Measuring contradiction regarding a negation on AIFS^{*}

S. Cubillo, E. Castiñeira, C. Torres-Blanc

Facultad de Informática

28660 Boadilla del Monte Universidad Politécnica de Madrid {scubillo, ecastineira, ctorres}@fi.upm.es

Abstract

In [5], an axiomatic model for contradiction measures on Atanassov Intuitionistic fuzzy sets was presented; there, different kinds of those measures, depending on the continuity conditions required, were established. But in previous papers (see [4]), not only the contradiction in general, but also the contradiction with respect to a given strong intuitionistic fuzzy negation were studied. This is due to the fact that in some applications, in order to fix a suitable model, not any negation is valid, but it is necessary to use a particular one. Thus, the problem of the axiomatization of the different types of contradiction measures regarding a given strong negation remained open. This is the main aim of the present work.

Keywords: Atanassov Intuitionistic fuzzy sets, \mathcal{N} -contradiction measures, continuity from below and from above.

1 Preliminaries

1.1 An Atanassov intuitionistic fuzzy set (AIFS) is a set $A = \{(x, \mu_A(x), \nu_A(x)) : x \in X\}$, where $\mu_A : X \to [0, 1], \nu_A : X \to [0, 1]$ are called the membership and non-membership

functions, respectively, and such that, for all $x \in X$, $\mu_A(x) + \nu_A(x) \leq 1$ (see [1]). Let us denote the set of all intuitionistic fuzzy sets on X as $\mathcal{IF}(X)$.

An AIFS could also be considered as an *L*fuzzy set as defined by Goguen in [10], where the lattice *L* is the set $\mathbb{L} = \{(\alpha_1, \alpha_2) \in [0, 1]^2 : \alpha_1 + \alpha_2 \leq 1\}$, with the partial order $\leq_{\mathbb{L}}$ defined as follows: given $\boldsymbol{\alpha} = (\alpha_1, \alpha_2), \boldsymbol{\beta} = (\beta_1, \beta_2) \in \mathbb{L}$,

$$\boldsymbol{\alpha} \leq_{\mathbb{L}} \boldsymbol{\beta} \iff \alpha_1 \leq \beta_1 \text{ and } \alpha_2 \geq \beta_2.$$

 $(\mathbb{L}, \leq_{\mathbb{L}})$ is a complete lattice with smallest element $0_{\mathbb{L}} = (0, 1)$, and greatest element $1_{\mathbb{L}} = (1, 0)$.

So, an AIFS A is an L-fuzzy set whose Lmembership function $\chi^A \in \mathbb{L}^X = \{\chi : X \to \mathbb{L}\}$ is defined for each $x \in X$ as $\chi^A(x) = (\mu_A(x), \nu_A(x))$. The order $\leq_{\mathbb{L}}$ induces, in a natural way, a partial order in \mathbb{L}^X , that we denote in the same way. In this way $(\mathbb{L}^X, \leq_{\mathbb{L}})$ is a bounded and complete lattice.

Furthermore, let us recall that a decreasing function $\mathcal{N} : \mathbb{L} \to \mathbb{L}$ is an intuitionistic fuzzy negation (IFN) if $\mathcal{N}(0_{\mathbb{L}}) = 1_{\mathbb{L}}$ and $\mathcal{N}(1_{\mathbb{L}}) = 0_{\mathbb{L}}$ hold. Moreover, \mathcal{N} is a strong IFN if the equality $\mathcal{N}(\mathcal{N}(\boldsymbol{\alpha})) = \boldsymbol{\alpha}$ holds for all $\boldsymbol{\alpha} \in \mathbb{L}$.

Bustince *et al.* introduced in [3] the intuitionistic fuzzy generators, which can be used to construct intuitionistic fuzzy negations, and Deschrijver *et al.* focused on this problem in [8] and [9], and proved that any strong IFN \mathcal{N} is characterized by a strong negation $N : [0,1] \rightarrow [0,1]$ by means of the formula $\mathcal{N}(\alpha_1, \alpha_2) = (N(1 - \alpha_2), 1 - N(\alpha_1))$, for all $(\alpha_1, \alpha_2) \in \mathbb{L}$. It will be said that N is the

^{*} This paper is partially supported by CICYT (Spain) under Project TIN 2005-08943-C02-01.

negation associated to \mathcal{N} .

1.2 The study of contradiction in the framework of intuitionistic fuzzy sets was initiated in [6]. Similarly to the fuzzy case, an AIFS A, or alternatively χ^A , is said to be contradictory with respect to some strong IFN \mathcal{N} , or, to be short, \mathcal{N} -contradictory, if $\chi^A(x) \leq_{\mathbb{L}}$ $(\mathcal{N} \circ \chi^A)(x)$ for all $x \in X$. Also A, or χ^A , is said to be contradictory (without depending on any specific negation) if there exists a strong negation \mathcal{N} , such that A is \mathcal{N} contradictory.

Nevertheless, it is interesting to know not only if a set is contradictory, but also the extent to which this property holds; that is, it is necessary to measure somehow the degree of contradiction of any AIFS. In order to do this, in [4] some functions were proposed to measure both the degree of \mathcal{N} -contradiction with respect to a strong negation \mathcal{N} , and the degree of contradiction of an AIFS. And in [5], an axiomatic model to measure contradiction is given. In a similar way, this paper focuses on establishing an axiomatic model to measure \mathcal{N} -contradiction.

1.3. In the previous paper [4], Castiñeira et al. analyzed the regions of \mathbb{L} in which contradictory sets with respect to a given negation are located, with the purpose of suggesting the way to measure how contradictory an AIFS is. In [6] it was proved that, given $\chi^A = (\mu_A, \nu_A) \in \mathbb{L}^X$, and \mathcal{N} a strong IFN associated with the strong negation N, χ^A is \mathcal{N} -contradictory if and only if $N(\mu_A(x)) + \nu_A(x) \geq 1$, for all $x \in X$. Thus a region free of contradiction is determined in \mathbb{L} , as well as other region where contradictory sets remain. Being more specific, if $\chi^A(X) = \{\chi^A(x) : x \in X\}$ is the range of χ^A , the set A is \mathcal{N} -contradictory if and only if

$$\chi^A(X) \subset \{(\alpha_1, \alpha_2) \in \mathbb{L} \mid N(\alpha_1) + \alpha_2 \ge 1\}$$

Moreover, let $\mathbb{L}_{\mathcal{N}} = \{(\alpha_1, \alpha_2) \in \mathbb{L} : N(\alpha_1) + \alpha_2 \leq 1\}$, and the boundary curve $N(\alpha_1) + \alpha_2 = 1$ satisfies the following properties:

It determines an increasing function of α₁.
 It contains the point (0,0).

3) Its intersection with the line $\alpha_1 + \alpha_2 = 1$

is the point $(\alpha_N, 1 - \alpha_N)$, being α_N the equilibrium point of the negation N.

Figure 1: Regions of \mathcal{N} -contradiction and non- \mathcal{N} -contradiction

2 Measures of N-Contradiction

In [4], in order to measure the \mathcal{N} contradiction of AIFS, the following functions $C_i^{\mathcal{N}} : \mathbb{L}^X \to [0, 1], i = 1, 2, 3$, were proposed.
If $\chi = (\mu, \nu) \in \mathbb{L}^X$, then: $C_1^{\mathcal{N}}(\chi) = \operatorname{Max}(0, \inf_{x \in X} (N(\mu(x)) + \nu(x) - 1))$ $C_2^{\mathcal{N}}(\chi) = \operatorname{Max}(0, 1 - \operatorname{Sup}(g(\mu(x)) + g(1 - \nu(x)))),$

where $g: [0,1] \to [0,1]$ is an order automorphism satisfying $N(x) = g^{-1}(1-g(x))$ for all $x \in [0,1]$.

 $C_3^{\mathcal{N}}(\chi) = \frac{d(\chi(X), \mathbb{L}_{\mathcal{N}})}{d(0_L, \mathbb{L}_{\mathcal{N}})}$, where d is the Euclidean distance.

But it is necessary to determine what is understood as a measure of \mathcal{N} -contradiction. That is, which are the properties demanded to a function to accept it measures adequately the \mathcal{N} -contradiction.

Before introducing the \mathcal{N} -contradiction measures, we need a previous definition.

Definition 2.1. Let $\chi \in \mathbb{L}^X$; we say that χ is $\mathbb{L}_{\mathcal{N}}$ -normal if $\overline{\chi(X)} \cap \mathbb{L}_{\mathcal{N}} \neq \emptyset$, where $\overline{\chi(X)}$ is the closure of $\chi(X)$ in the usual topology in \mathbb{R}^2 .

Furthermore, χ is said to be \mathbb{L} -normal if $\overline{\chi(X)} \cap \{(\alpha_1, \alpha_2) \in \mathbb{L} ; \alpha_2 = 0\} \neq \emptyset.$

The set of all $\mathbb{L}_{\mathcal{N}}$ -normal AIFS will be denoted by $\mathbb{L}_{\mathcal{N}}^X$. And the set of all \mathbb{L} -normal AIFS, \mathbb{L}_0^X .

Let us observe that $\chi \in \mathbb{L}^X$ is \mathbb{L} -normal if and only if it is \mathbb{L}_N -normal for all strong IFN \mathcal{N} . That is, $\bigcap_{\mathcal{N}} \mathbb{L}_N^X = \mathbb{L}_0^X$.

Now a first proposal is given.

Definition 2.2. Let $X \neq \emptyset$ be a universe of discourse and \mathcal{N} a strong IFN; a function $\mathcal{C}_{\mathcal{N}} : \mathbb{L}^X \to [0,1]$ is a *measure of* \mathcal{N} *contradiction* on $\mathcal{IF}(X)$, or equivalently on \mathbb{L}^X , if the following is satisfied:

- (c.i) $\mathcal{C}_{\mathcal{N}}(\chi^{0_{\mathbb{L}}}) = 1$, where $\chi^{0_{\mathbb{L}}}(x) = 0_{\mathbb{L}}$ for all $x \in X$.
- (c.ii) If $\chi \in \mathbb{L}^X_{\mathcal{N}}$, then $\mathcal{C}_{\mathcal{N}}(\chi) = 0$.
- (c.iii) Anti-monotonicity: If $\chi^A, \chi^B \in \mathbb{L}^X$ verify $\chi^A(x) \leq_{\mathbb{L}} \chi^B(x)$ for all $x \in X$, then $\mathcal{C}_{\mathcal{N}}(\chi^A) \geq \mathcal{C}_{\mathcal{N}}(\chi^B)$.

Remark. If in the axiom (c.ii) we replace $\mathbb{L}_{\mathcal{N}}^X$ with \mathbb{L}_0^X , the definition is just that of contradiction measure given in [5].

The set of all measures of \mathcal{N} -contradiction on \mathbb{L}^X will be denoted by $\mathcal{NCM}(\mathbb{L}^X)$. Recall that the set of all contradiction measures is denoted by $\mathcal{CM}(\mathbb{L}^X)$.

Remark. Obviously, $\mathcal{NCM}(\mathbb{L}^X) \subset \mathcal{CM}(\mathbb{L}^X)$.

In [4] it was proved that the functions $C_1^{\mathcal{N}}$, $C_2^{\mathcal{N}}$, $C_3^{\mathcal{N}}$ defined above satisfy the axioms (c.i) and (c.iii), moreover it is not difficult to show that they also satisfy axiom (c.ii); hence $C_1^{\mathcal{N}}$, $C_2^{\mathcal{N}}$, $C_3^{\mathcal{N}}$ are measures of \mathcal{N} -contradiction.

Furthermore, those \mathcal{N} -contradiction measures seem to vary their values in a gradual way; nevertheless the previous definition does not guarantee any kind of continuity in the measures, as the following example shows: The function $\mathcal{C}_{\mathcal{N}} : \mathbb{L}^{\mathcal{X}} \to [0, 1]$, given by

$$\mathcal{C}_{\mathcal{N}}(\chi) = \begin{cases} 1, & \text{if } \chi = \chi^{0_{\mathbb{L}}} \\ 0, & \text{otherwise} \end{cases}$$

is a measure of \mathcal{N} -contradiction, that changes sharply in $\chi^{0_{\mathbb{L}}}$.

So, if we want to modelize the continuity in the \mathcal{N} -contradiction measures, we need to impose some additional conditions. The following two sections are devoted to this subject.

3 Completely Semi-continuous \mathcal{N} -Contradiction measures

In order to demand a measure changes smoothly, we propose a new definition.

Definition 3.1. Let $X \neq \emptyset$ and \mathcal{N} a strong IFN; an \mathcal{N} -contradiction measure $\mathcal{C}_{\mathcal{N}} : \mathbb{L}^X \rightarrow [0,1]$ is to be said *completely semi-continuous from below* on \mathbb{L}^X if the following axiom is satisfied:

(c.iv) For all $\{\chi^i\}_{i\in\mathcal{I}} \subset \mathbb{L}^X$, where \mathcal{I} is an arbitrary set of indexes,

$$\inf_{i \in \mathcal{I}} \mathcal{C}_{\mathcal{N}}(\chi^{i}) = \mathcal{C}_{\mathcal{N}}\left(\sup_{i \in \mathcal{I}} \chi^{i}\right)$$

holds, where $\sup_{i \in \mathcal{I}} \chi^i \in \mathbb{L}^X$ is defined as

$$\left(\sup_{i\in\mathcal{I}}\chi^{i}\right)(x) = \sup_{i\in\mathcal{I}}\chi^{i}(x), \text{ for all } x\in X.$$

It is easy to prove that (c.iv) implies (c.iii).

The set of all completely semi-continuous from below \mathcal{N} -contradiction measures on \mathbb{L}^X will be denoted by $\mathcal{NCM}_{csc}(\mathbb{L}^X)$.

Remark. $\mathcal{NCM}_{csc}(\mathbb{L}^X) \subset \mathcal{CM}_{csc}(\mathbb{L}^X)$, where $\mathcal{CM}_{csc}(\mathbb{L}^X)$ is the set of contradiction measures satisfying axiom (c.iv).

Proposition 3.2. Let \mathcal{N} be a strong IFN, N the strong fuzzy negation associated with \mathcal{N} and α_N the equilibrium point of N. For each $p \in (0, \alpha_N]$, let $\mathcal{C}_{\mathcal{N}, p} : \mathbb{L}^X \to [0, 1]$ be the function defined for each $\chi = (\mu, \nu) \in \mathbb{L}^X$ by:

$$\mathcal{C}_{\mathcal{N},p}(\chi) = \begin{cases} 0, & \text{if } \sup_{x \in X} \mu(x) > p \\ & \prod_{x \in X} \inf_{x \in X} \nu(x) - 1 + N(p) \\ & \text{Max} \left(0, \frac{\sum_{x \in X} \nu(x) - 1 + N(p)}{N(p)} \right), \text{ else} \end{cases}$$

Then $\mathcal{C}_{\mathcal{N},p} \in \mathcal{NCM}_{csc}(\mathbb{L}^X).$

Proof. Before confirming the axioms, let us notice that the function has a simple geometrical interpretation (see figure 2) since it can be written as

$$\mathcal{C}_{\mathcal{N},p}(\chi) = \begin{cases} 0, & \text{if} \begin{cases} \sup_{x \in X} \mu(x) > p & \text{or} \\ \inf_{x \in X} \nu(x) \le 1 - N(p) \\ \frac{\inf_{x \in X} \nu(x) - 1 + N(p)}{N(p)}, & \text{otherwise} \end{cases}$$

Figure 2: Measure $\mathcal{C}_{\mathcal{N}, p} \in \mathcal{NCM}_{csc}(\mathbb{L}^X)$.

Now, let us prove the conditions.

(c.i)
$$C_{\mathcal{N},p}(\chi^{0_L}) = \frac{\prod_{x \in X} \nu(x) - 1 + N(p)}{N(p)} = 1$$

(c.ii) Let $\chi = (\mu, \nu) \in \mathbb{L}_{\mathcal{N}}^X$, then if there exists $x \in X$ such that $\mu(x) > p$ or $\nu(x) < 1 - N(p)$ then $\mathcal{C}_{\mathcal{N},p}(\chi) = 0$ by the definition; if on the contrary, there is not such an x, then there exists $\{x_n\}_{n\in\mathbb{N}} \subset X$ such that $\lim_{n\to\infty} \chi(x_n) = (p, 1 - N(p))$, thus $\mathcal{C}_{\mathcal{N},p}(\chi) = \lim_{n\to\infty} \frac{\nu(x_n) - 1 + N(p)}{N(p)} = 0.$

(c.iv) Let $\{\chi^i\}_{i\in I}$ be a family of AIFS.

a) If $\sup_{i \in I} \chi^i = (\sup_{i \in I} \mu_i, \inf_{i \in I} \nu_i)$ is such that $\sup_{x \in X} \sup_{i \in I} \mu_i(x) > p$, by definition $\mathcal{C}_{\mathcal{N}, p}(\sup_{i \in I} \chi^i) = 0$ is satisfied, and furthermore, there exist $x \in X$ and $j \in I$ satisfying $\mu_j(x) > p$. Then $\mathcal{C}_{\mathcal{N}, p}(\chi^j) = 0$ and $\inf_{i \in I} \mathcal{C}_{\mathcal{N}, p}(\chi^i) = 0 = \mathcal{C}_{\mathcal{N}, p}(\sup_{i \in I} \chi^i).$

b) If
$$\sup_{x \in X} \sup_{i \in I} \mu_i(x) \le p$$
, then $\mathcal{C}_{\mathcal{N}, p}(\sup_{i \in I} \chi^i) =$
 $\operatorname{Max}\left(0, \frac{\inf_{x \in X} \inf_{i \in I} \nu_i(x) - 1 + N(p)}{N(p)}\right)$

Furthermore, for all $x \in X$ and $i \in I$, $\mu_i(x) \leq p$, and so,

$$\inf_{i \in I} C_{\mathcal{N}, p}(\chi^{i}) = \inf_{i \in I} \operatorname{Max}\left(0, \frac{\inf_{x \in X} \nu_{i}(x) - 1 + N(p)}{N(p)}\right)$$

$$= \operatorname{Max}\left(0, \frac{\inf_{i \in I} \inf_{x \in X} \nu_i(x) - 1 + N(p)}{N(p)}\right)$$

$$= \operatorname{Max}\left(0, \frac{\inf_{x \in X} \inf_{i \in I} \nu_i(x) - 1 + N(p)}{N(p)}\right) \quad \Box$$

From now on, many proofs will be omitted due to limits of space.

Remark. Would we change in the definition of $\mathcal{C}_{\mathcal{N},p}$ the condition $\sup_{x \in X} \mu(x) > p$ by $\sup_{x \in X} \mu(x) \ge p$?

If we want to preserve the continuity of the measure, the answer is not. In fact, if we would have

$$\mathcal{C}(\chi) = \begin{cases} 0, & \text{if } \sup_{x \in X} \mu(x) \ge p \\ & \prod_{x \in X} \inf_{x \in X} \nu(x) - 1 + N(p) \\ & \max\left(0, \frac{x \in X}{N(p)}\right), & \text{else} \end{cases}$$

taking m, with 1 - N(p) < m < 1, and the family of constant AIFS $\{\chi^n\}_{n \in \mathbb{N}}$, defined by (see figure 3)

$$\chi^n(x) = \left(p - \frac{p}{n}, m\right) \text{ for all } x \in X,$$

it holds $\sup_{n \in \mathbb{N}} \chi^n(x) = (p, m)$ and $\mathcal{C}(\sup_{n \in \mathbb{N}} \chi^n) = 0.$

Nevertheless, for all $n \in \mathbb{N}$, $\mathcal{C}(\chi^n) = \frac{m-1+N(p)}{N(p)} > 0$, and thus

$$\inf_{n \in \mathbb{N}} \mathcal{C}(\chi^n) = \frac{m - 1 + N(p)}{N(p)} \neq \mathcal{C}\left(\sup_{n \in \mathbb{N}} \chi^n\right)$$

Figure 3: Counterexample.

Remark. In the extremal case $p = \alpha_N$, the measure will be given as (see figure 4)

$$C_{\mathcal{N}}^{\wedge}(\chi) = \operatorname{Max}\left(0, \frac{\operatorname{Inf}_{x \in X} \nu(x) - 1 + \alpha_N}{\alpha_N}\right).$$

Figure 4: Measure $C^{\wedge}_{\mathcal{N}} \in \mathcal{NCM}_{csc}(\mathbb{L}^X)$.

Proposition 3.3. Let $f : [0,1] \to [0,1]$ be a continuous and strictly decreasing function such that f(1) = 0 and $\alpha + f(\alpha) < 1$ for all $\alpha \in (0,1)$. Let $(p, f(p)) \in \mathbb{L}$ satisfying f(p) + N(p) = 1. For all $\beta \in [f(p), f(0))$ let us consider the region

$$L_{\beta} = \{ (\alpha_{1}, \beta) \mid \alpha_{1} \in [0, f^{-1}(\beta)] \}$$
$$\bigcup \{ (f^{-1}(\beta), \alpha_{2}) \mid \alpha_{2} \in [\beta, 1 - f^{-1}(\beta)] \}$$

and $L_{f(0)} = \{(0, \alpha_2) \mid \alpha_2 \in [f(0), 1]\}$. Then the function $\mathcal{C}^l_{\mathcal{N}} : \mathbb{L}^X \to [0, 1]$ defined for each $\chi = (\mu, \nu) \in \mathbb{L}^X$ as (see figure 5)

$$\mathcal{C}_{\mathcal{N}}^{l}(\chi) = \begin{cases} 1, & \text{if } \sup_{x \in X} \chi(x) \in L_{f(0)} \\ \frac{\beta - f(p)}{1 - f(p)}, & \text{if } \sup_{x \in X} \chi(x) \in L_{\beta} \text{ for some } \beta \\ 0, & \text{otherwise} \end{cases}$$

satisfies that $\mathcal{C}^l_{\mathcal{N}} \in \mathcal{NCM}_{csc}(\mathbb{L}^X).$

Figure 5: Measure $\mathcal{C}^l_{\mathcal{N}} \in \mathcal{NCM}_{csc}(\mathbb{L}^X)$.

In a similar way, it is possible to define measures demanding the continuity from above. **Definition 3.4.** Let $X \neq \emptyset$ and \mathcal{N} a strong IFN; an \mathcal{N} -contradiction measure $\mathcal{C}_{\mathcal{N}} : \mathbb{L}^X \rightarrow [0,1]$ is to be said *completely semi-continuous from above* on \mathbb{L}^X if the following axiom is satisfied:

(c.v) For all
$$\{\chi^i\}_{i\in\mathcal{I}} \subset \mathbb{L}^X \setminus \mathbb{L}^X_{\mathcal{N}}$$
,
 $\sup_{i\in\mathcal{I}} \mathcal{C}_{\mathcal{N}}(\chi^i) = \mathcal{C}_{\mathcal{N}}\left(\prod_{i\in\mathcal{I}}\chi^i\right)$ holds, where
 $\inf_{i\in\mathcal{I}}\chi^i \in \mathbb{L}^X$ is defined as $\left(\prod_{i\in\mathcal{I}}\chi^i\right)(x) = \prod_{i\in\mathcal{I}}\chi^i(x)$ for all $x\in X$.

Remark. Notice that it is necessary to consider the AIFS are not $\mathbb{L}_{\mathcal{N}}$ -normal in the previous axiom. Indeed, let $X = \{x_1, x_2\}$ and the AIFS defined as follows:

$$\chi^{1}(x_{i}) = \begin{cases} 0_{\mathbb{L}}, & \text{if } i = 1\\ (\alpha_{N}, 1 - \alpha_{N}), & \text{if } i = 2 \end{cases}$$
$$\chi^{2}(x_{i}) = \begin{cases} (\alpha_{N}, 1 - \alpha_{N}), & \text{if } i = 1\\ 0_{\mathbb{L}}, & \text{if } i = 2 \end{cases}$$

Then $\operatorname{Inf}\{\chi^1, \chi^2\}(x_i) = 0_{\mathbb{L}}$, for i = 1, 2, and thus $\mathcal{C}_{\mathcal{N}}(\operatorname{Inf}\{\chi^1, \chi^2\}) = 1$, nevertheless $\mathcal{C}_{\mathcal{N}}(\chi^1) = \mathcal{C}_{\mathcal{N}}(\chi^2) = 0$ as $\chi^1, \chi^2 \in \mathbb{L}_{\mathcal{N}}^X$.

Once again, axiom (c.v) implies axiom (c.iii). The set of all completely semi-continuous \mathcal{N} -contradiction measures from above on \mathbb{L}^X will be denoted by $\mathcal{NCM}^{csc}(\mathbb{L}^X)$.

Remark. $\mathcal{NCM}^{csc}(\mathbb{L}^X) \subset \mathcal{CM}^{csc}(\mathbb{L}^X)$, where $\mathcal{CM}^{csc}(\mathbb{L}^X)$ is the set of contradiction measures satisfying axiom (c.iv).

Example 3.5. Let $C_{\mathcal{N}}^{\vee} : \mathbb{L}^X \to [0, 1]$ be a function defined for each $\chi = (\mu, \nu) \in \mathbb{L}^X$ by (see figure 6):

$$\mathcal{C}_{\mathcal{N}}^{\vee}(\chi) = \begin{cases} 0, & \text{if } \chi \in \mathbb{L}_{\mathcal{N}}^{X} \\ \sup_{x \in X} \nu(x), & \text{otherwise} \end{cases}$$

Then $\mathcal{C}^{\vee}_{\mathcal{N}} \in \mathcal{NCM}^{csc}(\mathbb{L}^X)$. Furthermore, $\mathcal{C}^{\vee}_{\mathcal{N}} \notin \mathcal{NCM}_{csc}(\mathbb{L}^X)$.

Remark. The measure $C_{\mathcal{N}}^l$ is not a completely semi-continuous \mathcal{N} -contradiction measure from above.

Indeed, let X be a universe of discourse with $Card(X) \ge 2$, and $x_1, x_2 \in X$ such that $x_1 \ne x_2$. Let us take for i = 1, 2 the AIFS

$$\chi^{i}(x) = \begin{cases} (0, f(p)), & \text{if } x = x_{i} \\ 0_{\mathbb{L}}, & \text{otherwise} \end{cases}$$

Figure 6: Measure $\mathcal{C}^{\vee}_{\mathcal{N}} \in \mathcal{NCM}^{csc}(\mathbb{L}^X)$.

Then $\left(\underset{i=1,2}{\operatorname{Inf}} \chi^{i} \right)(x) = 0_{\mathbb{L}}$ for all $x \in X$. So, $\mathcal{C}_{\mathcal{N}}^{l}(\underset{i=1,2}{\operatorname{Inf}} \chi^{i}) = \mathcal{C}_{\mathcal{N}}^{l}(\chi^{0_{\mathbb{L}}}) = 1$. But, $\mathcal{C}_{\mathcal{N}}^{l}(\chi^{1}) = \mathcal{C}_{\mathcal{N}}^{l}(\chi^{2}) = \underset{i=1,2}{\operatorname{Sup}} \mathcal{C}_{\mathcal{N}}^{l}(\chi^{i}) = 0$.

Proposition 3.6. Let $f : [0,1] \rightarrow [0,1]$ be a continuous and strictly decreasing function such that f(1) = 0 and $\alpha + f(\alpha) < 1$ for all $\alpha \in (0,1)$. Let $(p, f(p)) \in \mathbb{L}$ satisfying f(p) + N(p) = 1. For all $\beta \in [f(p), f(0)]$ let us consider the region

$$M_{\beta} = \{ (f^{-1}(\beta), \alpha_2) \mid \alpha_2 \in [0, \beta] \} \\ \bigcup \{ (\alpha_1, \beta) \mid \alpha_1 \in [f^{-1}(\beta), 1 - \beta] \}$$

and $M_{\beta} = \{(\alpha_1, \beta) \mid \alpha_1 \in [0, 1 - \beta]\}$ if $\beta \in (f(0), 1]$. The function $\mathcal{C}_{\mathcal{N}}^u : \mathbb{L}^X \to [0, 1]$ defined for each $\chi = (\mu, \nu) \in \mathbb{L}^X$ as (see fig. 7):

$$\mathcal{C}^{u}_{\mathcal{N}}(\chi) = \begin{cases} 0, & \text{if } \chi \in \mathbb{L}^{X}_{\mathcal{N}} \\ \frac{\beta - f(p)}{1 - f(p)}, & \text{if } \chi \notin \mathbb{L}^{X}_{\mathcal{N}} \& \inf_{x \in X} \chi(x) \in M_{\beta} \end{cases}$$

satisfies $\mathcal{C}^{u}_{\mathcal{N}} \in \mathcal{NCM}^{csc}(\mathbb{L}^{X})$. Furthermore, $\mathcal{C}^{u}_{\mathcal{N}} \notin \mathcal{NCM}_{csc}(\mathbb{L}^{X})$.

On the other hand, measures C_1^N , C_2^N and C_3^N defined in [4] do not satisfy the conditions demanded in this section, as we are going to show.

Proposition 3.7. If $X \neq \emptyset$ and \mathcal{N} is a strong negation, \mathcal{N} -contradiction measures on \mathbb{L}^X $\mathcal{C}_1^{\mathcal{N}}, \mathcal{C}_2^{\mathcal{N}}$ and $\mathcal{C}_3^{\mathcal{N}}$, defined at the beginning of section 2, are neither completely semicontinuous from below nor from above.

Proof. First, let us see that, for i = 1, 2, 3, $C_i^{\mathcal{N}} \notin \mathcal{NCM}_{csc}(\mathbb{L}^X)$. Let us fix β such that

Figure 7: Measure $\mathcal{C}^{u}_{\mathcal{N}} \in \mathcal{NCM}^{csc}(\mathbb{L}^{X})$.

 $0 < \beta < 1 - \alpha_N$, and let α such that $N^{-1}(1 - \beta) < \alpha < \alpha_N$. We consider the AIFS

$$\chi^{1}(x) = (0, \beta) \chi^{2}(x) = (\alpha, 1 - \alpha)$$
 $\forall x \in X$

Then $\left(\sup_{j=1,2} \chi^j\right)(x) = (\alpha, \beta)$ for all $x \in X$, and it is easy to prove that for i = 1, 2, 3,

$$0 < \inf_{j=1,2} \mathcal{C}_i(\chi^j) \neq \mathcal{C}_i(\sup_{j=1,2} \chi^j) = 0.$$

Figure 8: $\mathcal{C}_1^{\mathcal{N}}, \mathcal{C}_2^{\mathcal{N}}, \mathcal{C}_3^{\mathcal{N}}$ are not in $\mathcal{NCM}_{csc}(\mathbb{L}^X)$.

Second, let us see that, for i = 1, 2, 3, $C_i^{\mathcal{N}} \notin \mathcal{NCM}^{csc}(\mathbb{L}^X)$. Let us fix α such that $1-\alpha_N < \alpha < 1$, and β with $\alpha < 1 - \beta$. Now, we consider the AIFS

$$\chi^{1}(x) = (0, \alpha) \chi^{2}(x) = (\beta, 1 - \beta)$$
 $\forall x \in X$

Then $\left(\prod_{j=1,2} \chi^j \right)(x) = (0, 1-\beta)$ for all x, and it can be proved that for i = 1, 2, 3,

$$\sup_{j=1,2} \mathcal{C}_i(\chi^j) \neq \mathcal{C}_i(\inf_{j=1,2} \chi^j).$$

Figure 9: $\mathcal{C}_1^{\mathcal{N}}, \mathcal{C}_2^{\mathcal{N}}, \mathcal{C}_3^{\mathcal{N}}$ are not in $\mathcal{N}CM^{csc}$

So, we need to weaken the conditions, in order to accept $C_1^{\mathcal{N}}$, $C_2^{\mathcal{N}}$ and $C_3^{\mathcal{N}}$ as \mathcal{N} -contradiction measures with some kind of continuity, in such a way that the mathematical model be consistent with the intuition.

4 Semi-continuous \mathcal{N} -Contradiction measures

Let us remember that a set $S \subset \mathbb{L}^X$ is a semilattice from below if for all χ^A , $\chi^B \in S$, $\operatorname{Sup}\{\chi^A, \chi^B\} \in S$ holds; and similarly, a set $S \subset \mathbb{L}^X$ is a semilattice from above if for all $\chi^A, \chi^B \in S$, $\operatorname{Inf}\{\chi^A, \chi^B\} \in S$ holds (see, for example, [2]).

Definition 4.1. Let $X \neq \emptyset$ and \mathcal{N} a strong IFN, an \mathcal{N} -contradiction measure $\mathcal{C}_{\mathcal{N}} : \mathbb{L}^X \rightarrow [0,1]$ is to be said *semicontinuous from below* if the following axiom is satisfied:

(c.vi) For all semi-lattice from below $\{\chi^i\}_{i\in\mathcal{I}}\subset\mathbb{L}^X$, where \mathcal{I} is an arbitrary set, the following is satisfied

$$\inf_{i \in \mathcal{I}} \mathcal{C}_{\mathcal{N}}(\chi^{i}) = \mathcal{C}_{\mathcal{N}}\left(\sup_{i \in \mathcal{I}} \chi^{i}\right)$$

Notice that axiom (c.vi) implies axiom (c.iii).

The set of all semi-continuous from below \mathcal{N} contradiction measures on \mathbb{L}^X will be denoted by $\mathcal{NCM}_{sc}(\mathbb{L}^X)$.

Remark. Obviously, $\mathcal{NCM}_{csc}(\mathbb{L}^X) \subset \mathcal{NCM}_{sc}(\mathbb{L}^X)$.

Proposition 4.2. Let $X \neq \emptyset$ and \mathcal{N} and strong IFN. Given a fixed $p \in (0, +\infty)$, for all $\beta \in [0, 1]$ let us consider the following re-

gion

$$L_{\beta} = \left\{ (\alpha_1, \alpha_2) \in \mathbb{L} \mid \begin{array}{c} \alpha_1 \in [0, \beta], \\ \alpha_2 = \frac{(\alpha_1 + p)(1 - \beta)}{\beta + p} \end{array} \right\},$$

that is, L_{β} is a segment on the line joining the points (-p, 0) and $(\beta, 1 - \beta)$.

Given the function $\mathcal{C}_{\mathcal{N}}^{L} : \mathbb{L}^{X} \to [0, 1]$ defined for each $\chi = (\mu, \nu) \in \mathbb{L}^{X}$ by (see figure 10):

$$\mathcal{C}_{\mathcal{N}}^{L}(\chi) = \begin{cases} 0, \text{ if } \chi \in \mathbb{L}_{\mathcal{N}}^{X} \\ 1 - \beta, \text{ if } \chi \notin \mathbb{L}_{\mathcal{N}}^{X} \& \sup_{x \in X} \chi(x) \in L_{\beta} \end{cases}$$

we have $\mathcal{C}_{\mathcal{N}}^{L} \in \mathcal{NCM}_{sc}(\mathbb{L}^{X}) \setminus \mathcal{NCM}_{csc}(\mathbb{L}^{X}).$

Figure 10: Measure $\mathcal{C}^{L}_{\mathcal{N}} \in \mathcal{NCM}_{sc}(\mathbb{L}^{X})$.

Similarly, we have

Definition 4.3. Let $X \neq \emptyset$, an \mathcal{N} contradiction measure $\mathcal{C}_{\mathcal{N}} : \mathbb{L}^X \to [0,1]$ is
to be said *semicontinuous from above* if the
following axiom is satisfied:

(c.vii) For all semilattice from above $\{\chi^i\}_{i\in\mathcal{I}}\subset \mathbb{L}^X\setminus \mathbb{L}^X_N$, where \mathcal{I} is an arbitrary set, the following holds

$$\sup_{i \in \mathcal{I}} C_{\mathcal{N}}(\chi^i) = C_{\mathcal{N}}\left(\prod_{i \in \mathcal{I}} \chi^i\right)$$

Again, (c.vii) implies (c.iii).

The set of all semi-continuous from above \mathcal{N} contradiction measures on \mathbb{L}^X will be denoted by $\mathcal{NCM}^{sc}(\mathbb{L}^X)$.

Remark. $\mathcal{NCM}^{csc}(\mathbb{L}^X) \subset \mathcal{NCM}^{sc}(\mathbb{L}^X).$

Proposition 4.4. Consider for any $\beta \in [0, 1]$, the segment L_{β} defined in Proposition 4.2.

Let $\mathcal{C}_{\mathcal{N}}^{U} : \mathbb{L}^{X} \to [0, 1]$ be the function defined for each $\chi = (\mu, \nu) \in \mathbb{L}^{X}$ by (see figure 11):

$$\mathcal{C}_{\mathcal{N}}^{U}(\chi) = \begin{cases} 0, & \text{if } \chi \in \mathbb{L}_{\mathcal{N}}^{X} \\ 1 - \beta, & \text{if } \chi \notin \mathbb{L}_{\mathcal{N}}^{X} \& & \inf_{x \in X} \chi(x) \in L_{\beta} \end{cases}$$

Then
$$\mathcal{C}^{U}_{\mathcal{N}} \in \mathcal{NCM}^{sc}_{\mathcal{N}}(\mathbb{L}^{X}) \setminus \mathcal{NCM}^{csc}_{\mathcal{N}}(\mathbb{L}^{X}).$$

Figure 11: Measure $\mathcal{C}^U_{\mathcal{N}} \in \mathcal{NCM}^{sc}_{\mathcal{N}}(\mathbb{L}^X)$.

Now, we have the following result.

Proposition 4.5. For i = 1, 2, 3, each measure $C_i^{\mathcal{N}}$ defined at the beginning of section 2 satisfies that $C_i^{\mathcal{N}} \in \mathcal{NCM}_{sc}(\mathbb{L}^X)$, but, in general, $C_i^{\mathcal{N}} \in \mathcal{NCM}^{sc}(\mathbb{L}^X)$ do not hold.

Finally, the functions presented through this paper show the following result.

Proposition 4.6. For any strong IFN \mathcal{N} , the following inequalities hold:

$$\mathcal{NCM}_{csc}(\mathbb{L}^X) \subsetneq \mathcal{NCM}_{sc}(\mathbb{L}^X) \subsetneq \mathcal{NCM}(\mathbb{L}^X)$$
$$\mathcal{NCM}^{csc}(\mathbb{L}^X) \subsetneq \mathcal{NCM}^{sc}(\mathbb{L}^X) \subsetneq \mathcal{NCM}(\mathbb{L}^X)$$

Conclusions

Contradictory sets can result inconvenient in certain applications, for instance, in the processes of fuzzy inference. Until now, a mathematic model had been defined to measure in which degree an AIFS is contradictory. However, demanding that an object have a small contradictory degree can be very restrictive and it may result more interesting to measure that degree regarding a given negation, if that negation is the one used in a specific application. That is why, in this work, we have presented a mathematic model to measure the \mathcal{N} -contradiction of an AIFS. Moreover, we have obtained families of measures that satisfy different kinds of continuity.

References

- K.T. Atanassov (1999). Intuitionistic fuzzy sets. (*Physica-Verlag*, *Heidelberg*, *New York*).
- [2] T.S. Blyth (2005). Lattices and Ordered Algebraic Structures, Springer-Verlag, London.
- [3] H. Bustince, J. Kacprzyk, V. Mohedano (2000). Intuitionistic fuzzy generators -Application to intuitionistic fuzzy complementation. In *Fuzzy Sets and Systems*, 114, pages 485-504.
- [4] E. Castiñeira, S. Cubillo, C. Torres (2006). Searching Degrees of Self-Contradiction in Atanassov's Fuzzy Sets. In *Mathware and Soft-Computing*, volume XIII, n.3, pages 136-156.
- [5] E. Castiñeira, S. Cubillo. Measures of Self-Contradiction in Atanassov's Fuzzy Sets: An Axiomatic Model. Sent to International Journal Intelligent Systems
- [6] S. Cubillo, E. Castiñeira (2004). Contradiction in Intuitionistic Fuzzy Sets. In *Proceedings of the conference IPMU'2004*, pages 2180-2186, Perugia, Italy, 2004.
- S. Cubillo, E. Castiñeira (2005). Measuring contradiction in fuzzy logic. In *International Journal of General Systems*, 34 (1), pages 39-59, February 2005.
- [8] G. Deschrijver, C. Cornelis, E. Kerre (2002). Intuitionistic fuzzy connectives revisited. In *Proceedings of conference IPMU'2002*, pages 1839-1844. Annecy, France, 2002.
- [9] G. Deschrijver, C. Cornelis, E. Kerre. (2004). On the representation of intuitionistic fuzzy t-norms and t-conorms. In *IEEE Transactions on Fuzzy Systems*, volume 12, (1), pages 45-61.
- [10] J. A. Goguen (1967). L-Fuzzy Sets. In Journal of Mathematical Analysis and Applications, 18(1), pages 623-668.