
Configuration and supervisión of advanced distributed data acquisition and 
processing systems for long pulse experiments using JINI technology 
Joaquín González3, Mariano Ruiza, Eduardo Barrera3*, Juan Manuel López3, 
Guillermo de Arcas3, Jesús Vegab 

1 Grupo de Investigación en Instrumentación y Acústica Aplicada, Universidad Politécnica de Madrid (UPM), Ctra. Valencia Km-7,28031, Madrid, Spain 
b Asociación EURATOM/CIEMATpara Fusión, Avda. Complutense 22,28040, Madrid, Spain 

A R T I C L E I N F O A B S T R A C T 

Keywords: 
JINI 
Long pulse 
Distributed data processing 
Remote participation 

The development of tools for managing the capabilities and functionalities of distributed data acqui­
sition systems is essential in long pulse fusión experiments. The intelligent test and measurement 
system (ITMS) developed by UPM and CIEMAT is a technology that permits implementation of a scal-
able data acquisition and processing system based on PXI or CompactPCI hardware. Several applications 
based on JINI technology have been developed to enable use of this platform for extensive implemen­
tation of distributed data acquisition and processing systems. JINI provides a framework for developing 
service-oriented, distributed applications. The applications are based on the paradigm of a JINI federa-
tion that supports mechanisms for publication, discovering, subscription, and links to remote services. 
The model we implemented in the ITMS platform included services in the system CPU (SCPU) and 
peripheral CPUs (PCPUs). The resulting system demonstrated the following capabilities: (1) setup of 
the data acquisition and processing to apply to the signáis, (2) information about the evolution of the 
data acquisition, (3) information about the applied data processing and (4) detection and distribution of 
the events detected by the ITMS software applications. With this approach, software applications run-
ning on the ITMS platform can be understood, from the perspective of their implementation details, 
as a set of dynamic, accessible, and transparent services. The search for services is performed using 
the publication and subscription mechanisms of the JINI specification. The configuration and supervi­
sión applications were developed using remotely accessible (LAN or WAN) objects. The consequence 
of this approach is a hardware and software architecture that provides a transparent model of remote 
configuration and supervisión, and thereby a means to simplify the implementation of a distributed 
data acquisition system with scalable and dynamic local processing capability developed in a fusión 
environment. 

1. Introduction 

Due to the special characteristics of fusión devices, the dis­
tributed data acquisition systems that are used require mechanisms 
to carry out both the monitoring and control remotely using sys­
tems that have a particularly low computational cost. 

The vast amount of hardware devices (controllers, data acqui-
sitions boards, processing boards, etc.) and software components 
(operating systems, modules, and drivers) that comprise these sys­
tems require the use of methods specifically designed to support 
remote operation, from initial setup to the supervisión and moni­
toring of events. 

The intelligent test and measurement system (ITMS) platform 
offers a technology based on a set of hardware devices and soft­
ware components that allows for the development of advanced 
intelligent instruments with data acquisition and fast data pro­
cessing capabilities that can be reconfigured through software 
[1.2]. 

JINI technology is a service-oriented software environment 
intended to offer a middleware solution which has been designed 
to develop distributed applications. JINI is defined through a spec­
ification that includes a set of components, such as an application 
program interface API, to develop objects and applications based 
on the service federation paradigm. 

This paper presents an ITMS platform-based application of the 
JINI technology using a model that permits the implementation 
of scalable distributed data acquisition and processing systems 
that can be set up and monitored remotely. The result is a system 



J. González et al. / Fusion Engineering and Design 84 (2009) 832–836 833 

in which the software applications can b e considered as a set of 
dynamic and accessible services. 

2. ITMS architecture 

Fig. 1 shows the hardware architecture of the ITMS platform. It 
includes the following hardware e lements : 

• A standard PXI chassis wi th an embedded CPU named the system 
CPU (SCPU). The SCPU is used to set up the data acquisition (DAQ) 
cards, distribute the acquired data according to the system setup, 
and process the data from selected acquisition channels. 

• Several data acquisition cards. 
• Several processing cards (peripheral CPUs (PCPUs)) connected to 

peripheral PXI slots. PCPUs are used to process the data from the 
acquisitions channels selected during se tup. They significantly 
increase the processing capabilities of standard PXI platforms, 
which are based on a single CPU [3]. 

The ITMS software architecture is based on three distributed 
modules that run in both t he SCPU and the PCPUs (Fig. 2 ) : 
Setup&DAQ, Dynamic Data Processing System (DDPS), and the 
Event Detection Module (EDM). These modules were developed 
using Linux kernel modules (Fedora Core 1) based on RTAI (version 
3.3), the COMEDI data acquisition driver, and LabVIEW (version 8.2). 

The Setup&DAQ module handles the data acquisition and dis-
tr ibution configuration, as well as t he acquisition and distribution 
of data among the processing e lements of the system (PCPUs and 
SCPU). The DDPS module is in charge of running the data process­
ing routines defined by the user. These routines were developed in 
LabVIEW. The EDM is a client-server application tha t runs in each 
CPU (SCPU or PCPU). The client, which usually runs in the PCPUs, 
detects the events generated by the DDPS module and sends t hem 
to t he server module as messages through TCP/IP. The server, which 
always runs in the SCPU, receives the messages from the clients and 
makes decisions accordingly. 

3 . JINI technology 

JINI technology is a service-oriented architecture tha t defines 
a programming model which both exploits and extends Java 
technology to enable t he construction of secure, distr ibuted 
systems consisting of federations of well-behaved network ser­
vices and clients [4]. In its conception, a device (defined as 
any type of system able to process information) that it is con-
nected to the network is publicly announced, and its services 

Fig. 1. ITMS standard hardware architecture. 

Fig. 2. ITMS standard software architecture. 

are placed a t t he disposal of t he other compatible JINI devices 
[5,6]. 

JINI’s basic concept is based on service, so t he network archi-
tecture is viewed as a service federation. JINI is defined as t he 
specification for a set of components that constructs a middleware 
that permits the development of services encompassing all oper-
ational needs for subscribing and publishing. It also includes a set 
of s tandard services already implemented and ready to b e used for 
deployment [7]. 

3.1. JINI system components 

The following e lements are present in a JINI sys tem: services, 
clients, lookup services and class servers (Fig. 3) [8]. 

• Services are software mechanisms that make their resources 
avai lable to the system.Aservice can provide acces s toaha rdware 
device or to a software component . 



834 J. González et al. / Fusion Engineering and Design 84 (2009) 832–836 

Fig. 3. JINI system components. 

• Clients are systems that need to use services to perform other 
tasks. They use mechanisms to locate these services and to sub­
scribe to them, enabling them to complete their objectives by 
integrating the service into their own business logic. 

• The lookup service is a special service that permits clients to 
locate services. It allows the services to be published and, there-
fore, offers clients the ability to locate them and negotiate their 
subscriptions to them. Thus, this service is the key tothe system’s 
flexibility, particularly in situations where the network’s topology 
constantly changes. 

• Class servers play a key role in the exchange of objects that con-
stitute JINI services. The Java object that implements the JINI 
service is created by the application server in its Java virtual 
machine. When a client receives the service, what it really gets 
is a “snapshot” of the object’s state through the mechanism of 
Java serialization. This snapshot includes only the data value of 
the object, not the code. So, where is the code of the object? In 
other models of distributed programming the client must know 
the implementation of the class, however, in JINI technology, the 
client simply needs to know the interface of the class, because 
the implementation of the class will get run-time thanks to the 
server class. This circumstance offers a tremendous flexibility to 
update the code of a class because it allows clients to obtain the 
latest version of the code of the class at the time of subscribing 
to a service. The information on the location of the class server 
is part of the serialized snapshot and it is found in the property 
java.rmi.server.codebase. Once the client has received the snap-
shot and the class, it reconstructs the object and runs it in its own 
Java virtual machine. 

3.2. Subscription and publication mechanisms 

Fig.4showsthe proceduretopublishaservice.First, oneormore 
lookup services are located by using one of two possible methods: 
if the server knows the location of the lookup service it sends a 
subscription request in unicast mode using TCP, if not, a request 
is sent using UDP packets in multicast mode. At the other end of 
the communication channel, the lookup service maintains a pas-
sive server ready to accept input connections on a predefined port. 
When it receives a request through that port it sends an object 
named “register” that will act as a proxy of the lookup service. 
From that moment on, any request that the server needs to make 
to the lookup service will go through the register object. The object 

Fig. 4. Publication service process. 

Fig. 5. Subscription to service process. 

includes a set of methods specifically developed to support this 
operation. Finally, using the object’s methods the service provider 
publishes the service through the lookup service. 

Subscription is the procedure that allows a client to obtain a 
service. Its mechanism of operation is shown in Fig. 5, it begins the 
process of locating the service by sending a request in the appro-
priate mode (unicast or multicast). 

In both cases, the lookup service returns a register object that 
will act as its proxy, which provides the methods needed by 
the client to define the request by identifying the service being 
requested and its grant, if it is available. Finally, the client obtains 
the object that implements the requested service if this is available 
in the list of services maintained by the lookup service. 

4. Implementation of the ITMS system setup and 
monitoring with JINI 

A set of services developed with the JINI technology over the 
ITMS platform was deployed for use in the design and evaluation of 
a model that allows the extensive implementation of scalable data 
acquisition and processing systems that can be setup and moni-
tored remotely. 

The solution is based on a JINI service, named CPU Service, that 
runs in each system’s CPU and that is published for use by remote 
terminals (clients). This service can be used to perform the follow-
ing tasks (Fig. 6): 

• Obtaining the hardware configuration of a PXI system. This basi-
cally involves determining the hardware elements that form part 
of a system, such as the SCPU, PCPUs, and DAQ cards, and all of 
the setup information for each of these elements: IP addresses, 
acquisition channels, slots, etc. 

• Transmitting processing algorithms to the CPUs in order to pro-
cess data with the DDPS module. 

• Receiving messages about the temporal evolution of the acquisi-
tion and processing mechanisms. 

• Establishing a mechanism for subscription and notification of the 
events that can be detected during data acquisition and process­
ing. 



J. González et al. / Fusion Engineering and Design 84 (2009) 832–836 835 

Remote CPU (SCPU or PCPU) Supervisor system 

Fig. 6. JINI-ITMS services deployment. 

A dual-layer software architecture that includes the existing 
ITMS software modules was designed to fulfill the requirements. 
The first layer deals with communication with the standard ITMS 
software modules. In order to provide a mechanism for the user 
to access remote objects, a user interface based on LabVIEW was 
developed exclusively on the client side to provide remote commu-
nication with the lower layers of remote objects. This module is also 
in the first layer. 

The second layer is based on JINI technology and was developed 
in Java. It provides a service federation system that allows publi-
cation and remote access of the objects that make up the services. 
Considering special characteristics derived from the use of Java in 
software applications, and in order to simplify their maintenance 
as much as possible, a client-server communication based on local 
TCP/IP messages was used to link the JINI and LabVIEW modules. 
This second layer consists of two JINI applications. 

Thefirstapplication, namedCPU Service,runsineachJavavirtual 
machine (JVM) located on the SCPU and the PCPU. This applica­
tion is in charge of publishing the available resources, and their 
functionality, in the lookup services available in the network. The 
getIP and getUbication methods are responsible for obtaining the 
IP address and the name of the machine that runs the service for 
identification. The download XML method is designed to obtain the 
current configuration document and make it available to clients 
upon request. The upload VI method allows receiving processing 
units that will be run by ITMS platform. And finally the Events 
Listener method that is responsible for subscribing clients who 
wish to listen to the events from the upper layer and generate 
the necessary notifications so the subscribed clients will receive 
them. 

On the client runs the application named ClientUnicast. Its task 
is to subscribe to all CPU Services published and to register as 
a listener of remote events, to put these events into the events 
queue, and to play the actions related to user interface messages. 
The gateway module provides a tunnel of communication between 
LabVIEW and the Java application to send and receive operations 
and results from the user interface. The Notify module transmits 
the events received to the LabVIEW application which monitors 
and stores them in a queue of events to be processed according 
to the requirements. The module Send/Receive file is responsi-
ble for transmitting and receiving configuration and processing 
files. 

5. Evaluation 

The configuration andremote monitoring model proposedisnot 
developed under restrictions on real-time operation. This is why 
it has been possible to work with JAVA technology and conven-
tional Ethernet networks. Therefore the quality of service (QoS) will 
depend on the state of the operating systems involved and on the 
network load. It can be done this way since the monitoring tasks 
are not critical in this system. 

When evaluating the implemented solution, the parameter of 
greatest interest is the latency time of the notification of JINI events 
between the CPU Service and the system supervisor (client). 

In order to evaluate this latency, an experiment was developed 
consisting of the detection of a change in the signal spectrum of a 
channel acquired and processed by one SCPU, and required com-
municating this detection event to one of the clients who was 
subscribed to the CPU Service of that CPU. 

The signal was digitized using a data acquisition card allocated 
in a PXI crate managed by the SCPU. The signal data were processed 
in LabVIEW to obtain the signal’s power spectrum and to detect the 
instant of time in which a frequency change was produced. Imme-
diately after the change was detected, a JINI event was produced 
and transmitted to the supervisor system (client) through the JINI 
architecture. 

Theobtainedresultsshowthat the meanresponsetime(latency) 
of the architecture is about 36ms. This time includes: signal 
acquisition, signal processing in the SCPU to estimate frequency, 
event generation by CPU Service, event transmission through 
the JINI architecture, and reception of the event by the client 
(Fig. 7). 

6. Discussion 

The architecture developed here is based on the service feder-
ation paradigm offered by JINI. All of the CPUs that constitute the 
ITMS platform make their availability public through the network 
lookup services. The supervisor system (client) needs only to know 
the object interface, while JINI manages the rest of the processes 
in a form that is completely transparent for both the user and the 
programmer. 

In addition, the services functionalities are easily extensible, and 
their deployment in the network is extremely simple, thanks to 



836 J. González et al. / Fusion Engineering and Design 84 (2009) 832–836 

36 ms. 

Fig. 7. Architecture response to events. 

object serialization and the existence of the HTTP servers which 
dynamically provide the last version of each service. 

The system bears the activation and deactivation of hardware 
resources in a standard form, allowing the experiment fusion plat-
form to be reconfigured at any time. 

This architecture provides to the ITMS platform a methodology 
to implement data acquisition and processing systems devoted to 
long pulse and steady state experiments. The ITMS systems can be 
configured and monitored remotely. This point is extremely impor-
tant to know the temporal evolution of the experiment by means 
of user-defined event communication. 

Acknowledgement 

This work was partially funded by the Spanish Ministry of Sci­
ence and Technology under the Project DPI 2006-06624. 

References 

[1] E. Barrera, M. Ruiz, S. López, D. Machón, J. Vega, PXI-based architecture for real 
time data acquisition and distributed dynamic data processing, IEEE TNS 53 (3) 
(2006) 923–926. 

[2] M. Ruiz, J.M. López, G. de Arcas, E. Barrera, R. Melendez, J. Vega, Data reduction in 
the ITMS system through a data acquisition model with self-adaptive sampling 
rate, Fusion Eng. Des. 83 (2008) 358–362. 

[3] M. Ruiz, E. Barrera, S. López, D. Machón, J. Vega, E. Sánchez, Distributed real 
time data processing architecture for the TJ-II data acquisition system, Rev. Sci. 
Instrum. 75 (10) (2004) 4261–4264. 

[4] http://www.jini.org/wiki/what is Jini. 
[5] http://www.sun.com/software/jini/index.xml. 
[6] http://www.jini.org/wiki/Main Page. 
[7] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann and B.J. Krämer, Service-

Oriented Computing. A Research Roadmap, Dagstuhl Seminar Proceedings 
(2006). http://drops.dagstuhl.de/opus/volltexte/2006/524. 

[8] Jan Newmarch, “A Programmer’s Guide to Jini Technology” Apress 2000. 

http://www.jini.org/wiki/what
http://www.sun.com/software/jini/index.xml
http://www.jini.org/wiki/Main
http://drops.dagstuhl.de/opus/volltexte/2006/524

