
Benchmarking the RDF(S) Interoperability of
Ontology Tools

Raúl Garcı́a-Castro
Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial.
Facultad de Informática, Universidad Politécnica de Madrid, Spain

York Sure
Institut AIFB, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract—The number of ontology tools, such as ontology
editors and repositories, is constantly rising. Ideally, one could use
them all seamlessly and thus benefit from all the functionalities
they offer. As shown in previous EON workshops, interoperability
among different development tools is not straightforward since
ontology editors rely on specific internal knowledge models which
are translated into common formats such as RDF(S). This paper
addresses the urgent need for interoperability by providing an
exhaustive set of RDF(S) benchmarks and demonstrating in
an extensive field study the state-of-the-art of interoperability
among six ontology tools. From the field study we have compiled
a comprehensive set of best practices which may serve as
guidelines. Tool developers benefit from having guidelines to
design their import and export functionalities and a concrete
set of benchmarks against which they can evaluate their import
and export functionalities. Ontology engineers benefit from our
work by having an overview to which extend interoperability is
ensured for combinations of specific tools.

I. INTRODUCTION

Ontologies enable interoperability among heterogeneous
applications. The development and deployment of ontolo-
gies and ontology-based applications follows methodological
guidelines and is supported by ontology tools such as ontology
editors and repositories. Ideally one could use all existing
ontology tools seamlessly and thus benefit from all the func-
tionalities they offer. As shown in previous workshops on
Evaluation of Ontology-based Tools (EON), interoperability
among different ontology tools is not straightforward. For
instance, ontology editors usually rely on specific internal
knowledge models which are translated more or less into
common formats such as RDF(S)1. Finding out why interoper-
ability fails is cumbersome and non-trivial as any assumption
made for the translation within one tool may easily prevent
successful interoperability with other tools.

This paper addresses the urgent need for interoperability.
We provide an exhaustive set of RDF(S) benchmarks which
have been developed as part of the EU IST Knowledge Web
Network of Excellence2. The benchmarks were designed to
support evaluation and improvement of ontology tool in-
teroperability. In an extensive field study we explored the
state-of-the-art in interoperability among six ontology tools.

1http://www.w3.org/RDF/
2http://knowledgeweb.semanticweb.org/

Three of the participating tools are ontology editors (KAON,
Protégé, WebODE) and three are repositories (Corese, Jena,
Sesame), thus tool support for ontology development as well
as deployment is covered. The field study helped us gain a
deep understanding of the import and export functionalities
of ontology tools. Our findings may serve as guidelines for
developing tools and are summarized in comprehensive best
practices on interoperability.

Tool developers benefit by having guidelines to design their
import and export functionalities and by having a concrete set
of benchmarks against which they can (automatically) evaluate
their import and export functionalities. Ontology engineers
benefit from our work by having an overview to which extend
interoperability is ensured for combining specific tools. We
hope that future generations of ontology tools will offer
smooth interoperability and thus fulfil the key promise of
ontologies.

This paper is structured as follows: Section II presents the
motivation behind benchmarking software rather than evalu-
ating it and other evaluation initiatives that have taken place.
Section III examines how the RDF(S) interoperability bench-
marking was conducted and how the RDF(S) benchmarks
were designed. Sections IV and V summarize the results of
executing the export, import and interoperability benchmarks.
Section VI provides the recommendations extracted from
benchmarking for ontology and software developers, and for
anybody interested in carrying out a benchmarking activity.
Finally, Section VII presents the conclusions derived from this
work and future lines of work.

II. RELATED WORK

A. Evaluation vs. Benchmarking

Software evaluation, according to the ISO 14598 standard
[1], is defined as the systematic examination of the extent to
which an entity is capable of fulfilling specified requirements;
considering software not just as a set of computer programs
but as the procedures, documentation and data produced.

Software benchmarking is a continuous process for improv-
ing software products, services and processes by systemati-
cally evaluating and comparing them to those considered to
be the best. This definition, adapted from the definition given
by the business management community [2], is followed by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


some authors in the Software Engineering community while
others consider benchmarking as a software evaluation method
[3].

The reason for benchmarking software products instead of
just evaluating them is to obtain several benefits that cannot
be obtained from evaluations. A software evaluation shows
the weaknesses of the software or its compliance to quality
requirements. If several software products are involved in the
evaluation, we also obtain a comparative analysis of these
products and recommendations for users. When benchmarking
several software products, besides all the benefits commented,
we gain continuous improvement of the products, recommen-
dations for developers on the practices used when developing
these products and, from these practices, those that can be
considered best practices.

B. Related Evaluations

We now briefly present two evaluation initiatives closely re-
lated to our work. The first is a benchmark suite for evaluating
RDF(S) usage, and the second is a previous evaluation of the
interoperability of ontology development tools.

The RDF Test Cases [4] were created by the W3C RDF
Core Working Group. These tests check the correct usage of
the tools that implement RDF knowledge bases and illustrate
the resolution of different issues considered by the Working
Group. The RDF Test Cases could also be used for evaluating
RDF(S) importers but, while they provide examples for, and
clarification of, the normative definition of the language,
our approach aims for an exhaustive evaluation of RDF(S)
importers. Another difference is that we distinguish between
the benchmarks that depend on the RDF(S) knowledge model
and those that depend on the RDF syntax used. Moreover, we
take into consideration valid input ontologies only, whereas
the RDF Test Cases take erroneous input ontologies and
entailment benchmarks.

The Second International Workshop on Evaluation of
Ontology-based Tools (EON 2003) had as main topic the
evaluation of the interoperability of ontology-based tools [5].
The results of the workshop led to significant improvements
in various well-known ontology editors. The main reasons for
benchmarking the interoperability of ontology tools again are:

• Interoperability is a great problem in the Semantic Web
which is still unsolved.

• The workshop experiments (and those of its successors)
involved only few tools and focused on editors.

• Some experiments evaluated export functionalities, others
import functionalities and only a few evaluated interop-
erability.

• No systematic evaluation on a technical level was per-
formed because ontology tool developers were just asked
to model and interchange a domain ontology and report
about findings. Each experiment used different test strate-
gies and interchange languages, and also different prin-
ciples for modelling ontologies. Therefore, only specific
comments and recommendations were made.

We learnt many lessons from the results of the initial EON
experiments which enabled us to do a systematic evaluation
on a technical level such as the one presented in this paper.

III. RDF(S) INTEROPERABILITY BENCHMARKING

The RDF(S) interoperability benchmarking started in
Knowledge Web as an effort to improve the interoperability
of ontology tools and to provide comprehensive recommenda-
tions for industry on how to use these tools. The benchmarking
was organized and carried out following a generic software
benchmarking methodology developed in Knowledge Web
[6]. We now present the main decisions and outcomes of
instantiating such methodology.

The goals for benchmarking the interoperability of ontology
tools are related to the benefits pursued through it, and these
are: to evaluate and improve their interoperability, to acquire
a deep understanding of the practices used to develop the
importers and exporters of these tools and to extract from these
practices those that can be considered the best practices, to
produce recommendations for users, and to create consensual
processes for evaluating their interoperability.

These goals involve different communities that are related
to the ontology development tools, namely, the research and
industrial communities, and tool developers.

Participation in the benchmarking was open to any organi-
sation irrespective of being a Knowledge Web partner or not.
To involve other organisations in the process, with the goal
of having the best-in-class tools participating, several actions
were taken:

• The benchmarking proposal, a document being used as
a reference along the benchmarking, was published as
a public web page3, which includes all the relevant
information about the benchmarking: motivation, goals,
benefits and costs, tools and people involved, planning,
related events, and a complete description of the experi-
mentation and the benchmark suites.

• Research was performed on the existing ontology devel-
opment tools, both freely available and commercial ones,
which could export and import to and from RDF(S), and
their developers were contacted. In the future, any tool
capable of importing and exporting RDF may participate
in the benchmarking or benefit from the benchmarks.

• The interoperability benchmarking was announced with a
call for participation through the main mailing lists of the
Semantic Web area and through lists specific to ontology
development tools.

Six tools took part in the benchmarking, three of which are
ontology development tools: KAON, Protégé (using its RDF
backend), and WebODE; the other three are RDF repositories:
Corese, Jena and Sesame. These six tools do not share a
common knowledge model and benchmarking was not always
performed by tool developers.

The experimentation over the tools aimed to obtain results
for interoperability improvement. Therefore, other quality at-

3http://knowledgeweb.semanticweb.org/benchmarking interoperability/



tributes such as performance, scalability, robustness, etc. were
not considered. However, an approach for benchmarking the
performance and scalability of ontology development tools can
be found in [7].

The experimentation took into account the most common
way of interchanging ontologies that ontology tools provide,
that is, by exporting ontologies from a tool into an interchange
language and then importing ontologies into the other tool,
using RDF(S) as interchange language and serializing the
ontologies into RDF/XML syntax. A future benchmarking
activity inside Knowledge Web will cover the case of using
OWL4 as interchange language.

Interoperability of ontology tools using an interchange lan-
guage depends on the capabilities of the tools to import and
export ontologies from/to this language. Therefore, the exper-
imentation included not only the evaluation of interoperability
but also that of the RDF(S) import and export functionalities
of the tools.

The evaluation criteria must describe in depth the import,
export and interoperability capabilities of the tools, whereas
the experiments to be performed in the benchmarking must
provide data informing how the tools comply with these
criteria. Therefore, to obtain detailed information about these
capabilities, we need to know: the elements of the internal
knowledge model of an ontology development tool that can be
imported from RDF(S), exported to RDF(S), and interchanged
with another tool using RDF(S) as interchange language; the
secondary effects of importing, exporting and interchanging
these components, such as insertion or loss of information;
and the subset of elements of the internal knowledge models
that these tools may use to interoperate correctly.

To obtain these experimentation data, we defined three
benchmark suites for evaluating the import, export and in-
teroperability capabilities of the tools [8], which are common
for all the tools. As the quality of the benchmark suites to be
used is essential for the results of the benchmarking, the first
step was to agree on the definition of these suites. Then, we
decided to perform the import and export experiments before
the interoperability ones, as the results of the first influence
those of the second.

The steps to follow for executing the three benchmark
suites are similar, and these are: the definition of the expected
ontology resulting from importing, exporting or interchanging
the ontology described in the benchmark; the import, export,
or interchange of the ontology defined in the benchmark; and
the comparison of the expected ontology with the ontology
imported, exported or interchanged, checking whether there is
some addition or loss of information.

The benchmark suites were intended to be executed man-
ually but, as they contain many benchmarks, it is highly
recommended to execute them (or part of them) automatically.
In the cases of Corese, Jena, Sesame, and WebODE, most of
the experimentation was automated. In the other cases, it was
performed manually.

4http://www.w3.org/TR/owl-features/

The benchmarking web page3 contains a detailed descrip-
tion of the benchmark suites, all the files to be used in
the experiments, templates for collecting the results, and the
experimentation results obtained.

A. Benchmark Suites

The benchmark suites check the correct import, export and
interchange of ontologies that model a simple combination
of ontology components (classes, properties, instances, etc.).
Because one of the goals of the benchmarking is to improve
the tools, the benchmark ontologies are kept simple on purpose
so as to isolate problem causes and to identify problems.

As the ontology tools participating in the benchmarking
have different internal knowledge models, both the exper-
imentation and the analysis of the results are based on a
common group of ontology modelling primitives, available
in RDF(S) and in these tools. However, since tackling this
common group exhaustively would yield a huge number of
benchmarks, we have only considered the components most
used for modelling ontologies in ontology development tools:
classes, instances, properties with domain and range, literals,
and class and property hierarchies. The rest of the components
have not been dealt with so far.

1) The RDF(S) Import Benchmark Suite: contains 82
benchmarks, which define a simple RDF(S) ontology serial-
ized in a RDF/XML file that must be loaded into the ontology
development tool.

To isolate the factors influencing the correct import of an
ontology, we have defined two types of import benchmarks:
those that evaluate the import of the different combinations of
components of the RDF(S) knowledge model, and those that
evaluate the import of the different variants of the RDF/XML
syntax, as stated in the RDF/XML specification.

2) The RDF(S) Export Benchmark Suite: comprises 66
benchmarks, which define an ontology that must be modelled
in the tool and saved to a RDF(S) file.

We have defined two types of benchmarks for isolating
the two factors influencing the correct export of an ontology.
One group of benchmarks evaluates the correct export of the
combinations of components of the ontology development tool
knowledge model and the other group evaluates the export of
ontologies with concepts and properties whose names include
characters restricted by RDF(S), such as those not allowed for
representing RDF(S) or XML URIs.

3) The RDF(S) Interoperability Benchmark Suite: evaluates
the interchange of ontologies from one source tool to a
destination one and vice versa. Each benchmark defines an
ontology that must be modelled in the origin tool, saved to a
RDF(S) file, and loaded into the destination tool.

Since the factors influencing the correct interchange of an
ontology (besides the correct functioning of the importers
and exporters) as well as the knowledge model used for
defining the ontologies are the same as those in the RDF(S)
Export Benchmark Suite, the ontologies defined in the RDF(S)
Interoperability Benchmark Suite are identical to those of the
RDF(S) Export Benchmark Suite.



The evaluation criteria are common for the three benchmark
suites and are defined as follows:

• Modelling (YES/NO). The ontology tool can model the
ontology components described in the benchmark.

• Execution (OK/FAIL). The execution of the benchmark
is carried out without any problem, and the tool always
produces the expected result. In the case of a failed
execution, the following information is required: reasons
for the failure of the benchmark execution and, if the tool
had been corrected to pass a benchmark, the corrections
performed.

• Information added or lost. The information added or
lost in the ontology interchange.

In the export and interoperability benchmark suites, if a
benchmark defines an ontology that cannot be modelled in
a certain tool, this benchmark cannot be executed in the
tool, being the Execution result N.E. (Non Executed). In the
import benchmark suite, even if a tool cannot model some
components of the ontology, it should be able to import
correctly the rest of the components.

IV. IMPORT AND EXPORT RESULTS

The results obtained when importing from and exporting to
RDF(S) depend mainly on the knowledge model of the tool
that executed the benchmark suite. The tools that natively sup-
port the RDF(S) knowledge model (Corese, Jena and Sesame,
essentially the RDF repositories) do not need to perform any
translation in the ontologies when importing/exporting them
from/to RDF(S). The RDF repositories import and export
correctly from/to RDF(S) all the combinations of components,
as these operations do not require any translation.

In the case of tools with non-RDF knowledge models
(KAON, Protégé and WebODE, the ontology development
tools), some of their knowledge model components can also
be represented in RDF(S) whereas some others cannot; on
the other hand, tools do need to translate ontologies between
their knowledge models and RDF(S). Besides, not all the
combinations of components of the RDF(S) knowledge model
that have been taken into account in the benchmarking can be
modelled into all the tools.

We present an analysis of the import and export results of
the participating ontology development tools.

A. Import Results

In general, ontology development tools import correctly
from RDF(S) all or most of the combinations of components
that they model, rarely adding or losing information. The only
exceptions are: Protégé, which poses problems only when
importing classes or instances that are instances of multiple
classes, and WebODE, which causes problems only when
importing properties with a XML Schema datatype as range.

When the ontology development tools import ontologies
with combinations of components that they cannot model, they
lose the information about these components. Nevertheless,
they usually try to represent partially these components using
other components from their knowledge models. In most cases,

the import is performed correctly. The only exceptions are:
KAON, which poses problems when it imports class hierar-
chies with cycles, Protégé poses problems when it imports
class and property hierarchies with cycles and properties with
multiple domains, and WebODE, which causes problems when
it imports properties with multiple domains or ranges.

When dealing with the different variants of the RDF/XML
syntax, ontology development tools import correctly resources
with different URI reference syntaxes and with different
syntaxes (shortened and unshortened) of empty nodes, of
multiple properties, of typed nodes, of string literals, and of
blank nodes. The only exceptions are: KAON when imports
resources with multiple properties in the unshortened syntax;
and Protégé when imports resources with empty and blank
nodes in the unshortened syntax. The tools do not import
language identification attributes (xml:lang) in tags.

B. Export Results

In general, ontology development tools export correctly to
RDF(S) all or nearly all of the combinations of components
that they model without losing information, though KAON
poses problems only when exporting to RDF(S) datatype
properties without range and datatype properties with multiple
domains and with an XML Schema datatype as range, whereas
Protégé causes problems only when exporting to RDF(S)
classes or instances that are instances of multiple classes and
template slots with multiple domains.

When these tools export components that are present in their
knowledge model but cannot be represented in RDF(S), such
as their own datatypes, they usually insert new information in
the ontology though some information is lost.

When dealing with concepts and properties whose names
do not fulfil URI character restrictions, each ontology devel-
opment tool behaves differently. When names do not start
with a letter or ” ”, some tools leave the name unchanged
while others replace the first character with ” ”, spaces in
names are replaced by ”-” or ” ”, depending on the tool, and
URI reserved characters and XML delimiter characters are left
unchanged, replaced by ” ”, or encoded.

V. INTEROPERABILITY RESULTS

The RDF repositories (Corese, Jena and Sesame) interop-
erate correctly among themselves as they always import and
export from/to RDF(S) correctly. This causes that interoper-
ability between the ontology development tools and the RDF
repositories depends only on the capabilities of the former to
import and export from/to RDF(S) and, therefore, the results
about this interoperability are identical to those presented in
the previous section.

The import and export results presented in the previous
sections showed that few problems arise when importing and
exporting ontologies. Nevertheless, the interoperability results
present more problems.

As a general comment we can say that interoperability
between the tools depends on: a) the correct working of their



RDF(S) importers and exporters; and b) the way selected for
serializing the exported ontologies in the RDF/XML syntax.

Furthermore, we have observed that some problems in any
of these factors affect the results of not just one but of several
benchmarks. This means that, in some cases, correcting a
single import or export problem or changing the way of
serializing ontologies can cause significant interoperability
improvements.

Next, we list the components that can be interchanged
between the tools.

1) Interoperability using the same tool: Ontology develop-
ment tools seem to have no problems when the source and the
destination of an ontology interchange are the same tool. The
only exception resides in Protégé when interchanges classes
that are instances of multiple metaclasses and instances of
multiple classes, since Protégé does not import resources that
are instances of multiple metaclasses.

2) Interoperability between each pair of tools: Interoper-
ability between different tools varies according to the tools.
Besides, as the detailed interoperability results show, in some
cases the tools are able to interchange certain components from
one tool to another, but not the other way round.

When KAON interoperates with Protégé, both can inter-
change correctly some of the common components that they
are able to model. But the problems arise with classes that are
instances of a single metaclass or of multiple metaclasses, with
datatype properties without domain or range, with datatype
properties whose range is String, with instances of multiple
classes, and with instances related via datatype properties.

When KAON interoperates with WebODE, they can in-
terchange correctly almost all the common components that
these tools can model. The only exception occurs when they
interchange datatype properties with domain whose range is
String.

When Protégé interoperates with WebODE, they can inter-
change correctly all the common components that these tools
can model.

3) Interoperability between all the tools: Interoperability
between KAON, Protégé and WebODE can be achieved
with nearly all the common components that these tools can
model. The only components that these tools cannot use are:
datatype properties with domain and whose range is String,
and instances related through datatype properties.

Therefore, interoperability can be achieved among the tools
that have participated in the benchmarking using classes, class
hierarchies without cycles, object properties with domain and
with range, instances of a single class, and instances related
through object properties.

4) Interoperability regarding URI character restrictions.:
Interoperability is low when tools interchange ontologies con-
taining URI character restrictions in class and property names.
This is mainly due to the fact that tools usually encode some
or all the characters that do not comply with these restrictions,
which provokes changes in class and property names.

VI. RECOMMENDATIONS

A. Recommendations for ontology engineers

This section offers recommendations for ontology engineers
which use more than one ontology tool to build ontologies.
Depending on the tools used, the level of interoperability may
be greater or lower, as can be seen in Section V.

If the ontology is being developed bearing in mind interop-
erability, the ontology engineers should be aware of the com-
ponents that can be represented in the ontology development
tools and in RDF(S). Also, they should try to use in their
ontologies the common knowledge components of these tools
in order to avoid the knowledge losses known already.

Ontology engineers should also be aware of the semantic
equivalences and differences between the knowledge models
of the tools and the interchange language.

It is not recommended to name resources using spaces or
any character that is restricted in the RDF(S), URI or XML
specifications.

In the case of interoperability in the RDF repositories,
although these repositories export and import correctly to
RDF(S), ontology engineers should consider the limitations
that other tools have when exporting their ontologies to
RDF(S) with the aim of interchanging them.

B. Recommendations for tool developers

This section includes general recommendations for improv-
ing the interoperability of the tools when developing them.
In [9], we offer more detailed recommendations to improve
each of the participating tools according to the results and
practices found. Although it is not compulsory to follow these
recommendations, they help correct interoperability problems
as we could observe when analysing the results.

Interoperability between ontology tools using RDF(S) as
interchange language depends on how the importers and
exporters of these tools work, whereas the way they work
depends on the development decisions made by tool develop-
ers, who are different people with different needs. Therefore,
it is not straightforward to provide general recommendations
for developers. Nevertheless, some comments can be extracted
from the analysis of the benchmarking results.

Seldom, a development decision will produce an interoper-
ability improvement with some tools but a loss with others.
For example, when exporting classes that are instances of
a metaclass, some tools require that the class be defined as
instance of rdfs:Class while some others require the opposite.
The collateral consequences of the development decisions
should be analysed by the tool developers.

Tool developers should be aware of the semantic equiva-
lences and differences between the knowledge models of their
tool and the interchange language; on the other hand, the tools
should notify the user when the semantics is changed.

The first requirement for achieving interoperability is that
tool importers and exporters are robust and work correctly
when dealing with unexpected inputs. Although this is an
evident comment, the results show that this requirement is



not fulfilled by the tools and that some tools even crash when
importing some combinations of components.

Above all, tools should deal correctly with the combinations
of components that can be present in the interchange language
but that cannot be modelled in them. For example, cycles in
class and property hierarchies cannot be modelled in ontology
development tools. Nevertheless, these tools should be able to
import these hierarchies by eliminating the cycles.

To export components commonly used by ontology devel-
opment tools, they should be completely defined in the file.
This means that metaclasses and classes in class hierarchies
should be defined as instances of rdfs:Class, properties should
be defined as instances of rdf:Property, etc.

Exporting complete definitions of other components can
cause problems if these are imported by other tools. Not every
tool deals with datatypes defined as instances of rdfs:Datatype
in the file or with rdf:datatype attributes in properties.

Every exported resource should have a namespace if the
document does not define a default namespace.

C. Recommendations for benchmarking
This section offers recommendations to perform benchmark-

ing activities that were extracted from the lessons learnt while
instantiating the methodology.

Benchmarking is not about comparing the results of the
tools but the practices leading to these results. Therefore,
experimentation should be designed to obtain these practices
as well as the results.

Resources are needed mainly in three tasks: benchmarking
organisation, experimentation definition and execution, and
results analysis. It should be ensured that enough resources
are allocated to each of these tasks.

Benchmarking is an activity that takes long time as it
requires tasks that are not immediate: announcements, agree-
ments, etc. Therefore, benchmarking activities should start
early in time and the benchmarking planning should consider
a realistic duration of the benchmarking.

Benchmarking needs the participation of relevant experts
in the domain together with the best-in-class tools. Although
it is not required that the tool developers participate in the
benchmarking and perform the experiments over their tool,
their involvement facilitates the execution and analysis of the
experimentation results to a large extent. In all the cases where
tool developers performed the experimentation on their own
tools, they were able to detect problems and improve their
tools while executing the benchmark suites.

VII. CONCLUSIONS AND FUTURE WORK

Seamless interoperability among ontology tools greatly fa-
cilitates the development and deployment of ontologies. In this
paper we present a set of concrete RDF(S) benchmarks and
results and best practices obtained after applying them in an
extensive field study on a number of well-known ontology
tools.

Our benchmarks may be used by any ontology tool devel-
oper to improve import and export functionalities and to ensure
interoperability with other tools on a very fine-grained level.

Our field study wants to show ontology engineers to which
extent state-of-the-art tools are interoperable right now. How-
ever, ontology engineers may use the benchmarks themselves
to benchmark relevant tools, e.g. in early ontology develop-
ment project stages to facilitate the selection of appropriate
tools.

During this benchmarking activity, tool developers some-
times automated the execution of the benchmark suites, but
the experimentation was mainly done by hand. Carrying out
experiments manually and analysing the results is expensive
since both tasks depend on the expertise of the people perform-
ing them, and can be influenced by human errors. Therefore,
these tasks should be automated as much as possible and
mechanisms should be set up to detect human errors.

Future work mainly includes the development of means
to automatize experimentation as much as possible and the
development of appropriate OWL benchmark suites to be
used in a future benchmarking activity that will consider
interoperability using OWL as interchange language.

ACKNOWLEDGMENTS

This work is partially supported by a FPI grant from the
Spanish Ministry of Education (BES-2005-8024), by the IST
project Knowledge Web (IST-2004-507482) and by the CICYT
project Infraestructura tecnológica de servicios semánticos
para la web semántica (TIN2004-02660). Thanks to all the
people that have participated in the RDF(S) interoperability
benchmarking: Olivier Corby, Jesús Prieto-González, Moritz
Weiten, and Markus Zondler. Thanks to Rosario Plaza for
reviewing the grammar of this paper.

REFERENCES

[1] ISO/IEC, ISO/IEC 14598-1: Software product evaluation - Part 1: Gen-
eral overview, 1999.

[2] M. Spendolini, The Benchmarking Book. New York, NY: AMACOM,
1992.

[3] R. Garcı́a-Castro, “Keynote: Towards the improvement of the Semantic
Web technology,” in Proceedings of the Second International Workshop
on Scalable Semantic Web Knowledge Base Systems (SSWS2006), Athens
GA, USA, November 2006.

[4] J. Grant and D. B. (eds.), “RDF test cases. W3C recommendation 10
february 2004,” W3C, Tech. Rep., February 2004.

[5] Y. Sure and O. Corcho, Eds., Proceedings of the 2nd International Work-
shop on Evaluation of Ontology-based Tools (EON2003), ser. CEUR-WS,
vol. 87, Florida, USA, October 2003.

[6] R. Garcı́a-Castro, D. Maynard, H. Wache, D. Foxvog, and R. González-
Cabero, “D2.1.4 Specification of a methodology, general criteria and
benchmark suites for benchmarking ontology tools,” Knowledge Web,
Tech. Rep., December 2004.

[7] R. Garcı́a-Castro and A. Gómez-Pérez, “Guidelines for benchmarking
the performance of ontology management APIs,” in Proceedings of the
4th International Semantic Web Conference (ISWC2005), ser. LNCS, no.
3729. Galway, Ireland: Springer-Verlag, November 2005, pp. 277–292.

[8] ——, “Benchmark suites for improving the RDF(S) importers and
exporters of ontology development tools,” in Proceedings of the 3rd
European Semantic Web Conference (ESWC2006), ser. LNCS 4011.
Budva, Montenegro: Springer-Verlag, June 2006.

[9] R. Garcı́a-Castro, Y. Sure, M. Zondler, O. Corby, J. Prieto-González,
E. P. Bontas, L. Nixon, and M. Mochol, “D1.2.2.1.1 Benchmarking
the interoperability of ontology development tools using RDF(S) as
interchange language,” Knowledge Web, Tech. Rep., June 2006.


