bayesian networks, 67
logic clauses and 124 functional expressions.

5. Discussion

The KATS tool was analyzed to evaluate its practical

utility. Besides a subjective evaluation by domain experts
that confirmed a satisfactory operation for different
operation scenarios, the utility of the tool was evaluated
using an objective method. This method was based on a
set of metrics to compare the performance of the KATS
tool to the approach followed by domain-based or
method-based knowledge modeling tools (such as MOLE
[6], SALT [11] or SIRAH [1]) (details of the metrics used
for the evaluation method can be found in [2]).

The analysis of the evaluation process applied to
KATS showed several advantages provided by the
approach described in this paper. The results of the
evaluation showed significant less modeling effort using
KATS (for example, the description of domain
knowledge in the document is significantly smaller
compared to a direct description with symbolic
languages). KATS also shows better results about model
understanding mainly because end-users use a common
document-based representation and do not have to learn
symbolic languages (rules, bayesian networks, frames,
etc.). This better model understanding is also supported
by using explicit descriptions of inference steps and roles
that allow to anticipate the impact of changes in domain
knowledge. In addition to that, KATS increases the level
of support to the end user compared to other solutions.
This is mainly due to explicit representations about
assumptions. The capacity of KATS of using user defined
domain-specific assumptions is also a powerful technique
to provide better assistance. For example, conventional
tools do not provide flexible mechanisms to guarantee the
integrity of rule bases. In KATS, part of a rule base can
be written as a table with certain domain-specific
assumptions defined by the user (exclusive conditions,
exhaustive values for premises, max. number of
instances, etc.) that help to check consistency during
maintenance.

From the point of view of friendly knowledge
formulation, other approaches have been developed. For
example, within the OpenMind project [16], different
specific tools have been developed to facilitate the way
users write new knowledge [17] [18]. These approaches
are restricted to one specific representation so they are
less general than the approach followed by KATS and
they are not based on document representations.

Other proposals also follow a documentation approach
for the maintenance of knowledge bases. For example,
the MODI system [9] presents partial text descriptions of
certain components of the knowledge base, linked to the
knowledge model offering automatic support during
maintenance. Another proposal is related to the Halo
Project [14] within the semantic web. The knowledge
base is presented using a document approach and,
internally, it is formulated using an operational
representation language (based on RDF). Compared to
the approach followed by KATS, Halo is oriented to
ontology representations (emphasizing sharing and reuse
of domain knowledge) and the approach of KATS also
includes inference procedures for problem solving
knowledge besides the representation of domain
knowledge.

6. Conclusions

In summary, according to the approach that we present
in this paper, a knowledge modeling tool is considered as
a specialized word processor with which a domain expert
can read and write a special type of document following
prefixed conventions about its format and content. The
document describes a knowledge model as a set of
problem-solving tasks using standard document-based
representation resources (such as text paragraphs, tables,
formulas, illustrations, etc.) commonly understood by
users that are not familiar with computer languages. The
word processor helps the user in writing the document
keeping the consistency of the model. The word processor
translates the document into an operational knowledge
base and, consequently, the document can be interpreted
by the inference procedures to automatically solve the
problems for which the model has been designed.

One direct advantage of this approach is that the user
has a more natural perception of the knowledge base
because it is viewed as a document with text, tables,
graphics, etc. instead of computer oriented languages
(rules, constraints, frames, logic clauses, etc.). In
addition, the tool has a quick acceptance and assimilation
by the user because the procedures for editing the
knowledge base are familiar for people (not only for
computer programmers) due to the extended use of word
processors.

Following the general approach presented in this
paper, we developed several knowledge modeling tools
for different domains. For example, the KATS tool was
developed in the domain of hydrology. Part of our current
research work is now oriented to generalize this approach
by developing domain-independent word processors with
document-based representations able to be interpreted
with general inference procedures.

Acknowledgements

The development of the SAIDA system was supported
by the Ministry of Environment of Spain (Dirección
General de Obras Hidráulicas y Calidad de las Aguas)
with the participation of local public organizations from
river basins (Confederación Hidrográfica del Júcar and
Confederación Hidrográfica del Sur de España). The
development of the KATS tool was supported by the
Ministry of Science and Technology of Spain within the
RIADA project (REN2000-1394-C02-0).

References

[1] M. Alonso, J. Cuena, M. Molina: “SIRAH: An

Architecture for Professional Intelligence”. Proc. 9th
European Conference on Artificial Intelligence ECAI 90.
Pp: 19-24. Stockholm, Sweden. August, 1990.

[2] G. Blasco: “Procesadores de textos como herramientas de

soporte a la creación y mantenimiento de modelos de
conocimiento”, PhD thesis. Universidad Politécnica de
Madrid, Spain, 2008

[3] W. Clancey: “Heuristic Classification”. Artificial

Intelligence 27, 1985

[4] J. Cuena, M. Molina: “The role of knowledge modelling

techniques in software development: a general approach
based on a knowledge management tool”. International
Journal of Human-Computer Studies. Academic Press.
2000.

[5] G. Dobbie, X. Y. Wu, T. W. Ling y M. L. Lee: “ORA-SS:

An Object-Relationship-Attribute Model for
SemiStructured Data”. Technical Report TR21/00. School
of Computing, National University of Singapore. 2000.

[6] L. J. Eshelman, D. Ehret, J. P. McDermott, M. Tan:

“MOLE: A Tenacious Knowledge-Acquisition Tool”.
International Journal of Man-Machine Studies. Vol. 26, nº
1. Pp: 41-54. January, 1987.

[7] A. Farquhar, R. Fikes, J. Rice: “The Ontolingua Server: a

Tool for Collaborative Ontology Construction”,
International Journal of Human-Computer Studies, 46. Pp:
707-727, 1997.

[8] J. Hendler, E. A. Feigenbaum: “Knowledge Is Power: The

Semantic Web Vision”. Proceedings of Web Intelligence.
Pp: 18-29. Japan. July, 2001.

[9] E. Lutz: “The knowledge Base Maintenance Assistant”.

Proc. 8th Knowledge-Based Software Engineering
Conference, Chicago, USA. 1993.

[10] A. Macintyre: “KREST User Manual 2.5”. Wrije

Universiteit Brussel, AI-lab. Brussels. 1993.

[11] S. Marcus y J. McDermott: "SALT: A knowledge

acquisition language for propose and revise systems".
Artificial Intelligence. Vol. 39, nº 1. Pp: 1-37. May, 1989.

[12] M. Molina, G. Blasco: “KATS: A Knowledge Acquisition

Tool Based on Electronic Document Processing”. 14th
International Conference on Knowledge Engineering and
Knowledge Management EKAW 04. In "Engineering
Knowledge in the Age of the Semantic Web" Lecture
Notes in Artificial Intelligence, nº 3257. Springer Verlag.
Whittlebury Hay, UK, October, 2004.

[13] N. Noy, R. Fergerson, M. Musen: “The knowledge model

of Protege-2000: Combining interoperability and
flexibility”. Proc. 2th International Conference on
Knowledge Engineering and Knowledge Management.
Engineering Knowledge in the Age of the Semantic Web
(EKAW 2000). Juan-les-Pins, France. October, 2000.

[14] G. Paul: “Creating a Digital Aristotle: A Computerized

Knowledge System for Scientists and Students”. Bussiness
Wire. February, 2004.

[15] G. Schreiber, H. Akkermans, A. Anjewierden, R. De Hoog,

N. Shadbolt, W. Van de Velde, B. Wielinga: “Knowledge
engineering and management. The CommonKADS
methodology” MIT Press, 2000.

[16] P. Singh, T. Lin, E.T. Mueller, G. Lim, T. Perkins and W.

Li Zhu (2002). Open Mind Common Sense: Knowledge
acquisition from the general public. Proc. of the First
International Conference on Ontologies, Databases, and
Applications of Semantics for Large Scale Information
Systems. Irvine, CA.

[17] P. Singh, B. Barry y H. Liu: “Teaching machines about

everyday life.”. BT Technology Journal. Vol. 22, nº 4. Pp:
227-240. 2004.

[18] R. Williams, B. Barry y P. Singh: “ComicKit: acquiring

story scripts using commonsense feedback.” Proc. ACM
International Conference on Intelligent User Interfaces (IUI
2005). San Diego, CA. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-Italic
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00530065007400740069006e0067007300200064006500660069006e00690064006f00730020007000610072006100200065006c00200063006f006e0067007200650073006f00200049004300540041004900200032003000300038>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

