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Abstract. Modeling environments with 3D feature based representations is a 
challenging issue in current mobile robotics. Fast and robust algorithms are re-
quired for applicability to navigation. We present an original and effective seg-
mentation method that uses computer vision techniques and the residuals from 
plane fitting as measurements to generate a range image from 3D data acquired 
by a laser scanner. The extracted points of each region are converted into plane 
patches, spheres and cylinders by means of least-squares fitting. 

Keywords: Laser-range finder, 3D point cloud, range-image based segmenta-
tion, least-squares fitting. 

1   Introduction 

In the mobile robotics community significant research efforts are lately focusing on 
acquiring and processing information about the 3D nature of the environments found 
in real world scenarios. Overcoming the limitations imposed by the 2D models is of 
great importance regarding safe navigation but also to provide further knowledge to 
be used in other robotic tasks. This is the main field of application towards which this 
work is orientated. Yet it could be of interest in some other areas such as building 
modeling or industrial reconstruction and identification, being there several publica-
tions that address the issues of 3D data acquisition, segmentation and fitting in these 
contexts [1], [2]. The most remarkable particular aspect of the 3D feature-based navi-
gation problem is the need for real-time algorithms, especially when performing Si-
multaneous Localization and Mapping (SLAM). To comply with this requirement, a 
practical approach may go for obtaining and storing the data in an organized way. If 
methods that consider the extra information hence available are applied subsequently 
compact models that replace the initial large and scarcely meaningful point cloud can 
be built in reasonable time.  

Although there are other means to obtain 3D data from the environment, up to now 
the laser range scanner is the most popular stereoceptive sensor used in mobile robot-
ics. The newly developed Swiss Ranger Camera from the CSEM (Swiss Center for 
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Electronics and Microtechnology), commercialized by Acroname Robotics, may 
become a good alternative, but it is yet not very suitable for mapping activities due to 
its reduced field-of-view (of about 45º) and the noisiness of its measurements [3]. 
Stereo vision systems are also less accurate than the laser range finder and they pose 
more difficulties to the data manipulation and interpretation processes. 

Here we put forward our ideas to obtain 3D primitives frequently found by mobile 
robots in indoor environments out of distance measurements provided by such laser 
devices. Our main contribution is a novel method to solve the segmentation of the 
laser data by integrating vision based techniques. Taking advantage of the ordered 
nature of the data, real-time capabilities are achieved. 

The paper is organized as follows. Section 2 constitutes a brief explanation of the 
hardware and system configuration we have employed in the 3D data acquisition. 
Section 3 introduces the segmentation problem, revises some related work and pre-
sents the range image based technique we propose to solve it keeping in mind the 
specific conditions of the feature based navigation goal. In Section 4 we expose how 
the final fitting to geometrical primitives is carried out. Section 5 shows some ex-
perimental results. Finally, Section 6 summarizes our conclusions and future work.  

2   3D Data Acquisition 

One of the simplest solutions to gather 3D data with a 2D laser range finder consists 
of displacing it along the perpendicular direction to its scanning plane, normally hori-
zontal. Equivalently, instead of actually moving one single laser scanner up and 
down, adding a second laser vertically mounted is a practical option when the robot 
operates in strictly flat terrain [4][5]. Another possibility is to make the laser collect 
data in a vertical plane while it turns around its upright axis by means of an extra 
servo drive [6]. One laser rotating around its optical axis, with a yaw movement, gen-
erates 3D data too [7], but requires higher mechanical effort and leads to each indi-
vidual 2D scan not having much intuitive sense. 

The most natural approach seems to be that of employing a nodding system as is 
done in [3] [5] [8] [9]. We have mounted a SICK LMS200 laser device on top of a 
servo pan-tilt unit (PowerCube Wrist 070, by Amtec Robotics) positioned at the front 
of our Pioneer 3AT robot, Nemo (Fig. 1). 

A data server running on an onboard laptop computer sends synchronous updated 
information about odometry, PW70 and laser readings at clients’ cyclical requests 
within a capture procedure in a stop-and-go manner. The communication protocols 
between the laptop and each of both devices and the robot work via serial connection. 
The port’s baud rate for the laser scanner is set at 500 kb (using an external USB to 
422 interface) so as to gain velocity and permit a good precision in synchronization 
with the PW70. This is of utmost importance to avoid distortions when applying the 
relative transformations to calculate each point’s [x, y, z] coordinates. 

The laser beams of a 2D scan are emitted between 0° and 180° at regular intervals 
dθ we have fixed in 1°. We obtain a 3D scan by varying the tilt angle.  
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Fig. 1. Our robot Nemo equipped with a laser mounted on a wrist for 3D data acquisition 

3   Segmentation  

Segmentation undertakes the partition of a 3D point cloud into smaller subsets repre-
senting objects of interest (different surfaces, here). Points identified as part of the 
same region are allotted the same tag so that they can be treated as raw data of a 
sought-after feature. This is a key subject in feature based navigation for mobile ro-
bots, being especially challenging the fact that it is not known a priori what stuff the 
scanned scene may contain apart from those elements we intend to recognize [3]. 

3.1   Related Work 

In computer vision, the segmentation problem has received considerable attention for 
the last decades. Notwithstanding, the adaptation of developed techniques and algo-
rithms to robotic applications with data coming not from cameras but from laser sen-
sors has not been much exploited. Indeed, a great deal of recent research has focused 
on extracting enhanced levels of detail in complex scenes and better preserving the 
objects’ exact shape, [10] [11]. Robots do not yet need that much knowledge about 
small items in the environment and this approach implies too complicated, time con-
suming solutions that are therefore not adequate for navigation. 

Three main categories of existing methods are commonly used, namely edge-based 
segmentation, region-based segmentation and scanline-based segmentation [12]. 

• Edge-based segmentation consists of detecting those points where disconti-
nuities in certain local properties are noteworthy and then grouping together 
points that fall inside the closed boundaries found. 

• Region algorithms follow a merging schema. They usually start from some 
seed points to which near points are added in accordance to a certain similar-
ity criterion. 

• Scanline-based segmentation in first place analyses each scanline or row of a 
range image independently and then checks whether extracted features of 
consecutive 2D scans are combinable into the same 3D feature. 

In [13] and [14] a series of range image segmentation methods within these three 
classes are thoroughly described and evaluated. We think that edge-based algorithms 
are more suitable here because they are faster and more direct and elegant than the 
other two approaches. Some hybrid techniques complementing it with any of the other 
two are interesting as well [15]. 



444 P. de la Puente et al. 

We have observed that a vast majority of segmentation algorithms are limited to 
planar surfaces, mainly among those few explicitly designed for mobile robotics ap-
plications. An assessment of four different line extraction algorithms to separate 
points from different planar surfaces in service robotics has recently been published, 
[16]. In [3] two region-based algorithms for planar segmentation of range images 
were presented; they are both capable of processing probabilistic data in order to do 
3D SLAM based upon planar features. Reference [17] is the closest work to the ap-
proach presented in this paper. It addresses the segmentation of laser data in mobile 
robotics by applying common range image processing operations, but also sticks to 
planar patches. The edge-based algorithm there presented introduces a new measure, 
the so called bearing angle, to characterize the surfaces and then apply a standard 
Sobel border detector. 

The algorithm reported in [12] inspired the key idea of the method we propose. It is 
a region growing strategy for unstructured point clouds from industrial environments. 

3.2   Vision-Based Range Image Segmentation 

The first step towards classifying points in a 3D scan through range image segmenta-
tion may be to fill an image like structure with the available raw measurements com-
ing from the sensor and then apply computer vision edge detection algorithms. This 
allows finding the jump edges of the data, i.e. those associated to depth discontinuities 
between two physically separated (or not intersecting) surfaces. However, different 
objects and surfaces are usually touching one another (things standing on the floor are 
in permanent contact with it, walls join at corners...). In that case, boundaries are 
defined by crease or roof edges (changes in orientation) that are totally compatible 
with smooth variations in distance measurements. Similar conclusions were pointed 
out in [15], [17]. 

The solution we suggest comes from the fact that the residuals of fitting one point’s 
neighborhood to a plane will have higher values at both jump and crease edges. As-
suming the laser is correctly calibrated and errors in the measurements can be mod-
eled as Gaussian noise with a not too high standard deviation (5mm for the LMS 
200), most points inside a planar patch have tiny residuals. Points from other kind of 
primitives have residuals proportional to the local curvature. The basic features we are 
going to use for representation (planar patches, cylinders and spheres) have theoreti-
cal constant curvatures for all of their points. Nevertheless, segmentation would not 
be affected if that were not the case, for residuals would still change smoothly and 
have greater values at break points. 

For each 3D point, we select its neighborhood with an eight connectivity criterion 
and compute the residual of the plane fitting by applying the equations in Subsection 
4.1. Adequately scaling the obtained values, the image of edges is created. In order to 
make sure borders do not break improperly, a closing (dilate + erode) morphological 
operation is applied twice. To eliminate false borders provoked by noise the image is 
binarized so that only important edges are left. Once this has been accomplished, a 
floodfilling algorithm is used to assign the same color to all pixels inside each large 
enough region enclosed by the remaining borders. Different regions are given differ-
ent colors, so points belonging to important features are labeled univocally. The fol-
lowing pseudocode is an outline of the whole algorithm: 
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Fig. 2. Pseudocode for segmentation and fitting  

4   Model Fitting 

4.1   Plane Fitting 

In the Hessian Normal Form of a plane the model parameters are the normal vector 
components (nx, ny, nz) and the perpendicular distance to the origin, d. The parameters 
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of the plane that best fits a set of N points pi = (xi, yi, zi) in a least squares sense can  
be obtained by solving a 3x3 eigenvalue problem. We aim at minimizing the sum  
of squares of the orthogonal distances from the points to the estimated surface (the 
residual): 

2
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Differentiation with respect to the four parameters yields a 4x4 linear system on 
the parameters, but the problem can be simplified. If the partial derivative with re-
spect to d is obtained, it is easy to see that the best possible estimation of the plane 
passes through the center of gravity (ox,oy,oz).of the points. The normal vector can 
then be obtained as the eigenvector associated to the smallest eigenvalue of: 
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4.2   Sphere Fitting 

A way to determine an estimation of the center coordinates (xc, yc, zc) and the radius r 
is to minimize the following function for all the points pi: 

2222 )()()( rzzyyxx cicici −−+−+−  . (3) 

To make the equation linear the variable 2222 )( rzyxt ccc −++= is intro-
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Or in matrix notation, BMx = . So, BMMx T 1)( −= is the solution we sought.  

4.3   Cylinder Fitting 

A cylinder may be represented by a normalized vector along its axis (a, b, c), a point 
on the axis (x0, y0, z0) and the radius R. Equation 5 holds: 
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Developing the former expression and grouping the coefficients, it can be put 

as: 0222 =+++++++++ JIzHyGxzFyzExyDxCzByAx iiiiiiiiiiii . 

Dividing it by A, we get a linear system with nine unknowns that can be solved in a 
least squares fashion. The following approximations have proven accurate enough in 
our experiments. 

If E/A, F/A and G/A are close to zero, B/A close to 1 implies (a, b, c) = (0, 0, 1) 
and C/A close to 1 implies (a, b, c) = (0, 1, 0) .Otherwise, A= 2/(1+B/A+C/A). If A 
and B are close to 1 (a, b, c) = (-EA/2C, -F/2c, (1-C)1/2). If A is close to 1 but B is not 
close to 1 (a, b, c) = (-D/2b, (1-B)1/2, -F/2b). If A is not close to 1 (a, b, c) = ((1-A)1/2, 
-D/2a,-E/2A). If the resultant vectors are not normalized they must be divided by their 
magnitude. 

Once (a, b, c) has been obtained, the point on the axis is computed by solving: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
+−

+−

0

)(222

2)(22

22)(2

0

0

0

22

22

22

I

H

G

z

y

x

cba

babcac

bccaab

acabcb

 . (6) 

The estimation of the radius value is done by: 
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5   Experiments 

To capture the 3D data, the laser is tilted from -0.4 radians (upwards looking) to 0.3 
radians (downwards looking) at a constant speed of 0.05 rad/s, which results in a 
70x181 matrix of measurements. We process the central 70x131submatrix to avoid 
problems caused by the points being to near from each other at the extreme lateral 
angles of the view area. Fig. 3 shows some results of the image processing steps of 
our algorithm. They correspond to two 3D scans taken at our laboratory with different 
room configurations.  

The segmentation process takes about 1 second. It is considerably below the time 
consumed by region growing algorithms, applied when not much speed is required, 
such as [12], which we implemented for evaluation. Our development has been in 
C++ using the OpenCv libraries.  

Table 1. shows some information about a series of experiments conducted by mov-
ing the robot across the corridors and rooms of our laboratory. Under segmentation  
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Fig. 3. Images on the left contain raw distance measurements. Next images show the plane 
fitting residuals followed by the region extraction output. Images on the right are the environ-
ments where the data for these experiments were taken, with some modifications. 

Table 1. Summary of results from several different experiments 

Experiment Extracted 
features 

Under  
segmentation

Over  
segmentation

False 
fittings 

Processing 
time (s) 

1 7 1 (14.3%) 0(0%) 0 1.06 
2 13 0 (0%) 1(7.7%) 0 1.00 
3 17 1(5.9%) 1(5.9%) 0 1.05 
4 10 0(0%) 2(20%) 0 1.03 
5 12 2(16.7%) 1(8.3%) 1 1.00 
6 17 0(0%) 4(23.5%) 0 1.04 
7 18 1(5.6%) 2(11.1%) 0 1.04 
8 13 1(7.7%) 1(7.7%) 1 1.06 
9 20 2(10%) 1(5%) 0 1.07 

10 23 0(0%) 6(26.1%) 0 0.98 

 

Fig. 4. Features extracted from the environment by applying the algorithms we propose 
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consists of having different surfaces belonging to the same extracted region. It may 
lead to obtaining a wrong plane model (false fitting). Over segmentation happens 
when several contiguous patches are acquired from a surface. 

Some changes in the threshold values were made so as to adapt the segmentation 
process to the particular conditions of the experiments. Although at first it may leave 
out a greater number of points than other methods, ours allows for the extraction of 
the most important elements of the structure in cluttered environments, consuming 
less time. As already mentioned, surfaces other than planes can be obtained this way. 

The final feature extraction for experiment number 10 is shown in Fig. 4. No false 
fittings were done and only few unimportant objects were missing. The outcome for 
other 3D scans was similar. 

6   Conclusions and Future Working Lines 

We have presented a novel range-image based algorithm employing computer vision 
techniques. The residuals of a least squares fitting process for each pixel’s neighbor-
hood are used to detect surface discontinuities in the data and achieve effective fast 
performance, as is needed in mobile robotics applications. The segmented 3D points 
are fitted to planar, cylindrical or spherical models to generate a compact representa-
tion of the environment.  

One of the earliest improvements we plan to introduce is the combination of this 
segmentation results with the detection of edges at both sides of the image, to widen 
the field of view. We need to make the algorithm completely robust by applying local 
checking methods that will eliminate the under-segmentation cases. Furthermore, 
once the different regions have been found some close points left out after the image 
processing steps may be added in order to enlarge the patches. Finally, patches’ 
boundaries should be determined and patches belonging to the same object ought to 
be merged (we think about convex hulls determination and applying boolean opera-
tions among polygons). This will directly deal with the over-segmentation cases. 

A higher level goal we have is the integration of features to generate room and cor-
ridor models, aiming at building rich maps containing topological information. 
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