
 341

Chapter XIV
Benchmarking in the Semantic

Web
Raúl García-Castro

Universidad Politécnica de Madrid, Spain

Asunción Gómez-Pérez
Universidad Politécnica de Madrid, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstr act

The Semantic Web technology needs to be thoroughly evaluated for providing objective results and
obtaining massive improvement in its quality; thus, the transfer of this technology from research to in-
dustry will speed up. This chapter presents software benchmarking, a process that aims to improve the
Semantic Web technology and to find the best practices. The chapter also describes a specific software
benchmarking methodology and shows how this methodology has been used to benchmark the interoper-
ability of ontology development tools, employing RDF(S) as the interchange language.

INTRODUCT ION

The Semantic Web technology has considerably
improved since the 1990’s, when the first tools
were developed; although it has mainly been
applied in research laboratories, in recent years
companies have started to be interested in this
technology and its application.

To transfer the Semantic Web technology from
the academia, its current niche, to the industrial
world it is necessary that this technology reaches

a maturity level that enables it to comply with the
quality requirements of the industry. Therefore,
the Semantic Web technology needs to be thor-
oughly evaluated both for providing objective
results and for attaining a massive improvement
in its quality.

Until recently, the Semantic Web technol-
ogy was seldom evaluated; now, however, this
technology is widely used and numerous studies
concerning its evaluation have appeared in the
last few years. So now it seems quite necessary

342

Benchmarking in the Semantic Web

that researchers increase the quality of their
evaluations and improve the technology collec-
tively by benchmarking it, employing for this a
methodological process.

Evaluating and benchmarking this technol-
ogy within the Semantic Web can be quite
costly because most of the people involved do
not know how to carry out these processes and
also because no standard nor agreed methods to
follow now exist. On the other hand, since it is
quite difficult to reuse the results and put into
practice the lessons learnt in previous activities,
it is necessary to develop new methods and tools
every time this technology has to be evaluated
or benchmarked.

Software benchmarking is presented in this
chapter as a continuous process whose aim is to
improve software products, services, and pro-
cesses by evaluating and comparing them with
those considered the best. Although software
evaluations are performed inside the benchmark-
ing activities, benchmarking provides some
benefits that cannot be obtained from evaluations,
as for example, the continuous improvement of
software, or the extraction of the best practices
used to develop the software.

Within the Knowledge Weba European
Network of Excellence a new methodology for
benchmarking Semantic Web technology has
been developed; this methodology is now being
adopted in different benchmarking studies and
applied to the different types of Semantic Web
technologies (ontology development tools, ontol-
ogy alignment tools, ontology-based annotation
tools, and reasoners). The methodology focuses on
the special interests of the industry and research
fields and on their different needs. At the end of
the chapter, we describe how we have followed
this methodology during one of the activities
performed to benchmark the interoperability of
ontology development tools, employing RDF(S)
as the interchange language.

EVALU AT ION AND
BENCHM ARK ING IN THE
L ITER ATURE

Software Evaluation

Software evaluation plays an important role in
different areas of Software Engineering, such as
Software Measurement, Software Experimenta-
tion or Software Testing. In this section, we present
a general view of these areas.

According to the ISO 14598 standard (ISO/
IEC, 1999), software evaluation is the systematic
examination of to which extent an entity is capable
of fulfilling specified requirements; this standard
considers software not just as a set of computer
programs but also as a set of procedures, docu-
mentation and data.

Software evaluation can take place all along
the software life cycle. It can be performed during
the software development process by evaluating
intermediate software products or when the de-
velopment has finished.

Although evaluations are usually carried out
inside the organisation that develops the software,
other independent groups such as users or audi-
tors can also make them. When independent third
parties evaluate software, they are usually very
effective, though their evaluations can become
very expensive (Rakitin, 1997).

The goals of evaluating software vary since
they depend on each specific case, but in general,
they can be summarised (Basili et al., 1986; Park
et al., 1996; Gediga et al., 2002) as follows:

•	 To describe the software in order to under-
stand it and establish baselines for compari-
sons.

•	 To assess the software with respect to some
quality requirements or criteria and deter-
mine the degree of quality required from
the software product and its weaknesses.

 343

Benchmarking in the Semantic Web

•	 To improve the software by identifying op-
portunities and, thus, improving its quality.
This improvement is measured by compar-
ing the software with the baselines.

•	 To compare alternative software products
or different versions of a same product.

•	 To control software quality by ensuring that
it meets the required level of quality.

•	 To predict new trends in order to take deci-
sions and establish new goals and plans for
accomplishing them.

It is understood that the methods to follow
to evaluate software vary from one author to
another and from one Software Engineering area
to another. However, from the methods proposed
in the areas of a) Software Evaluation (ISO/IEC,
1999; Basili, 1985), b) Software Experimentation
(Basili & Selby, 1991; Perry et al., 2000; Freimut
et al., 2002), c) Software Measurement (Park et
al., 1996; IEEE, 1998), and d) Software Testing
(Abran et al., 2004) we can extract a common
set of tasks that must be carried out in software
evaluations. These tasks are the following:

1.	 To establish the evaluation requirements by
setting its goals, the entities to evaluate, and
their relevant attributes.

2.	 To define the evaluation by explaining the
data to collect, the evaluation criteria to
follow, and the mechanisms to collect data
and implement these mechanisms.

3.	 To produce the evaluation plan.
4.	 To execute the evaluation and to collect

data.
5.	 To analyse the collected data.

Benchmarking in the L iterature

In the last decades, the word benchmarking has
become relevant within the business management
community. The most well-known definitions of

the term are those by Camp (1989) and Spendolini
(1992). Camp defines benchmarking as the search
for industry best practices that lead to superior
performance; on the other hand, Spendolini
has expanded Camp’s definition by adding that
benchmarking is a continuous, systematic process
for evaluating the products, services, and work
processes of organisations that are recognised
as representing best practices for the purpose
of organisational improvement. In this context,
best practices are good practices that have worked
well elsewhere, are proven and have produced
successful results (Wireman, 2003).

These definitions highlight the two main
benchmarking characteristics:

•	 Continuous improvement.
•	 Search for best practices.

The Software Engineering community does
not share a common benchmarking definition
but several. Here we present some of the most
representative:

•	 Both Kitchenham (1996) and Weiss (2002)
define benchmarking as a software evalua-
tion method suitable for system comparisons.
Whereas for Kitchenham benchmarking is
the process of running a number of stan-
dard tests using a number of alternative
tools/methods and assessing the relative
performance of the tools in those tests, for
Weiss benchmarking is a method of measur-
ing performance against a standard, or a
given set of standards.

•	 Wohlin et al. (2002) have adopted the
benchmarking definition from the business
world, that is, they consider benchmarking
as a continuous improvement process that
strives to be the best of the best through the
comparison of similar processes in different
contexts.

344

Benchmarking in the Semantic Web

Software Benchmarking

In this section, we have followed the notions
that support continuous improvement and search
for best practices within business management
benchmarking; these notions have led us to con-
sider software benchmarking as a continuous
improvement process instead of as a punctual
activity. Equally important for us are the concept
of comparing software through evaluations and
that of carrying out the benchmarking activity
through a systematic procedure.

All these concepts permit us to define software
benchmarking as a continuous process whose
aim is to improve software products, services,
and processes by systematically evaluating and
comparing them with those considered to be the
best.

This definition, however, does not specify the
type of the entities considered in benchmarking
(software products, services or processes), nor
does it determine the software life-cycle phase
when benchmarking is performed, and nor does
it explain who is responsible for benchmarking.
However, software benchmarking is usually per-
formed on software products already developed
and is executed by their developers.

The reason for benchmarking software prod-
ucts instead of just evaluating them is to gain those
benefits that cannot be obtained from software
evaluations. When we evaluate software we can
observe its weaknesses and its compliance to
quality requirements. If, on the other hand, several
software products are involved in the evaluation,
then we can have a comparative analysis of these
products and provide some recommendations. But
when we benchmark several software products,
in addition to all the benefits commented, we
obtain products that are continuously improved,
recommendations for developers on the practices
used and, from these practices, those that can be
considered the best.

Software Evaluation in
Benchmarking Activities

To evaluate software is not a straightforward
task; however, as this is an issue that has been
thoroughly examined both in theory and practice,
several authors have proposed different recom-
mendations to consider (Basili et al., 1986; Perry et
al., 2000; Freimut et al., 2002; Juristo & Moreno,
2001; Kitchenham et al., 2002).

These recommendations are also applicable
to the software evaluations made during the
benchmarking activities. However, when we have
to define this kind of software evaluations, we
must take into account some additional recom-
mendations.

And the most important recommendation is
that the evaluation of the benchmarking proce-
dure must be an improvement-oriented activ-
ity. Its intended results will not only be used for
comparing the different software products, but
for learning how to improve such products. This
requires that the evaluation yield not only some
comparative results but also that it show the
practices that produced these results.

Another recommendation is that benchmark-
ing evaluations should be as general as possible
since they will be performed by different groups
of people in different locations and on different
software.

Benchmarking is a process driven by a com-
munity; therefore, to gain credibility, effective-
ness and impact, its evaluations should also be
community-driven.

Additionally, benchmarking evaluations
should be reproducible since they are intended
to be used not only by the people participating in
the benchmarking, but by the whole community.
This requires that the evaluation be thoroughly
detailed, providing public data and procedures.

To perform the evaluations consumes sig-
nificant resources; these evaluations, on the other

 345

Benchmarking in the Semantic Web

hand, must be made by several groups of people.
Therefore, evaluations should be as economical
as possible, employing for this activity common
evaluation frameworks and, when this is not pos-
sible, limiting the scope of the evaluation.

Furthermore, as benchmarking is a continuous
process, benchmarking evaluations should have a
limited scope, leaving other objectives for the next
benchmarking iterations and incrementing pro-
gressively the complexity of the evaluations. We
must add here that a broader evaluation scope does
not entail better results but more resources.

As the next section shows, most of these
recommendations should also be adopted in the
benchmark suites. Therefore, it is advisable to use
benchmark suites in the evaluations.

Benchmark Suites

A benchmark suite is a collection of benchmarks,
being a benchmark a test or set of tests used to
compare the performance of alternative tools or
techniques (Sim et al., 2003).

A benchmark definition must include the
following:

•	 The context of the benchmark, namely,
which tools and which of their characteristics
are measured with it (efficiency, interoper-
ability, portability, usability, etc.).

•	 The requirements for running the bench-
mark, namely, the tools (hardware or soft-
ware), data, or people needed.

•	 The input variables that affect the execu-
tion of the benchmark and the values that
the variables will take.

•	 The procedure to execute the benchmark
and obtain its results.

•	 The evaluation criteria followed to interpret
these results.

A benchmark suite definition must include
the definitions of all its benchmarks. Generally,
all these benchmarks share some of their charac-

teristics, such as context or requirements. These
characteristics, therefore, must be specified at the
benchmark suite level, and not individually for
each benchmark.

Desirable Properties of a Benchmark Suite
The properties below, which are extracted from

the works of different authors (Bull et al., 1999;
Shirazi et al., 1999; Sim et al., 2003; Stefani et al.,
2003), can help both to develop new benchmark
suites and to assess the quality of the existing
ones before being used.

Although a good benchmark suite should have
most of these properties, each evaluation will
require considering some of them previously.
However, we must not forget that achieving
these properties completely is not possible since
the increment of some properties has a negative
effect on the others.

•	 Accessibility. A benchmark suite must be ac-
cessible to anyone interested. This involves
providing (a) the necessary software to ex-
ecute the benchmark suite, (b) the software
documentation, and (c) the software source
code to increase transparency. Then the
results obtained from executing the bench-
mark suite should be made public so that
anybody can execute it and then compare
his/her results with those available.

•	 Affordability. Using a benchmark suite
normally entails a number of costs regarding
human, software, and hardware resources.
Thus, the costs of using a benchmark
suite must be lower than those of defining,
implementing, and carrying out any other
experiments that fulfil the same goal. On
the other hand, the resources consumed in
the execution of a benchmark suite can be
reduced by (a) automating the execution of
the benchmark suite, (b) providing compo-
nents for data collection and analysis, and (c)
facilitating its use in different heterogeneous
systems.

346

Benchmarking in the Semantic Web

•	 Simplicity. The benchmark suite must be
simple and interpretable and should be well
documented; therefore, whoever wants to use
it must be able to understand how it works
and the results that it yields. If the benchmark
suite is not transparent enough, its results
will be questioned and may be interpreted
incorrectly. To avoid this, the elements of
the benchmark suite should have a common
structure and use, and common inputs and
outputs. Measurements, on the other hand,
should have the same meanings across the
benchmark suite.

•	 Representativity. The actions that perform
the benchmarks composing the benchmark
suite must be representative of the actions
normally performed on the system.

•	 Portability. The benchmark suite should be
executed on a wide range of environments
and should be applicable to as many systems
as possible. Besides, it should be specified at
a high enough level of abstraction to ensure
that it can be transferred to different tools
and techniques and that is not biased against
other technologies.

•	 Scalability. The benchmark suite should be
parameterised to allow scaling the bench-
marks with varying input rates. In addition,
it should work with tools or techniques of
different levels of maturity and should be
applicable to research prototypes and com-
mercial products.

•	 Robustness. The benchmark suite must
allow for unpredictable environment behav-
iours and should not be sensitive to factors
irrelevant to the study. When running the
same benchmark suite on a given system and
under the same conditions several times, the
results obtained should not vary consider-
ably.

•	 Consensus. The benchmark suite must
be developed by experts capable of apply-
ing their knowledge of the domain and of
identifying the key problems. Additionally,

it should be assessed and agreed on by the
whole community.

EVALU AT ION AND
BENCHM ARK ING W ITH IN THE
SEM ANT IC WEB

This section provides an overview of the evalua-
tion and benchmarking trends now occurring in
the Semantic Web area; it also describes to what
extent the evaluation and benchmarking activities
performed on the Semantic Web technology can
be partially or totally reused in different tools,
and the facilities provided for doing so.

To this end, we have performed a survey of the
main conferences on the Semantic Web field and
of the workshops whose main topic is Semantic
Web technology evaluation. We have examined
the proceedings of five conferences: International
Semantic Web Conference (ISWC), European
Semantic Web Conference (ESWC), Asian Se-
mantic Web Conference (ASWC), International
Conference on Knowledge Capture (K-CAP), and
International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW);
and we have studied five workshops: Workshop
on Evaluation of Ontology-based Tools (EON),
Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS), Workshop on Practical and
Scalable Semantic Systems (PSSS), International
Workshop on Ontology Matching (OM), and
Workshop on Integrating Ontologies (IntOnt). The
survey includes all the papers accepted in these
conferences and workshops from 2000 to 2006.

It is clear that the papers examined, which
were presented in the conferences and workshops
above commented, do not provide exhaustive
information, but they can provide an overview
of the current trends.

We consider that fulfilling the desirable prop-
erties of a benchmark suite and the recommenda-
tions for defining evaluations in benchmarking
activities, both defined in the previous section, is

 347

Benchmarking in the Semantic Web

an indication of evaluation reusability. And thus,
with these desirable properties and recommenda-
tions in mind we have produced a questionnaire
that should be filled in for each of the selected
papers. As an example, the questions asked for
assessing the portability of an evaluation approach
are the following:

•	 In which type of tools can the evaluation be
performed?

•	 Can the evaluation approach be transferred
to other tools?

•	 On which of the operating systems/platforms
can the evaluation be performed?

Figure 1. Evaluation-related papers in conferences

Figure 2. Evaluation-related papers in workshops

348

Benchmarking in the Semantic Web

Although software evaluations are frequent in
research papers, we focused on those papers where
the evaluation approaches followed are reusable to
a certain extent. However, we did not distinguish
between evaluations that are performed within the
benchmarking activities and evaluations that are
not, nor did we distinguish between these bench-
marking activities that use benchmark suites and
those that do not. Thus, the criteria we followed
to select the papers are:

•	 The paper describes how to evaluate several
tools, or it shows the results of the evaluation
over several tools, or both.

•	 The evaluation described in the paper in-
volves more than one tool or is intended to
be applied to more than one tool.

•	 The evaluation described in the paper is
targeted to software tools or to methods
implemented by some software.

With these criteria we selected 61 papers and
filled in the questionnaire. Of these papers, 21
deal with the description and application of an
evaluation, 7 simply describe an evaluation, and
33 show how an evaluation is made. Among the
papers selected, we included those workshop
papers that present proposals for performing a
common evaluation and the papers written on
this evaluation by the participants together with
the results of their findings.

Figure 1 and Figure 2 show the trend con-
cerning papers related to evaluation that were
published in the last few years. As for the 17
papers presented in the conferences, they have
led us to conclude, first, that the number of pa-
pers increases every year and, second, that no
evaluation-related papers were submitted to the
EKAW and K-CAP conferences; this may occur
because these conferences are more oriented to
knowledge management than to the Semantic
Web. With regard to the 44 papers presented in
workshops, we have noticed that only 7 of them
are regular papers and that the other papers are

either evaluation proposals or evaluation results.
There is a call for participation in evaluations every
year; we have observed that in these evaluations
the number of evaluation contributions varies,
whereas the number of regular papers is more or
less constant.

Our survey shows the results of the reusabil-
ity of the evaluation approaches in which it can
be observed that some of them are positive and
some, negative.

The positive results confirm that, in general,
the evaluation approaches are easy to understand
because they clearly establish both the input data,
according to a common structure, and the evalua-
tion criteria for analysing the results. In addition,
in most cases, performing the evaluations is not
expensive since the evaluation approaches provide
common evaluation frameworks and, quite often,
the whole evaluation or part of it can be automated.
In other cases, however, some software supports
the evaluation, being this software and its source
code usually accessible. Scalability and robustness
have also been taken into account throughout the
evaluations.

The negative results show that most of the
papers deal with a small group of Semantic Web
tools (ontology alignment tools, ontology devel-
opment tools and ontology repositories) and that,
in general, evaluations are not applicable to other
types of tools. Besides, the accessibility of these
evaluations is not high, the procedure to perform
the evaluation is not always clearly defined, and
the input data is not always accessible. We can
add that only in a few cases the papers provide
a web page with information on the evaluation.
The input data is not representative of the actions
performed on the system and, occasionally, the
evaluation has been developed and agreed on by a
community. Furthermore, the existing evaluation
approaches are not transferrable and the cost of
performing the evaluation is never considered;
most of the evaluations are defined as one-time
activities. Only in a few cases improvement is a
goal and, quite often, the practices that lead to the

 349

Benchmarking in the Semantic Web

results or improvement recommendations cannot
be obtained directly from these results.

As we mentioned before, each of the questions
of the questionnaire is related to one of the desir-
able properties of a benchmark suite. Therefore,
we have described the reusability of the evalua-
tion presented in each paper taking into account
the number of questions answered positively for
each of these properties. For each paper, we have
calculated the percentage of positive answers
for each dimension and the mean of all these
percentages. The resulting value ranges from 0
(not reusable at all) to 1 (totally reusable). Even
though this is not a robust metric, it gives us a
hint of the reusability of the evaluations.

Figure 3 presents the histogram of the reus-
ability metric used with the 28 papers that describe
how to perform an evaluation over several tools.
The horizontal axis represents the different ranges
of the reusability metric, whereas the vertical axis
represents the number of papers in each range. We
can clearly observe that most of the papers have
low values and are far from the ideal situation.

As a summary of this section we can conclude
that although the number of evaluation and bench-
marking activities is continuously increasing in

the Semantic Web area, such number is still not
good enough to ensure a high quality technol-
ogy, and that the activities carried out involved
just a few types of Semantic Web technologies.
Consequently, the reusability of the evaluation
approaches is not high enough, which is a hin-
drance for their use.

THE BENCHM ARK ING
METHODOLOGY FOR SEM ANT IC
WEB TECHNOLOGY

This section summarises the benchmarking meth-
odology for Semantic Web technology developed
by the authors in the Knowledge Web European
Network of Excellence. A detailed description of
this methodology can be found in (García-Castro
et al., 2004).

The methodology has been inspired by works
of quality improvement from different fields. The
main inputs for this methodology were the bench-
marking methodologies of the business manage-
ment community and their notions of continuous
improvement and best practices. We have also
taken into account the evaluation and improvement

Figure 3. Histogram of the reusability metric

350

Benchmarking in the Semantic Web

processes proposed in the Software Engineering
area such as those cited in Section 2.1.

Benchmarking Actors

The tasks of the benchmarking process are carried
out by different actors according to the kind of
roles to be performed in each task. The different
types of actors involved are the following:

•	 Benchmarking initiator. The benchmark-
ing initiator is the member (or members) of
an organisation who makes the first tasks
of the benchmarking process. His/her work
consists in preparing a proposal for carry-
ing out the benchmarking activity in the
organisation and in obtaining the manage-
ment approval to perform it.

•	 Organisation management. The organi-
sation management plays a key role in the
benchmarking process: this actor must
approve the benchmarking activity and the
changes that result from it. The organization
management must also assign resources to
the benchmarking and integrate the bench-
marking planning into the organisation
planning.

•	 Benchmarking team. Once the organisa-
tion management approves the benchmark-
ing proposal, the benchmarking team is
composed. Their members have to belong
to the organisation and are responsible for
performing most of the remaining bench-
marking processes.

•	 Benchmarking partners. The benchmark-
ing partners are the organisations participat-
ing in the benchmarking activity. All the
partners must agree on the steps to follow
during the benchmarking, and their needs
must be considered.

•	 Tool developers. The developers of the tool
must implement the necessary changes in the
tool to improve it. Some of the developers
may also be part of the benchmarking team
and, if so, care must be taken to minimise
bias.

Benchmarking Process

The benchmarking methodology for Semantic
Web technology describes a benchmarking
process together with the main phases to fol-
low when benchmarking this technology and it

Figure 4. The software benchmarking methodology

 351

Benchmarking in the Semantic Web

also provides a set of guidelines. Therefore, this
methodology has a twofold use: to help carry out
software benchmarking activities, and to know,
at a specific time, which is the actual progress of
a benchmarking activity.

The benchmarking process defined in this
methodology is composed of a benchmarking
iteration that is repeated forever. Each iteration,
as shown in Figure 4, is composed of three phases
(Plan, Experiment and Improve) and ends with a
Recalibration task.

Plan Phase

The Plan phase is composed of the different
tasks that must be performed (1) to prepare the
benchmarking proposal, (2) to obtain support
from the organisation management, (3) to find
other organisations willing to participate in
benchmarking, and 4) to plan benchmarking.
These tasks are the following:

P1.	 Goals identification. In this task, the
benchmarking initiator (the member or members
of the organisation who are aware of the need for
benchmarking) must identify the benchmarking
goals according to the goals and strategies of
the organization as well as the benefits and costs
involved in carrying out benchmarking. However,
every organization may have its own goals and
these can be quite different. For example, some
may be interested in assessing the performance
and improving the quality of the software over
its lifetime, others, in comparing their software
with the software that is considered the best,
whereas some others are interested in establishing
or creating standards by analysing the different
existing software.

P2.	 Software and metrics identification. In
this task, the benchmarking initiator should make
an analysis of the software products developed
in the organisation in order to understand and
document them, identifying the weaknesses and
functionalities that require improvement. Then,

he/she must select the products to be benchmarked,
the functionalities relevant to the study and the
evaluation criteria to follow to assess these func-
tionalities; these criteria must take into account the
organisation’s software, the benchmarking goals,
the benefits and costs identified in the previous
task as well as other factors considered critical
by the organisation, such as quality requirements,
end-user needs, etc.

P3.	 Participant identification. In this task,
the benchmarking initiator must identify and con-
tact the members concerned with the software and
the functionalities selected (managers, developers,
end users, etc.) and other relevant participants
that do not belong to the organisation (custom-
ers or consultants). The benchmarking initiator
is responsible for organizing the benchmarking
team and, quite often, he is a member of the
team. The team should be small and include those
organisation members whose work and interest
are related to the software, who have a thorough
understanding of the software and have gained
valuable experience with it. They must be aware
of the time they will spend in the benchmarking
activity and of their responsibilities, and they
should be trained in the tasks they will have to
perform.

P4.	 Proposal writing. In this task, the bench-
marking team (and the benchmarking initiator,
if he does not belong to the team) must write a
document with the benchmarking proposal. The
proposal will be used as a reference along the
benchmarking process and must include all the
relevant information on the process: the infor-
mation identified in the previous benchmarking
tasks (goals, benefits, costs, software, metrics,
members involved, and benchmarking team), a
description of the benchmarking process, and a
full detailed description of the benchmarking costs
along with the resources needed. To do this, the
benchmarking team should take into consideration
the different intended readers of the benchmarking
proposal, namely, the organisation managers, the

352

Benchmarking in the Semantic Web

organisation developers, the members of partner
organisations, and the members of the benchmark-
ing team.

P5.	 Management involvement. In this task,
the benchmarking initiator must bring the bench-
marking proposal to the organisation manage-
ment. This task is of great significance because
the management approval is required if we want to
continue with the benchmarking process. Manage-
ment support will also be requested in the future,
when the changes required for benchmarking will
have to be implemented, either in the software
or in the organisation processes that affect the
software.

P6.	 Partner selection. In this task, the
benchmarking team must collect and analyse
information on the software products that are to
be compared with the software selected, and on
the organisations that develop the products. The
benchmarking team must also select the software
employed in the benchmarking study taking into
account its relevance and use in the community
or in the industry, its public availability, how the
software has adopted the latest technological
tendencies, etc. In order to obtain better results
with benchmarking, the software selected should
be the software considered the best. Then, the
benchmarking team must contact the people from
the organisations that develop these software
products to find out whether they are interested in
becoming benchmarking partners. These partners
will also have to establish a team and to take the
proposal to their own organisation management
for approval. During this task, the benchmarking
proposal will be modified by incorporating the
partners’ opinions and requirements. This will
result in an updated proposal that, depending on
the magnitude of the modifications, should be
presented again to each organisation management
for approval.

P7.	 Planning and resource allocation. In
this task, the organisation managements and the
benchmarking teams must specify the planning
of the remainder of the process, considering the

different resources that will be devoted to it, and
finally they must reach a consensus. This planning
must be given careful consideration and should
be integrated into each organisation planning.

Experiment Phase

The Experiment phase is composed of the tasks
in which the experimentation on the software
products is performed. These tasks are the fol-
lowing:

E1.	 Experiment definition. In this task, the
benchmarking teams of each organization must
establish the experiment that will be performed
on each of the software products, and then the
members must agree on it. The experiment must
be defined according to the benchmarking goals,
the software functionalities selected, and their
corresponding criteria, as stated in the bench-
marking proposal. The experiment must also
provide objective and reliable software data not
just of its performance, but also of the reasons of
its performance; in addition, its future reusability
must be also be considered. The benchmarking
teams must determine and agree on the plan-
ning to follow during the experimentation; this
new planning must be decided according to the
benchmarking planning established previously.

E2.	 Experiment execution. As indicated in
the experimentation planning, explained in the
previous task, the benchmarking teams must
perform the established experiments on their
software products. Then the data obtained from all
the experiments must be compiled, documented,
and written in a common format to facilitate its
future analysis.

E3.	 Experiment results analysis. In this task,
the benchmarking teams must analyse the results,
detect and document any significant differences
found in them, and determine the practices lead-
ing to these different results in order to identify
whether, among the practices found, some of them
can be considered the best practices. Then, the
benchmarking teams should write a report with

 353

Benchmarking in the Semantic Web

all the findings of the experimentation, that is,
the experimentation results, the differences in
the results, the practices and the best practices
found, etc.

Improve Phase

The Improve phase comprises the tasks where the
results of the benchmarking process are produced
and then communicated to the benchmarking
partners; it also comprises the tasks where, in
several cycles, the improvement of the different
software products takes place. The tasks are the
following:

I1.	 Benchmarking report writing. In this
task, the benchmarking teams must write the
benchmarking report. This report is intended
to provide an understandable summary of the
benchmarking carried out, and it should be written
bearing in mind its different audiences: manag-
ers, benchmarking teams, developers, etc. The
benchmarking report must include a) an expla-
nation of the process followed, together with all
the relevant information of the updated version
of the benchmarking proposal; and b) the results
and conclusions of the experiments presented in
the experiment report, including the practices
found and highlighting the best practices. The
report should also contain the recommendations
provided by the benchmarking teams for im-
proving the software products according to the
experiment results, the practices found, and the
best practices implemented by the community.

I2.	 Findings communication. Here, the
benchmarking teams must communicate, in suc-
cessive meetings, the results of the benchmarking
to their organisations and, particularly, to all the
members concerned and identified when planning
benchmarking. The goals of these meetings are:

•	 To obtain feedback from the members
concerned on the benchmarking process,
the results, and the improvement recom-
mendations.

•	 To obtain support and commitment from
the organisation members for implementing
the improvement recommendations on the
software.

Any feedback received during these com-
munications must be collected, documented and
analysed. This analysis may finally involve hav-
ing to review the work done and to update the
benchmarking report.

I3.	 Improvement planning. The last three
tasks of the Improve phase (Improvement plan-
ning, Improvement and Monitor) form a cycle
that must be carried out separately in each or-
ganisation. The benchmarking teams and the
organisation managements must identify, from the
benchmarking report and the monitoring reports,
which are the changes needed to improve their
software products. Besides, they must forecast the
improvements to be achieved after performing
these changes. Both the organisation manage-
ment and the benchmarking team must provide
mechanisms for ensuring improvements in their
organisation and for measuring the software
functionalities. These last mechanisms can be
obtained from the Experiment phase. Then, the
organisation management and the benchmarking
team must establish a planning for improving the
software benchmarked, taking into account the
different resources devoted to the improvement.
This planning must be then integrated into the
organisation planning.

I4.	 Improvement. It is in this task where the
developers of each of the software product must
implement the necessary changes to achieve the
desired results. For this, they must measure the
state of the software before and after implementing
any changes, using for that purpose the measure-
ment mechanisms provided by the benchmarking
team in the previous task. Then, the developers
must compare the resulting measurements with
those that were obtained before implementing the
changes and with the improvement forecasted.

354

Benchmarking in the Semantic Web

I5.	 Monitor. In each organisation, the bench-
marking team must provide software developers
with means for monitoring the organisation’s
software. Software developers must periodically
monitor the software and write a report with the
results of this process. These results may show the
need for new improvements in software and may
also mean the beginning of a new improvement
cycle which involves having to perform again the
two tasks previously mentioned: Improvement
Planning and Improvement.

Recalibration Task

The recalibration task is performed at the end of
each iteration. Here the benchmarking teams must
recalibrate the process by applying the lessons
learnt while performing it. Thus, the organisation
(and the whole community) achieves improvement
not just in the software, but also in the benchmark-
ing process. This recalibration is needed because
both the software and the organisations evolve
and innovate over time.

Benchm ark ing the
interoper abil ity o f
ont ology de velopment t ools
us ing RD F(S) as the
interch ange l angu age

This section presents how we have applied the soft-
ware benchmarking methodology, presented in the
previous section, to one important problem of the
Semantic Web: technology interoperability.

Ontologies permit interoperability among
heterogeneous Semantic Web technologies, and
ideally, one could use all the existing technologies
seamlessly. The technologies appear in different
forms (ontology development tools, ontology
repositories, ontology alignment tools, reasoners,
etc.), but although all these tools use different
kinds of ontologies, not all of them share a com-
mon knowledge representation model.

This diversity in the representation formal-
isms of the tools causes problems when the tools
try to interoperate. This is so because the tools
require translating their ontologies from their own
knowledge models to a common model and vice
versa, and these problems occur even when we
employ standard APIs for managing ontologies
in the common knowledge model.

As we have observed in previous workshops
on Evaluation of Ontology-based Tools (EON)
(Sure & Corcho, 2003), interoperability among
different ontology tools is not straightforward.
Finding out why interoperability fails is cumber-
some and not at all trivial because any assumption
made for translating ontologies within one tool
may easily prevent the successful interoperability
with other tools.

To solve this problem, the Knowledge Web
European Network of Excellence organized a
benchmarking of interoperability of ontology de-
velopment tools using RDF(S) as the interchange
language. Its goal was to assess and improve the
interoperability of the tools.

The section that follows describes such bench-
marking activity. The methodology presented in
the previous section provides the general guide-
lines that can be adapted to this case. So we present
here how this new benchmarking was organized,
the experiments conducted on the participating
tools, and its results.

O rganising the Benchmarking

The goals of benchmarking the interoperability
of ontology development tools are related to the
benefits pursued through it, and these are:

•	 To evaluate and improve their interoper-
ability.

•	 To acquire a deep understanding of the
practices used to develop the importers and
exporters of these tools, and to extract from
these practices those that can be considered
the best practices.

 355

Benchmarking in the Semantic Web

•	 To produce recommendations on their in-
teroperability for users.

•	 To create consensual processes for evaluat-
ing their interoperability.

These goals concern different communities
that somehow are related to the ontology develop-
ment tools, namely, the research community, the
industrial community, and the tool developers.

Participation in the benchmarking was open
to any organisation irrespective of being a
Knowledge Web partner or not. To involve other
organisations in the process with the aim of hav-
ing the best-in-class tools participating, several
actions were taken:

•	 The benchmarking proposal, the document
being used as a reference along the bench-
marking, was published as a public web pageb
and included all the relevant information
about the benchmarking: motivation, goals,
benefits and costs, tools and people involved,
planning, related events, and a complete
description of the experimentation and the
benchmark suites.

•	 Research was carried out on the exist-
ing ontology development tools, both the
freely available and the commercial versions,
which could export and import to and from
RDF(S); In addition, their developers were
contacted. Any tool capable of importing
and exporting RDF could participate in

the benchmarking or will benefit from the
created benchmarks in a near future.

•	 The interoperability benchmarking was an-
nounced with a call for participation through
the main mailing lists of the Semantic Web
area and through lists specific to ontology
development tools.

Six tools took part in the benchmarking,
three of which are ontology development tools:
KAONc, Protégéd (using its RDF backend), and
WebODEe; the other three are RDF repositories:
Coresef, Jenag and Sesameh. As Table 1 shows, the
tools do not share a common knowledge model
and benchmarking was not always performed by
the tool developers.

The experimentation conducted on the tools
aimed to obtain results for interoperability im-
provement. Therefore, other quality attributes
such as performance, scalability, interoperability,
robustness, etc. were not considered. However,
an approach for benchmarking the performance
and scalability of ontology development tools
can be found in (García-Castro & Gómez-Pérez,
2005).

The experimentation was carried out taking
into account the most common ways of interchang-
ing ontologies that ontology tools provide, such
as the following:

•	 Interchanging ontologies by exporting them
from a tool into an interchange language and
then importing them into the other tool.

Table 1. Ontology tools participating in the benchmarking

Tool Knowledge model Version Developer Experimenter

Corese RDF(S) 2.1.2 INRIA INRIA

Jena RDF(S) 2.3 HP U. P. Madrid

KAON RDF(S) extension 1.2.9 U. Karlsruhe U. Karlsruhe

Sesame RDF(S) 2.0 alpha 3 Aduna U. P. Madrid

Protégé Frames 3.2 beta build 230 Stanford U. U. P. Madrid

WebODE Frames 2.0 build 109 U. P. Madrid U. P. Madrid

356

Benchmarking in the Semantic Web

•	 Using RDF(S) as the interchange language,
and serializing the ontologies into the
RDF/XML syntax. A future benchmarking
activity inside Knowledge Web will cover
the case of using OWL as the interchange
language.

The interoperability of ontology tools using an
interchange language depends on the capabilities
of the tools to import and export ontologies from/
to this language. Therefore, the experimentation
included not only the evaluation of the interoper-
ability but also of the RDF(S) import and export
functionalities.

The evaluation criteria must describe in depth
the import, export and interoperability capabili-
ties of the tools, whereas the experiments to be
performed in the benchmarking must provide
data explaining how the tools comply with these
criteria. Therefore, to obtain detailed information
about these capabilities, we need to know:

•	 The elements of the internal knowledge
model of an ontology development tool that
can be imported from RDF(S), exported to
RDF(S) and interchanged with other tool, us-
ing RDF(S) as the interchange language.

•	 The secondary effects of importing, export-
ing, and interchanging these components,
such as insertion or loss of information.

•	 The subset of elements of the internal
knowledge models that these tools may use
to interoperate correctly.

To obtain these experimentation data, we
defined three benchmark suites that evaluate
the capabilities of the tools (García-Castro et
al., 2006), which were common for all the tools.
Since the quality of the benchmark suites to be
used is essential for the results, the first step was
to agree on the definition of the suites. Then, we
decided to make the import and export experi-
ments before the interoperability one because the

results of the first experiments affected those of
the second.

A benchmark execution comprises (a) the defi-
nition of the expected ontology that results from
importing, exporting or interchanging the ontol-
ogy described in the benchmark, (b) the import,
export, or interchange of the ontology defined
in the benchmark, and (c) the comparison of the
expected ontology with the imported, exported
or interchanged ontology, checking whether there
is some addition or loss of information. The steps
to follow to execute the three benchmark suites
are similar.

The benchmark suites were intended to be
executed manually but, as they contained many
benchmarks, it was highly recommended to
execute them (or part of them) automatically. In
the cases of Corese, Jena, Sesame, and WebODE,
most of the experiment was automated. In the
other cases, it was performed manually.

The benchmarking web pagei contains the
results of the experiments and a complete and
detailed description of (a) the benchmark suites,
(b) all the files to be used in the experiments, and
(c) the templates for collecting the results.

Benchmark Suites

The benchmark suites check the correct import,
export and interchange of ontologies that model
a simple combination of ontology components
(classes, properties, instances, etc.). Because one
of the goals of benchmarking is to improve the
tools, the benchmark ontologies are kept simple
on purpose in order to isolate the causes of the
problems and to identify possible problems.

As the ontology tools that participated in
benchmarking had different internal knowledge
models, both the experimentation and the analysis
of the results were based on a common group of
ontology modelling primitives, available both in
RDF(S) and in these tools. On the other hand,
covering this common group exhaustively would

 357

Benchmarking in the Semantic Web

yield a huge number of benchmarks; so we only
considered the components most widely used for
modelling ontologies in ontology development
tools: classes, instances, properties with domain
and range, literals, and class and property hierar-
chies. The remainder of the components has not
been dealt with so far.

The RDF(S) Import Benchmark Suite
contains 82 benchmarksj, which define a simple
RDF(S) ontology serialized in a RDF/XML file,
which must be loaded into the ontology develop-
ment tool.

In order to isolate the factors that affect the
correct import of an ontology, we defined two
types of import benchmarks: one that evaluates
the import of the different combinations of com-
ponents of the RDF(S) knowledge model, and
the other type that evaluates the import of the
different variants of the RDF/XML syntax, as
stated in the RDF/XML specification.

Table 2 shows the categories of the RDF(S)
Import Benchmark Suite, the number of bench-
marks, and the components used. All the RDF(S)
files to be imported can be downloaded from a
single file; besides, templates are provided for
collecting the execution results.

 The RDF(S) Export Benchmark Suite
comprises 66 benchmarksk, which describe an
ontology that must be modelled in the tool and
saved to a RDF(S) file.

We have defined two types of benchmarks for
isolating the two factors that affect the correct
export of an ontology: one type evaluates the cor-
rect export of the combinations of components of
the ontology development tool knowledge model,
and the other evaluates the export of ontologies
using concepts and properties whose names have
characters restricted by RDF(S), such as those
characters that are forbidden when representing
RDF(S) or XML URIs.

Table 3 shows the categories of the benchmark
suite. The table contains the number of bench-
marks and the components used in each category.
Templates are also provided for collecting the
execution results.

 Since the factors that affect both the correct
interchange of an ontology (besides the correct
functioning of the importers and exporters) and
the knowledge model (used for defining the
ontologies) are the same as those that affect the
RDF(S) Export Benchmark Suite, the ontologies
described in the RDF(S) Interoperability Bench-

Table 2. Categories of the import benchmarks

Category No. Components used

Class 2 rdfs:Class

Metaclass 5 rdfs:Class, rdf:type

Subclass 5 rdfs:Class, rdfs:subClassOf

Class and property 6 rdfs:Class, rdf:Property, rdfs:Literal

Property 2 rdf:Property

Subproperty 5 rdf:Property, rdfs:subPropertyOf

Property with domain and range 24 rdfs:Class, rdf:Property, rdfs:Literal,
rdfs:domain, rdfs:range

Instance 4 rdfs:Class, rdf:type

Instance and property 14 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal

Syntax and abbreviation 15 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal

358

Benchmarking in the Semantic Web

mark Suite are identical to those of the RDF(S)
Export Benchmark Suite.

The evaluation criteria are common for the
three benchmark suites, and are defined as fol-
lows:

•	 Modelling (YES/NO). The ontology tool can
model the ontology components described
in the benchmark.

•	 Execution (OK/FAIL). The execution of
the benchmark is normally carried out
seamlessly, and the tool always produces
the expected result. However, when an
execution fails, the following information
is required:
°	 The causes of the failure.
°	 The changes performed if the tool had

been previously corrected to pass a
benchmark correctly.

•	 Information added or lost. The information
added to or lost in the ontology interchange
when executing the benchmark.

In the export and interoperability benchmark
suites, if a benchmark describes an ontology
that cannot be modelled in a certain tool, such
benchmark cannot be executed in the tool, be-

ing the Execution result N.E. (Non Executed).
However, in the import benchmark suites, even
if a tool cannot model some components of the
ontology, it should be able to import the rest of
the components correctly.

Import and Export R esults

The results obtained when importing from and
exporting to RDF(S) depend mainly on the
knowledge model of the tool that executes the
benchmark suite. The tools that natively support
the RDF(S) knowledge model (Corese, Jena and
Sesame, essentially the RDF repositories) do not
need to perform any translation in the ontologies
when importing/exporting them from/to RDF(S).
The RDF repositories import and export cor-
rectly all the combinations of components from/to
RDF(S) because these operations do not require
any translation.

In the case of tools with non-RDF knowledge
models (KAON, Protégé and WebODE, the ontol-
ogy development tools), some of their knowledge
model components can also be represented in
RDF(S), but some others cannot, and these tools
do need to translate ontologies between their

Category No. Components used

Class 2 class

Metaclass 5 class, instanceOf

Subclass 5 class, subClassOf

Class and object property 4 class, object property

Class and datatype property 2 class, datatype property, literal

Object property 14 object property

Datatype property 12 datatype property

Instance 4 class, instanceOf

Instance and object property 9 class, instanceOf, object property

Instance and datatype property 5 class, instanceOf, datatype property, literal

URI character restrictions 4 class, instanceOf, object property,
datatype property, literal

Table 3. Categories of the export benchmarks

 359

Benchmarking in the Semantic Web

knowledge models and RDF(S). Finally, we must
add that not all the combinations of components
of the RDF(S) knowledge model that have been
considered can be modelled into all the tools, as
Table 4 shows.

Next, we present an analysis of the results of im-
porting and exporting in the ontology development
tools that participated in the benchmarking.

Import Results

In general, the ontology development tools im-
port correctly from RDF(S) all or most of the
combinations of components that they model;
they seldom add or lose information. The only
exceptions are:

•	 Protégé, which presents problems, but only
when it imports classes or instances that are
instances of multiple classes.

•	 WebODE, which presents problems, but
only when it imports properties with a XML
Schema datatype as range.

When the tools import ontologies with com-
binations of components that they cannot model,
they lose the information about these components.
Nevertheless, these tools usually try to represent
such components partially using for this other
components from their knowledge models. In
most cases, the importing is performed correctly.
The only exceptions are:

•	 KAON, which causes problems when it
imports class hierarchies with cycles.

•	 Protégé, which causes problems when it
imports class and property hierarchies
with cycles and properties with multiple
domains.

•	 WebODE, which causes problems when it
imports properties with multiple domains
or ranges.

Table 4. Combinations of components modelled by the tools

Combination of components RDF repos. KAON Protégé WebODE

Classes Y Y Y Y

...instance of metaclasses Y Y Y N

Class hierarchies without cycles Y Y Y Y

...with cycles Y N N N

Datatype properties without domain or range Y Y Y N

...with multiple domains Y Y N N

...whose range is String Y Y Y Y

...whose range is a XML Schema datatype Y Y N Y

Object properties without domain or range Y Y Y N

...with multiple domains or ranges Y Y N N

...with a domain and range Y Y Y Y

Instances of a single class Y Y Y Y

...of multiple classes Y Y Y N

...related via object or datatype properties Y Y Y Y

...related via datatype properties whose
range is a XML Schema datatype

Y N N Y

360

Benchmarking in the Semantic Web

When dealing with the different variants of
the RDF/XML syntax, we can observe that the
ontology development tools

•	 Import correctly resources with the different
URI reference syntaxes.

•	 Import correctly resources with different
syntaxes (shortened and unshortened) of
empty nodes, of multiple properties, of typed
nodes, of string literals, and of blank nodes.
The only exceptions are: KAON when it
imports resources with multiple properties
in the unshortened syntax; and Protégé
when it imports resources with empty and
blank nodes in the unshortened syntax. Do
not import language identification attributes
(xml:lang) in tags.

Export Results

In general, the ontology development tools export
correctly to RDF(S) all or most of the combina-
tions of components that they model with no loss
of information. In particular:

•	 KAON causes problems only when it ex-
ports to RDF(S) datatype properties without
range and datatype properties with multiple
domains plus a XML Schema datatype as
range.

•	 Protégé causes problems only when it ex-
ports to RDF(S) classes or instances that are
instances of multiple classes and template
slots with multiple domains.

When ontology development tools export
components present in their knowledge model that
cannot be represented in RDF(S), such as their own
datatypes, they usually insert new information in
the ontology, but they also lose some.

When dealing with concepts and properties
whose names do not fulfil URI character restric-
tions, each ontology development tool behaves
differently:

•	 When names do not start with a letter or
"_", some tools leave the name unchanged,
whereas others replace the first character
with "_".

•	 Spaces in names are replaced by "-" or "_",
depending on the tool.

•	 URI reserved characters and XML delimiter
characters are left unchanged, replaced by
"_", or encoded, depending on the tool.

Interoperability R esults

The RDF repositories (Corese, Jena and Sesame)
interoperate correctly between themselves, be-
cause they always import and export from/to
RDF(S) correctly. This produces that the interop-
erability between the ontology development tools
and the RDF repositories depends only on the
capabilities of the former to import and export
from/to RDF(S); therefore, the results of this
interoperability are identical to those presented
in the previous section.

The import and export results presented in
previous sections indicate that some problems
arise in the process of importing and exporting
ontologies, whereas the interoperability results,
on the other hand, show more problems.

As a general comment we can say that interop-
erability between the tools depends on

a.	 the correct functioning of their RDF(S)
importers and exporters and

b.	 the way chosen for serializing the exported
ontologies in the RDF/XML syntax.

Furthermore, we have observed that the prob-
lems affecting any of these factors also affect the
results of not just one but several benchmarks.
This means that, in some cases, to correct a single
import or export problem, or to change the way
of serializing ontologies can produce significant
interoperability improvements.

Below we list the components that can be inter-
changed between the tools. These components are

 361

Benchmarking in the Semantic Web

summarized in Table 5; each column of the table
shows whether the combination of components
can be interchanged between a group of toolsl. The
“-” character means that the component cannot
be modelled in some of the tools and, therefore,
cannot be interchanged between them.

Interoperability Using the Same Tool

Ontology development tools seem to pose no
problems when the source and the destination of
an ontology interchange are the same tool. The
only exception is Protégé when it interchanges
classes that are instances of multiple metaclasses
and instances of multiple classes; this is so be-
cause Protégé does not import resources that are
instances of multiple metaclasses.

Interoperability between Each Pair of
Tools

The interoperability between different tools varies
depending on the tools. As the detailed interoper-
ability results show, in some cases, the tools are
able to interchange certain components from one
tool to another, but not the other way round.

When KAON interoperates with Protégé, they
can interchange correctly some of the common
components that these tools are able to model.
However, with components such as classes that
are instances of a single metaclass or of multiple
metaclasses, datatype properties without domain
or range, datatype properties whose range is
String, instances of multiple classes, and instances
related through datatype properties, we have
encountered some problems.

When KAON interoperates with WebODE,
they can interchange correctly most of the com-

Table 5. Components interchanged between the tools

Combination of components K-K P-P W-W K-P K-W P-W K-P-W

Classes Y Y Y Y Y Y Y

...instance of a single metaclass Y Y - N - - -

...instance of a multiple metaclasses Y N - N - - -

Class hierarchies without cycles Y Y Y Y Y Y Y

Datatype properties without domain or range Y Y - N - - -

...with multiple domains Y - - - - - -

...whose range is String Y Y Y N N Y N

...whose range is a XML Schema datatype Y - Y - Y - -

Object properties without domain or range Y Y - Y - - -

...with multiple domains or ranges Y - - - - - -

...with a domain and range Y Y Y Y Y Y Y

Instances of a single class Y Y Y Y Y Y Y

...of multiple classes Y N - N - - -

...related via object properties Y Y Y Y Y Y Y

...related via datatype properties Y Y Y N Y Y N

...related via datatype properties whose range is a XML
Schema datatype

- - Y - - - -

362

Benchmarking in the Semantic Web

mon components that these tools can model, but
when they interchange datatype properties with
domain and whose range is String, the results are
not the same.

When Protégé interoperates with WebODE,
they can interchange correctly all the common
components that these tools can model.

Interoperability between All the Tools

Interoperability between KAON, Protégé and
WebODE can be achieved by most of the com-
mon components that these tools can model. The
only components that these tools cannot use are
datatype properties with domain and whose range
is String, and instances related through datatype
properties.

Therefore, interoperability was achieved
among the tools that participated in the bench-
marking by using classes, class hierarchies without
cycles, object properties with domain and with
range, instances of a single class, and instances
related through object properties.

Interoperability Regarding URI
Character Restrictions

Interoperability is low when tools interchange
ontologies containing URI character restrictions
in class and property names. This is so because
tools usually encode some or all the characters
that do not comply with these restrictions, which
provokes changes in class and property names.

R ecommendations

Recommendations for Ontology
Engineers

This section offers recommendations for ontol-
ogy engineers which use more than one ontology
tool to build ontologies. Depending on the tools

used, the level of interoperability may be higher
or lower, as can be seen in Section 5.4.

If the ontology is being developed bearing in
mind interoperability, ontology engineers should
be aware of the components that can be represented
in the ontology development tools and in RDF(S).
And they should try to use the common knowledge
components that these tools have so as to avoid
the knowledge losses commented above.

Ontology engineers should also be aware of
the semantic equivalences and differences be-
tween the knowledge models of the tools and the
interchange language. For example, in Protégé,
multiple domains in template slots are considered
the union of all the domains, whereas in RDF(S)
multiple domains in properties are considered the
intersection of all the domains; in WebODE, on
the other hand, instance attributes are local to a
single concept, whereas in RDF(S) properties are
global and can be used in any class.

It is not recommended to name resources using
spaces or any character that is restricted in the
RDF(S), URI, or XML specifications.

When the RDF repositories interoperate,
even though these repositories export and import
correctly to RDF(S), ontology engineers should
consider the limitations that other tools have when
they export their ontologies to RDF(S).

Recommendations for Tool Developers

This section includes general recommendations
for improving the interoperability of the tools
while developing them. In (García-Castro et al.,
2006), we offer full detailed recommendations
regarding the results and practices gathered to
improve each of the participant tools. Although it is
not compulsory to follow these recommendations,
they help correct interoperability problems as we
could observe when we analysed the results.

The interoperability between ontology tools
(using RDF(S) as the interchange language) de-
pends on how the importers and exporters of these
tools work; on the other hand, how these importers

 363

Benchmarking in the Semantic Web

and exporters work depends on the development
decisions made by the tool developers, and these
are different people with different needs. There-
fore, to provide general recommendations for
developers is not straightforward, though some
comments can be extracted from the analysis of
the benchmarking results.

In some occasions, a development decision
will produce interoperability improvement with
some tools and interoperability loss with others.
For example, when exporting classes that are
instances of a metaclass, some tools require that
the class be defined as instance of rdfs:Class,
whereas other tools require the opposite.

Tool developers, therefore, should analyze
the collateral consequences of the development
decisions. Thus, if a datatype is imported as a
class in the ontology, then the literal values of this
datatype should be imported as instances in the
ontology, which would complicate the manage-
ment of these values.

They also should be aware of the semantic
equivalences and differences between the knowl-
edge models of their tool and the interchange lan-
guage; on the other hand, the tools should notify
the user when the semantics is changed.

The first requirement for achieving interop-
erability is that the importers and exporters of
the tools be robust and work correctly when
dealing with unexpected inputs. Although this
is an obvious comment, the results show that
this requirement is not achieved by the tools and
that some tools even crash when importing some
combinations of components.

Above all, tools should deal correctly with the
combinations of components that are present in
the interchange language but cannot be modelled
in them. For example, although cycles in class and
property hierarchies cannot be modelled in some
ontology development tools, these tools should be
able to import these hierarchies by eliminating
the cycles.

If developers want to export components that
are commonly used by ontology development

tools, the components should be completely
defined in the file. This means that metaclasses
and classes in class hierarchies should be defined
as instances of rdfs:Class, properties should be
defined as instances of rdf:Property, etc.

Exporting complete definitions of other com-
ponents can cause problems if these are imported
by other tools. And not every tool deals with
datatypes defined as instances of rdfs:Datatype
in the file, or with rdf:datatype attributes in
properties.

If the document does not define a default
namespace, every exported resource should have
a namespace.

CONCLUS ION

This chapter states the need to evaluate and
benchmark the Semantic Web technology and
provides some references that can be helpful in
these activities. It also presents the authors’ ap-
proach to software benchmarking and compares it
with other existing evaluation and benchmarking
approaches.

We have tried to explain how the benchmark-
ing methodology can help assess and improve
software, whereas the use of benchmark suites
is advisable when performing evaluations in
benchmarking.

One of the strong points we make on bench-
marking is its community-driven approach.
Benchmarking should be performed by the experts
of the community since the benefits obtained after
performing it affect the whole community.

Benchmarking does not imply comparing the
results of the tools but comparing the practices that
lead to these results. Therefore, experimentation
should be designed to obtain these practices as
well as the results.

However, as we have seen, benchmarking is
not the solution to every case. In a preliminary
step, developers would have to asses whether
benchmarking is the correct approach; as bench-

364

Benchmarking in the Semantic Web

marking is useful when the goals are to improve
the software and to extract the practices performed
by others.

Benchmarking is an activity that takes long
time to perform because it requires tasks that are
not immediate: announcements, agreements, etc.
Therefore, benchmarking activities should start
early in time, and the benchmarking planning
should consider a realistic duration of the bench-
marking and the resources needed for carrying
them out.

We have also shown how we have applied
the benchmarking methodology to a concrete
case in the Semantic Web area: interoperability
of ontology development tools using RDF(S) as
interchange language.

Providing benchmark suites in the benchmark-
ing allows evaluating other tools with RDF(S)
import and export capabilities without their having
to participate in the benchmarking; this can be
useful both while the tools are being developed
and afterwards, when their development has
finished. In addition, the benchmarking results
can be used by ontology development tool us-
ers that may find problems when interchanging
ontologies or may want to foresee the results of
a future interchange.

Although it is not required that the tool de-
velopers participate in the benchmarking and
perform the experiments over their tool, their
involvement facilitates the execution and analysis
of the experimentation results to a large extent.
In all the cases where tool developers carried out
the experimentation over their own tools, a great
improvement occurred before the Improve phase
of the methodology because developers were able
to detect problems and correct their tools while
executing the benchmark suites.

We have observed that the manual execu-
tion of the experiments and the analysis of the
results cause the benchmark suite to be costly.
Consequently, tool developers often automate the
execution of the benchmark suites, but not always.
Another drawback of the manual execution of

experiments is that the results obtained depend
on the people performing these experiments, on
their expertise with the tools, and on their ability
to extract the practices performed.

FUTURE RESE ARCH DIRECT IONS

As shown in Section 3, current evaluation and
benchmarking activities over the Semantic Web
technology are scarce and a hindrance to the full
development and maturity of this technology.
The Semantic Web needs to produce methods
and tools for evaluating the technology at great
scale and in an easy and economical way. This
requires defining technology evaluations focusing
on their reusability.

In the last few years, evaluation and bench-
marking efforts have mainly focused on some
types of technologies and on some of their metrics,
namely, the interoperability of ontology develop-
ment tools, the precision and recall of ontology
alignment tools, and the efficiency and scalability
of ontology repositories. But now we think that
new efforts are required, first, to involve other
Semantic Web technologies (ontology learning
tools, ontology annotation tools, ontology popula-
tion tools, etc.) and, second, to broaden the scope
of these evaluations by considering a wider range
of evaluation metrics for the technology (latency,
robustness, security, usability, etc.).

The role of the research community when
defining and performing benchmarking activi-
ties is crucial. Community-driven benchmark-
ing connects experts and allows obtaining high
quality results and increasing the credibility of
the benchmarking and its results.

However, future research must focus on
performing evaluations centred on the user of
the Semantic Web technology. And it would be
advisable to consider audiences from beyond the
research community itself as recipients of the
evaluation results.

 365

Benchmarking in the Semantic Web

RE FERENCES

Abran, A., Moore, J. W., Bourque, P., & Dupuis,
R. (Ed.). (2004). SWEBOK: Guide to the software
engineering body of knowledge. IEEE Press.

Basili, V. R., & Selby, R. W. (1991). Paradigms for
experimentation and empirical studies in software
engineering. Reliability Engineering and System
Safety, 32, 171-191.

Basili, V. R., Selby, R. W., & Hutchens, D. H.
(1986). Experimentation in software engineering.
IEEE Transactions on Software Engineering,
12(7), 733-743.

Basili, V. R. (1985, September). Quantitative eval-
uation of software methodology. In 1st Pan-Pacific
Computer Conference, Melbourne, Australia.

Bull, J. M., Smith, L. A., Westhead, M. D., Henty,
D. S., & Davey, R. A. (1999). A methodology
for benchmarking Java grande applications. In
the ACM 1999 conference on Java Grande (pp.
81-88).

Camp, R. (1989). Benchmarking: The search for
industry best practices that lead to superior per-
formance. Milwaukee, ASQC Quality Press.

Freimut, B., Punter, T., Biffl, S., & Ciolkowski,
M. (2002). State-of-the art in empirical studies.
Technical Report ViSEK/007/E, Visek.

García-Castro, R., & Gómez-Pérez, A. (2005,
November). Guidelines for benchmarking the
performance of ontology management APIs. In
Y. Gil, E. Motta, R. Benjamins, & M. Musen
(Ed.), 4th International Semantic Web Conference
(ISWC2005), 3729 in LNCS, 277-292. Galway,
Ireland: Springer-Verlag.

García-Castro, R., Maynard, D., Wache, H.,
Foxvog, D., & González-Cabero, R. (2004). D2.1.4
Specification of a methodology, general criteria
and benchmark suites for benchmarking ontology
tools. Technical report, Knowledge Web.

García-Castro, R., Sure, Y., Zondler, M., Corby,
O., Prieto-González, J., Paslaru Bontas, E., Nixon,
L., & Mochol, M. (2006). D1.2.2.1.1 Benchmark-
ing the interoperability of ontology development
tools using RDF(S) as interchange language.
Technical report, Knowledge Web.

Gediga, G., Hamborg, K., & Duntsch, I. (2002).
Evaluation of software systems. In Encyclope-
dia of Computer Science and Technology, 44,
166-192.

IEEE. (1998) IEEE Std 1061-1998 IEEE Standard
for a software quality metrics methodology.

ISO/IEC (1999) ISO/IEC 14598-1: Software prod-
uct evaluation - Part 1: General overview.

Juristo, N., & Moreno, A. (2001). Basics of
software engineering experimentation. Kluwer
Academic Publishers.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L.
M., Jones P. W., Hoaglin, D. C., El-Emam, K.,
& Rosenberg, J. (2002). Preliminary guidelines
for empirical research in Software Engineering.
IEEE Transactions on Software Engineering
28(8), 721-734.

Kitchenham, B. (1996). DESMET: A method for
evaluating Software Engineering methods and
tools. Technical Report TR96-09, Department
of Computer Science, University of Keele, Staf-
fordshire, UK.

Park, R. E., Goethert, W. B., & Florac, W. A.
(1996). Goal-driven software measurement - a
guidebook. Technical Report CMU/SEI-96-HB-
002, Software Engineering Institute.

Perry, D. E., Porter, A. A., & Votta L. G. (2000).
Empirical studies of Software Engineering: a
roadmap. In A. Finkelstein (Ed.), The Future of
Software Engineering, 345-355. ACM Press.

Rakitin, S. R. (1997). Software Verification
and Validation, a practitioner’s guide. Artech
House.

366

Benchmarking in the Semantic Web

Shirazi, B., Welch, L. R., Ravindran, B., Cav-
anaugh, C., Yanamula, B., Brucks, R., & Huh,
E. (1999). Dynbench: A dynamic benchmark
suite for distributed real-time systems. In the 11th
IPPS/SPDP’99 Workshops,1335-1349. Springer-
Verlag.

Sim, S., Easterbrook, S., & Holt, R. (2003). Using
benchmarking to advance research: A challenge
to software engineering. In the 25th Interna-
tional Conference on Software Engineering
(ICSE’03),74-83. Portland, OR.

Spendolini, M. J. (1992). The benchmarking book.
New York, NY: AMACOM.

Stefani, F., Macii, D., Moschitta, A., & Petri, D.
(2003, June). FFT benchmarking for digital signal
processing technologies. In the 17th IMEKO World
Congress. Dubrovnik, Croatia.

Sure, Y., & Corcho, O. (Ed.) (2003). Proceedings
of the 2nd International Workshop on Evalua-
tion of Ontology-based Tools (EON2003), 87 of
CEUR-WS. Florida, USA.

Weiss, A. R. (2002). Dhrystone benchmark:
History, analysis, scores and recommendations.
White paper, EEMBC Certification Laboratories,
LLC.

Wireman, T. (2003). Benchmarking best practices
in maintenance management. Industrial Press.

Wohlin, C., Aurum, A., Petersson, H., Shull, F.,
& Ciolkowski, M. (2002, June). Software inspec-
tion benchmarking - a qualitative and quantitative
comparative opportunity. In the 8th International
Software Metrics Symposium, 118-130.

ADD IT ION AL RE ADING

Ahmed, P., & Rafiq, M. (1998). Integrated
benchmarking: a holistic examination of select
techniques for benchmarking analysis. Bench-

marking for Quality Management and Technology
5, 225-242.

Basili, V. R., Caldiera, G., & Rombach, D. H.
(1994). The Goal Question Metric approach.
Encyclopedia of Software Engineering, 528-532.
Wiley.

Basili, V. R. (1993). The experimental paradigm
in Software Engineering: Critical assessment and
future directions. In the International Workshop
on Experimental Software Engineering Issues,
3-12. Springer-Verlag.

Beitz, A., & Wieczorek, I. (2000). Applying
benchmarking to learn from best practices.
Product Focused Software Process Improve-
ment, Second International Conference (PROFES
2000), 59-72.

Brickley, D., Guha, R. V. (Ed.) (2004). RDF Vocab-
ulary Description Language 1.0: RDF Schema.
W3C Recommendation 10 February 2004.

Brown, A., & Wallnau, K. (1996). A framework
for evaluating software technology. IEEE Soft-
ware, 13, 39-49.

Corcho, O. (2005). A layered declarative ap-
proach to ontology translation with knowledge
preservation. Volume 116 of Frontiers in Artificial
Intelligence and its Applications. IOS Press.

Dongarra, J., Martin, J. L., & Worlton, J. (1987).
Computer benchmarking: paths and pitfalls. IEEE
Spectrum, 24(7), 38-43.

Duineveld, A. J., Stoter, R., Weiden, M. R.,
Kenepa, B., & Benjamins V. R. (1999). Won-
dertools? A comparative study of ontological
engineering tools. In the 12th International Work-
shop on Knowledge Acquisition, Modeling and
Management (KAW’99), Banff, Canada: Kluwer
Academic Publishers.

Dujmovic, J. J., (1998). Evaluation and design of
benchmark suites. Chapter 12 in State-of-the-art

 367

Benchmarking in the Semantic Web

in performance modeling and simulation: theory,
techniques and tutorials,287-323. Gordon and
Breach Publishers.

Feitelson, D. G. (2005). Experimental computer
science:The Need for a Cultural Change.

Fenton, N. (1991). Software metrics - a rigorous
approach. Chapman & Hall.

Fenton, N., & Neil, M. (2000). Software metrics:
Roadmap. In the Conference on the future of
Software Engineering, 357-370. ACM Press.

Fernandez, P., McCarthy, I., & Rakotobe-Joel, T.
(2001). An evolutionary approach to benchmark-
ing. Benchmarking: An International Journal,
8, 281-305.

García-Castro, R. (2006). Benchmarking como
herramienta de transferencia tecnológica Invited
talk in the 3er Encuentro Internacional de Inves-
tigadores en Informática. Popayán, Colombia.

García-Castro, R. (2006). Keynote: Towards the
improvement of the Semantic Web technology.
In the Second International Workshop on Scal-
able Semantic Web Knowledge Based Systems
(SSWS2006).

García-Castro, R., & Gómez-Pérez, A. (2006).
Benchmark suites for improving the RDF(S)
importers and exporters of ontology development
tools. In the 3rd European Semantic Web Confer-
ence (ESWC2006), 155-169. LNCS-4011.

García-Castro, R., Gómez-Pérez, A. (2006).
Interoperability of Protégé using RDF(S) as
interchange language. In the 9th International
Protégé Conference.

García-Castro, R. (2006) Keynote: Tecnologías
de la Web Semántica: cómo funcionan y cómo
interoperan. In the 4th Seminario Internacional
Tecnologías Internet. Popayán, Colombia.

García-Castro, R., & Gómez-Pérez, A. (2005). A
method for performing an exhaustive evaluation
of RDF(S) importers. In the Workshop on Scal-

able Semantic Web Knowledge Based Systems
(SSWS2005).

García-Castro, R. (2005). D2.1.5 prototypes
of tools and benchmark suites for benchmark-
ing ontology building tools. Technical report,
Knowledge Web.

Gee, D., Jones, K., Kreitz, D., Nevell, S., O’Connor,
B., & Ness, B. V. (2001). Using performance infor-
mation to drive improvement. Performance-Based
Management Special Interest Group, 6.

Goodman, P. (1993). Practical implementation of
software metrics. McGraw Hill.

Grady, R., & Caswell, D. (1987). Software met-
rics: Establishing a company-wide program.
Prentice-Hall.

Jones, C. (1995, October). Software benchmark-
ing. IEEE Computer, 102-103.

Kitchenham, B., Linkman, S., & Law, D. (1994).
Critical review of quantitative assessment. Soft-
ware Engineering Journal, 9, 43-53.

Kitchenham, B., Pfleeger, S., & Fenton, N. (1995).
Towards a framework for software measurement
validation. IEEE Transactions on Software En-
gineering, 21, 929-944.

Kraft, J. (1997). The Department of the Navy
benchmarking handbook: a systems view. Depart-
ment of the Navy.

Lankford, W. (2000). Benchmarking: understand-
ing the basics. Coastal Business Journal.

Lukowicz, P., Tichy, W. F., Prechelt, L., & Heinz
E.A. (1995). Experimental evaluation in compu-
ter science: A quantitative study. The Journal of
Systems and Software, 28(1),1-18.

Manola, F., & Miller, E. (2004, February 10). RDF
Primer. W3C Recommendation.

OntoWeb (2002). D1.3: A survey on ontology
tools. Technical report, IST OntoWeb Thematic
Network.

368

Benchmarking in the Semantic Web

Pfleeger, S. L. (1999). Understanding and improv-
ing technology transfer in software engineering.
Journal of Systems and Software 47,111-124.

Sim, S. (2003). A theory of benchmarking with
applications to software reverse engineering.
PhD thesis. University of Toronto.

Sole, T., & Bist, G. (1995). Benchmarking in
technical information. IEEE Transactions on
Professional Communication 38, 77-82.

Tichy, W. (1998). Should computer scientists
experiment more? Computer 31, 32-40.

Wache, H., Serafini, L., & García-Castro, R.
(2004). D2.1.1 survey of scalability techniques
for reasoning with ontologies. Technical report,
KnowledgeWeb.

Wireman, T. (2003). Benchmarking best practices
in maintenance management. Industrial Press.

Endnotes

a	 http://knowledgeweb.semanticweb.org/
b	 http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
c	 http://kaon.semanticweb.org/
d	 http://protege.stanford.edu/
e	 http://webode.dia.fi.upm.es/
f	 http://www-sop.inria.fr/acacia/soft/corese/
g	 http://jena.sourceforge.net/
h	 http://www.openrdf.org/
i	 http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
j	 http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
	 rdfs_import_benchmark_suite.html
k	 http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
	 rdfs_export_benchmark_suite.html
l	 The names of the tools have been shortened

in the heading of the table: KAON=K,
Protégé=P and WebODE=W.

 369

Benchmarking in the Semantic Web

Append ix: QUEST IONS FOR DISCUSS ION

Beginner:

1.	 Which are the main characteristics of benchmarking?
2.	 Which is the goal of the Recalibration task in the benchmarking methodology?
3.	 Which are the factors that influence the correct interchange of an ontology between two Semantic

Web tools?
4.	 When exporting one ontology from an ontology development tool to RDF(S) having interoper-

ability in mind, is it advisable to export the complete definition of all its components?

Intermediate:

1.	 Which are the differences between evaluation and benchmarking?
2.	 Are the users of the software involved in the benchmarking?
3.	 Is management support needed in the Improve phase of the methodology?
4.	 Which RDF(S) components can be represented in KAON, Protégé and WebODE?

Advanced:

1.	 Which resources are needed for performing a benchmarking activity?
2.	 Why are there three different evaluation criteria to define the results of the RDF(S) Import, Export

and Interoperability benchmark suites?
3.	 Why is it not enough to have a single ontology representation language to achieve interoperability

between the Semantic Web technologies?

Practical Exercises:

1.	 Select one conference paper that presents some evaluation or benchmarking approach and then
evaluate its reusability according to the desirable properties of a benchmark suite and the recom-
mendations given for software evaluation in benchmarking activities.

2.	 Create a mid-size ontology using one ontology development tool. Can you anticipate the conse-
quences of exporting that ontology to RDF(S)? And of importing it into another ontology develop-
ment tool?

3.	 Then, export the ontology to RDF(S). Was your prediction correct? Has it had information addition
or loss?

4.	 Finally, import the exported ontology into the other ontology development tool. Was your predic-
tion correct? Has it had information addition or loss?

370

Benchmarking in the Semantic Web

ANSWERS TO THE QUEST IONS FOR DISCUSS ION

Beginner:

1.	 The main characteristics of benchmarking are continuous improvement and the search for best
practices.

2.	 The goal of the Recalibration task is to improve the benchmarking process by recalibrating it and
applying the lessons learnt while performing it.

3.	 The factors that influence the correct interchange of an ontology between two tools are the combi-
nations of components of the knowledge model of the ontology development tool and the naming
of the components present in the ontology.

4.	 It is advisable to export the complete definition of all its components only for components com-
monly used by ontology development tools.

Intermediate:

1.	 Benchmarking is a continuous process, whereas an evaluation is a punctual activity. In addition,
benchmarking involves evaluating software but its goals are to obtain a continuous improvement
on the software and the practices used when developing the tools.

2.	 Yes, the users of the software are identified in the Participant identification task and in the Find-
ings communication task.

3.	 Yes, it is needed to implement the necessary changes in the software and in the organisation pro-
cesses affecting the software.

4.	 Classes, class hierarchies without cycles, datatype properties with a class as a domain and a string
range, object properties with a domain and a range, instances of a single class, instances related
by object properties, and instances related by datatype properties with a string range.

Advanced:

1.	 The resources needed are human resources though some equipment and travel resources are also
required, and these are mainly used in three tasks: benchmarking organisation, experimentation
definition and execution, and result analysis.

2.	 Because these three evaluation criteria are necessary to represent the different situations and
behaviours that can occur when two tools interchange one ontology.

3.	 Because different types of users need different tools; existing tools have different knowledge
representation models; and tools need to translate their ontologies from their knowledge models
to the common ontology representation language.

	Title Page
	Table of Contents
	Detailed Table of Contents
	Preface
	Explaining Semantic
Web Applications
	Industrial Use of Semantics:
NNEC Semantic Interoperability
	Personalization Based on
Semantic Web Technologies
	Building Semantic Web Portals
with a Model-Driven
Design Approach
	Semantic Processing of
Monitoring Data in
Industrial Applications
	Semantic Annotation and
Ontology Population
	Fault-Tolerant Emergent
Semantics in P2P Networks
	Association Analytics for
Network Connectivity in a
Bibliographic and Expertise
Dataset
	Search Engine-Based Web
Information Extraction
	From Databases to Ontologies
	RapidOWL:
A Methodology for
Enabling Social Semantic
Collaboration
	The Social Semantic Desktop:
A New Paradigm Towards Deploying
the Semantic Web on the Desktop
	Uncertainty Representation and
Reasoning in the Semantic Web
	Benchmarking in the Semantic
Web
	Compilation of References
	About the Contributors
	Index

