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Abstract
It is well known that each solution of the Toda lattice can be represented by a tridiagonal matrix J(t). Under certain restrictions,

it is possible to obtain some new solution by using the Darboux transformation of J(t)− CI . Our goal is the extension of this fact,
which is known for the real lattice, to high order complex Toda lattices as well as to the bi-infinite Toda lattice. In this latter case,
we use the factorization LU for block-tridiagonal matrices.

1 The Toda lattice

We study the construction of some solutions {∼αn(t) ,
∼
λn(t)} , n ∈ Z , of

the Toda complex lattice

α̇n(t) = λ2
n+1(t)− λ2

n(t)

λ̇n+1(t) =
λn+1(t)

2
[αn+1(t)− αn(t)]



 , n ∈ S, (1)

from another given solution {αn(t) , λn(t)} , n ∈ Z.

We consider:

1. the semi-infinite problem: S = N, λ1 = 0,
2. the infinite problem: S = Z,

In [6] the semi-infinite complex problem was analyzed. In the real, infinite
case, sufficient conditions for the existence of a new solution were given in
[7].

The problem: obtain a similar result to the complex infinite Toda lattice.

2 The generalized Toda lattice

In a more general way, when S = N we consider the generalized Toda
lattice of order p ∈ N (see [1]),

.
Jnn(t) = Jn,n+1(t)J

p
n,n+1(t)− Jn−1,n(t)J

p
n−1,n(t)

.
Jn,n+1(t) = 1

2Jn,n+1(t)
[
J

p
n+1,n+1(t)− J

p
n,n(t)

]


 (2)

where we denote by Ji,j(t) (respectively J
p
i,j(t)) the entry in the (i+1)-row

and (j + 1)-column of matrix J(t) (respectively (J(t))p,

J(t) =




α1(t) λ2(t)
λ2(t) α2(t) . . .

. . . . . .


 , t ∈ R .

The generalized Toda lattice admits a Lax pair representation, i.e. a formu-
lation in terms of the commutator of two operators,

J̇(t) = [J(t), K(t)] = J(t)K(t)−K(t)J(t) , where

K(t) =
1

2




0 −J
p
01(t) · · · −J

p
0p(t) 0 · · ·

J
p
01(t) 0 −J

p
12(t) · · · . . .

... . . . . . . . . .
J

p
0p(t)

0 J
p
1,p+1(t)

. . .

... 0 . . .




, t ∈ R .

In [2, Th. 1.3], given a solution J(t) of (2), for each C ∈ C verifying

det(Jn(t)− CIn) 6= 0 , n ∈ N , (3)

we prove the existence of

∼
J (t) =



∼
α1(t)

∼
λ2(t)

∼
λ2(t)

∼
α2(t) . . .

. . . . . .


 , Γ(t) =




0 γ2(t)
γ2(t) 0 γ3(t)

γ3(t) 0 . . .
. . . . . .




verifying

λ2
n+1(t) = γ2

2n(t)γ2
2n+1(t) , αn(t) = γ2

2n−1(t) + γ2
2n(t) + C

∼
λ2

n+1(t) = γ2
2n+1(t)γ

2
2n+2(t) ,

∼
αn(t) = γ2

2n(t) + γ2
2n+1(t) + C

}

such that
∼
J (t) is another solution of (2), and Γ(t) is a solution of the

Volterra lattice:

Γ̇n−1,n(t) =
1

2
Γn−1,n(t)

[
(Γ2(t) + CI)

p
nn − (Γ2(t) + CI)

p
n−1,n−1

]
.

3 Relation between the generalized Toda lattice
and some polynomials

The matrix J(t) t defines the sequence of polynomials given by

Pn(t, z) = (z − αn(t))Pn−1(t, z)− λ2
n(t)Pn−2(t, z), n ∈ N ,

P−1(t, z) ≡ 0, P0(t, z) ≡ 1 .





The main tools in the proof of [2, Th. 1.3]:

a. We have established the dynamic behavior of Pn(t, z),

Ṗn(t, z) = −
p∑

j=1

J
p
n,n−j(t)λn−j+2(t) . . . λn+1(t)Pn−j(t, z) ,

b. As was proposed in [6], we use the kernel polynomials (cf. [4])

Q
(C)
n (t, z) =

Pn+1(t, z)− Pn+1(t,C)
Pn(t,C)

Pn(t, z)

z − C
.

where C ∈ C verifies (3). The sequence Q
(C)
n (t, C) satisfies a three-

term recurrence relation whose coefficients define the new generalized
solution J̃(t) = J̃(t, C)

4 The new solutions and the Darboux transfor-
mation

If we define

J (1)(t) :=




α1(t) λ2(t)
2

1 α2(t) λ3(t)
2

1 α3(t) . . .
. . . . . .




and C ∈ C verifies (3), then there exist

L(t) =




γ2
2(t)

1 γ2
4(t)
. . . . . .


 , U(t) =




1 γ2
3(t)

1 γ2
5(t)
. . . . . .




such that J (1)(t) − CI = L(t)U(t) . The new solution is defined by the
Darboux transformation of J (1)(t)− CI, this is,

J̃ (1)(t)− CI = U(t)L(t) ,

being

J̃ (1)(t) :=




α̃1(t) λ̃2(t)
2

1 α̃2(t) λ̃3(t)
2

1 α̃3(t) . . .
. . . . . .


 .

5 The infinite Toda lattice

Let us consider (1) with S = Z and take the infinite matrix

J =




. . . . . .

. . . α−1(t) λ0(t)
λ0(t) α0(t) λ1(t)

λ1(t) α1(t) . . .

. . . . . .




The infinite Toda lattice admits also a Lax pair representation. However,
in this case it is not possible to use directly the sequences of polynomials
associated to J .

Taking Rn :=

(
fn

f−n+1

)
, n ∈ N , it is possible to change the infinite

recurrence relation

λn+1(t)fn−1(t, z)+(αn+1−z)fn(t, z)+λn+2(t)fn+1(t, z) = 0 , n ∈ Z ,

to a semi-infinite recurrence relation,

En(t)Rn−1(t, z)+(Vn(t)− zI2)Rn(t, z)+En+1(t)Rn+1(t, z) = 0 , n ∈ N ,

where Em , Vm , m ∈ N , are 2 × 2-finite matrices. In this way, we can
study the infinite case as a semi-infinite vectorial case. The vectors Rn are
not polynomials, but we can prove

Rn = (E2 · · ·En)−1 CnR1 ,

where the sequence {Cn} of 2× 2 matrices verifies

E2
nCn−1 + (Vn(t)− zI2) Cn + Cn+1 = 0 , n ∈ N

C0 = O2 , C1 = I2

}

i.e.,

Cn =

(
cn1(t, z) cn2(t, z)
cn3(t, z) cn4(t, z)

)

and for each i = 1, 2, 3, 4, cni is a polynomial in z , deg cni ≤ n− 1.

Taking I−1 :=

(
1 0
0 −1

)
, Wn := I−1Vn , n ∈ N , we can show

Ẇn = E2
n+1 − E2

n

Ėn+1 = 1
2En+1(Wn+1 −Wn)

}
, n = 2, 3, . . . (4)

This is, {Wn, En} is a solution of a semi-infinite matricial Toda lattice, like
(1).

6 The infinite Toda lattice and the Darboux
transformation

We define

J (B) :=




V1 E2
2

I2 V2 E2
3

I2 V3
. . .

. . . . . .


 .

Let C ∈ C be such that

det
(
J

(B)
2n (t)− CI2n

)
6= 0 , t ∈ R , n ∈ N .

Then, we know (see [5]) that there exist two blocked matrices

L(B) :=




A1
I2 A2

I2 A3
. . . . . .


 , U (B) :=




I2 Γ1
I2 Γ2

I2
. . .
. . .




such that J (B) − CI = L(B)U (B). We define the blocked Darboux trans-
formation of J (B) − CI as

J̃ (B) − CI := U (B)L(B) =




Ṽ1 − CI2 Ẽ2
2

I2 Ṽ2 − CI2 Ẽ2
3

I2 Ṽ3 − CI2
. . .

. . . . . .


 .

We are researching the two following questions:

1. Can we construct a vectorial solution of hte Toda lattice, like (4), from
J̃ (B) − CI?

2. Are the (scalar) entries of J̃ (B) a new solution of the Toda lattice (1)?
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