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Abstract  

This paper describes a methodology to parameterize 
linear, time invariant (LTI) models which represent the 
dynamics of UVTOLs and that are appropriate for analytical 

against real telemetry from two vehicles, a mini-helicopter 
and a quadrotor. The experiments show that despite their 
inherent limitations the LTI models are suitable for 
modeling the complex dynamics of aerial vehicles. Different 
LTI models for the mini-
longitudinal flights were obtained. Similarly, given the 
geometrical and dynamic characteristics of the quadrotor no 
distinction is made between stationary, lateral and 
longitudinal flights, and only one LTI model was obtained, 
which represents the overall dynamic behavior of the vehicle. 
Because of their relative simplicity these models were used 
to design analytical controllers and to obtain different 
controller prototypes in a quick and simple way to evaluate 
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1. Introduction 

The modeling, guidance, navigation and control of 
Unmanned Vertical Take Off and Landing (UVTOL) 
vehicles  is a research topic with great developments, and 
has achieved significant progresses in recent years. It is 
sufficient to mention some work on helicopters modeling as 
La Civita [2002], Avila et al [2003], Cunha and Silvestre 
[2003], Bouabdallah [2005, 2006] and Castillo et al [2007] 
to note the large number of approaches that has been given 
to this field of engineering. 

cs and its variations 
related to flying altitude, weather conditions, changes in the 

fuel quantity), disrupt the modeling process and, 
consequently, the systematic development of control 
systems, resulting in tedious and critical heuristic 
adjustment procedures. This paper proposes a modeling 
methodology that leads to a set of linear and time invariant 
(LTI) models, which allow representations of stationary, 

lateral and longitudinal phases of flight; these models are 
then used for the development of analytical controllers and, 
as a consequence, a systematic synthesis process of them. 

2. Description of used VTOL and proposed model

2.1 Description of aerial vehicles 

In this section we briefly describe the VTOLs used and 
give a description of some details about the characteristics, 
variables and signals involved in their flight dynamics. 

VTOLs are considered systems of six degrees of 
freedom, defined by three degrees to the position or location 
(X, Y, Z) and three other degrees to attitude (Roll, Pitch, 
Yaw angles) as described in Figure 1 for the mini-helicopter. 

Figure 1. Nomenclature used for the mini-  variables 

The mini-helicopter used is a Benzin Trainer of VARIO. Its 
main rotor measured 1.5 meters and has a 5 kg payload, 
thanks to its 26 cc engine. 

On the other hand, the quadrotor used is a Draganflyer 
SAVS, with 0.8 m diameter, a payload of 85 g and energy 
autonomy for 12 to 15 minutes flights. 

Thanks to the instrumentation on board the aircrafts and 
communications systems available, data from signals 
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involved in the flight can be stored on land. Among the 
variables that can be obtained, are relevant to the model 
developed the following signals (as graphically represented 
in Figure 1): 

X, Y, Z: Measured respect to an inertial system and only 
in the case of mini-helicopter, with a GPS. 

Roll, Pitch: Measured with an IMU, with respect to the 
mobile axis of each VTOL. 

Yaw: Measured with magnetic compass in the mini-
helicopter and with IMU in Quadrotor. 

Vroll, Vpitch, Vyaw: Calculated using a Kalman filter 
from the signals measured into IMU. 

Croll, Cpitch, Cyaw: Control Signals of the respective 
Roll, Pitch and Yaw angles, sent through of RC transmitter. 

2.2 Mini-

Dynamic features of VTOLs can be represented by 
complex models, where components such as non-linearities 
or parameter uncertainty are not easy to determine. In 
contrast, the majority of controller design procedures require 
a relatively simple mathematical model to establish some 
characteristics and adjust the parameters of the controller to 
design. 

A relatively complex mathematical model for the mini-
helicopter used in this work was obtained in earlier work 
(Aguirre [1999] and DelCerro [2007]). This model offers a 
good input-output representation of the system, but its 
complexity does not allow to use it in analytical procedures 
for controllers design. From this model we obtained a 
structure of a simple mathematical model, which can be 
represented with linear, time invariant (LTI) state equations 
and use it to develop a systematic procedure of controllers 
design. 

The mini-helicopter was considered a decoupled system 
respect to its three main movements: the movement in a 
horizontal plane, parallel to the ground, with varying angles 
roll, pitch and the resulting lateral and longitudinal 
displacement, the Yaw movement and vertical movement or 
Z variation. 

2.2.1 Model structure 

The structure of LTI model proposed in this paper for the 
movement in a horizontal plane, with constant Z and based 
on zero Yaw angle assumption, is represented by the 
following state equations: 
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Equation (1) 

Where:  
x1 : Roll  x5 : Lateral linear speed 
x2 : Roll derivative  x6 : Longitudinal linear speed 
x3 : Pitch   x7 : Frontal displacement 
x4 : Pitch derivative  x8 : Longitudinal displacement 

u1 : Roll control signal u2 : Pitch control signal 

This model structure assumes the existence of coupling 
between the Pitch and Roll angles, and a dependence on the 
lateral and longitudinal movements only with variations in 
pitch and roll angles respectively. From various experiments, 
we were able to verify that this structure model does not 
depend on the value of Z, or different constant values that 
can take the angle Yaw. 

The model structure represented in Equation 1 is a 
parametric model whose coefficients aij, bkl, should be 
defined for a particular aerial vehicle. For this, we 
developed an identification process on the real system, using 
genetic algorithms as computational tool. 

During early experiments with the mini-helicopter and 
after data analysis aimed at obtaining a single model to 
represent its dynamics, we were able to show that its 
dynamic behaviour when flying in a horizontal plane was 
sufficiently diverse from stationary, frontal and lateral flight. 
This raised the need to obtain a specific model for each of 
these types of flight. 

2.2.2 Parameters Identification  

A genetic-algorithm-based tool, which has been 
successfully used to parameterize other models, was used 
for the aij and bkl 

The selection criterion used was the minimization of an 
objective function given by the difference between real 
signals measured in the VTOL and signals provided by the 
model. This difference is represented by the value of the 
mean square error between those signals.  

The implementation of the identification process in the 
case of mini-helicopter, resulted in the parameters that are 
detailed in Table 1, for the three different types of flight. 

Table 1. Model parameters for mini-helicopter 

Parameter Hover  
flight 

Longitudinal 
flight 

Lateral flight 

a21 -0.0897 -4.9522 -9.4286 

a22 -1.0211 -0.1898 -2.8422 

a23 1.8807 1.5900 6.1920 

a24 0.7150 5.0240 -4.6793 

a41 -1.0785 -3.6885 -0.0641 

a42 -2.6725 -1.8418 0.4656 

a43 -1.1095 -4.4536 -8.1002 

a44 -2.0666 -3.4587 -5.5487 

a51 0.3604 -0.7884 0.2680 

a52 0.0213 0.8237 0.5478 

a55 -1.1681 -0.1264 -0.9287 

a63 1.2946 -0.4601 -1.3005 



a64 3.0741 0.5184 0.3482 

a66 -4.4571 -0.9718 -0.1548 

a76 -0.2156 -1.8407 -0.4067 

a85 0.3313 0.0961 1.1147 

b21 1.2969 -5.0342 -12.7259 

b22 0.8092 2.8049 -0.0557 

b41 -3.6516 -4.4360 1.8356 

b42 -1.3202 -4.0981 -3.6725 

2.3 Quadrotor model 

Similarly to mini-helicopter, was considered the 
quadrotor as a decoupled system respect to its three main 
movements: the movement in a horizontal plane parallel to 
the ground, with varying angles roll, pitch and the resulting 
lateral and longitudinal displacements, the Yaw movement 
and vertical movement or Z variation. However, given the 
geometrical and dynamic characteristics of quadrotor no 
distinction is made between stationary, lateral and 
longitudinal flights, and only one LTI model was obtained, 
which represents the overall dynamic behavior of the vehicle. 

2.3.1 Quadrotor model structure 

Given the physical limitations of quadrotor
and the consequent difficult to obtain reliable measures of 
variables such as the position (X, Y, Z) a simple model to 
represent a smaller number of state variables with respect to 
mini-helicopter was chosen. 

We propose a LTI, fourth order model (Equation 2) that 
will be useful to represent the Pitch and Roll angles, and 
then develop attitude controllers to provide stability to 
dynamics of quadrotor. 
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Equation 2 

Where:  

x1 : Roll 
x2 : Roll derivative 
x3 : Pitch 
x4 : Pitch derivative 

u1 : Roll control signal 
u2 : Pitch control signal 

2.3.2 Parameters Identification 

Using the same computational tools of mini-helicopter 
case, the parameters of the LTI model for quadrotor were 
identified, whose values are summarized in Table 2. 

Table 2. Parameters model for Quadrotor 

Parameter Value 

a21 -1.1132 

a22 -0.7118 

a23 0.0001 

a24 0.0000 

a41 7.2721 

a42 6.1794 

a43 -7.9908 

a44 -5.2474 

b21 -1.1045 

b22 0.0000 

b41 -4.5267 

b42 -14.4146 

3. Models Validation 

3.1 Mini-

Some graphics are shown to compare the results of the 
LTI model simulations and the real data obtained in different 
experimental flights. Figures 2, 4 and 6 show, on the left 
side, the comparison between the real data (solid lines) and 
those resulting from the model simulations (dotted lines) 
with the same set of data used in the parameters 
identification process. In the right side is reported the same 
comparison between real and simulated data, but with a 
different set of data called control data .

Figures 2, 4 and 6 compare real values of Pitch and Roll 
angles, as well as lateral and longitudinal movements of 
mini-helicopter (which coincide with the X and Y axes, 
when Yaw angle is zero), with those resulting from the 
simulation of stationary, lateral and longitudinal flights, 
obtained from the respective models previously described. 

Figure 2.  Real and simulated data comparison for hover 
flight. 
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Figure 3. Quadratic error for data control in hover flight 

Figure 4.  Real and simulated data comparison for 
longitudinal flight 

Figure 5. Quadratic error for control data in longitudinal 
flight  

The plots in Figures 2, 4 and 6 shows that real Roll and 
Pitch signals have a higher frequency component than those 
obtained from the model simulation. However, frequency 
analysis of signals measured were performed with the mini-
helicopter in flight, with the mini-helicopter on the ground 
and engine turned on and then with the engine off. Such 
analysis could determine that these high-frequency signals 
are due to mechanical vibrations caused by the engine 
movement. 

Figure 6.  Real and simulated data comparison for lateral 
flight  

Figure 7. Quadratic error for control data in lateral flight 

The quadratic error graphics (Figures 3, 5 and 7) show 
differences smaller than 0.5 degrees between real and 
simulated data, in Pitch and Roll angles. The resulting 
behavior on the position in X and Y also presents a 
negligible error, except for some specific samples where the 
error Pitch and Roll is a little higher (in all cases of flight). 
This error may be attributed to high frequency vibrations 
commented previously. 

It should be noted that the latest samples from each data 
sets are part of a transition phase between the three different 
types of flight (stationary, front and side), which explains 
that towards the end of the quadratic error graphics, this 
error becomes bigger, because the actual behavior of the 
helicopter in these transitions does not correspond exactly 
with any type of flight consideration. 

With the above can be concluded that model structure, 
with the corresponding sets of parameters obtained, is a 
suitable representation of mini-helicopter dynamic 
behaviour. In other words, the model, with relevant 
parameters depending on type of flight, allows an 
approximate representation of mini-helicopter complex 
dynamic. For this reason, this model can serve as a practical 
and useful tool for driver design and development 
procedures, despite the limitations and approaches set out in 
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the model definition (LTI model with relatively small order).  

3.2 Quadrotor model. 

Figure 8 shows the same comparisons for the case of the 
quadrotor. On the left side real data (solid line) is compared 
to model simulation (dotted line) on the set of data used in 
the identification process. On the right side the same 
comparison using a different set of data (control data). 

Figure 8. Comparison of real and simulated data for the 
quadrotor model. 

Figure 9. Quadratic error of the control data in the quadrotor 
model  

Figure 9 shows the difference between the measure and 
simulated Roll and Pitch values, expressed as quadratic error. 
As it can be noticed, the difference is bigger than in the case 
of the helicopter. This is due to the fact that in the quadrotor 
case only one model has been used for the three flight 
modes. Moreover, due to the limited payload of this vehicle, 
an IMU with less precision had to be used. 

4. Design procedure obtained 

Once obtained the models for the two vehicles described 
above, it was possible to establish a standard procedure for 
the design of analytical controllers with many proven 
techniques, such as pole placement, linear quadratic 
regulators and sliding modes control. This is the main 
advantage of our modeling methodology, which was 

validated by the design of various controllers for both 
UVTOLs. 

Figure 10. Comparison between two different control 
techniques for the mini-helicopter. 

Figure 10 shows the comparison between X and Y 
position signals for the mini-helicopter, in response to small 
changes in the reference for maintaining it in stationary 
flight, controlled using sliding mode control (SMC) and pole 
placement control (PPC). 

In the same way, Figure 11 shows the comparison 
between Roll and Pitch simulated signals, using pole 
placement control (PPC), sliding mode control (SMC) and 
LQR control. 

Figure 11. Comparison between three different control 
techniques for the quadrotor. 

Finally, in order to compare the goodness of the 
controller modelling and design process, we have realized 
some experimental flight with the quadrotor using the 
sliding mode controlled for controlling the Roll and Pitch 
signals, achieving stationary attitude for the vehicle. Figure 
12 shows the comparison between manual flight and 
automatically controlled flight data.  

Note that the Roll and pitch values do not reach the 
value zero due to the position of the position of the IMU that 
involve an offset for these variables. 

In general, the controller designed for this case allow a 
better behaviour, including rejecting the perturbation that 
can be noticed at t=6 s. 
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Figure 12. Results obtained for sliding mode control for the 
quadrotor. 

5. Conclusions 

The structure of the proposed mathematical model for 
VTOLs allows a suitable representation for the dynamics of 
such aerial vehicles, despite its simplicity and 
approximations. 

We have developed and tested a simple methodology 
that allows obtaining LTI models for small VTOL vehicles, 
as well as to design implement and test different kinds of 
controllers for them. 
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