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ABSTRACT 

In this paper we describe a new tool being currently devel-
oped by Eurocontrol for Air Traffic Control multiradar-
multisensor data processing systems assessment. This tool, 
called TRES (Trajectory Reconstruction and Evaluation 
Suite), will become in a near future a replacement for some 
parts of current versions of SASS-C (Surveillance Analysis 
Support System for Centres) suite. The paper describes the 
overall architecture of the assessment system, and details 
the methods used in TRES for the calculation of reference 
trajectories, taking into account sensor detection characte-
ristics, available information, sensor accuracies, biases, ...  
The whole system has been tested with real traffic and simu-
lated data, some illustrative examples are presented at the 
end. 

1. INTRODUCTION 

In this paper we are describing a new tool for the assessment 
of multiradar-multisensor data fusion systems. The assess-
ment of those systems is a complex problem which is usual-
ly accomplished by simulation of synthetic scenarios, or 
inspection of real traffic tracks. We will describe a method 
for the assessment of real traffic tracks based on the creation 
of reference trajectories by smoothing measurements from 
all the available data sources (primary and secondary radars, 
ADS, WAM). Those reference trajectories are the basis for 
automatic evaluation of both monosensor measures or 
tracks, an of multiradar-multisensor real time data 
processing. The comparison and performance evaluation 
procedure is described in Figure 1. 
 

 
 
 
 

Figure 1:  Trajectory assessment based on opportunity 
traffic 

In its current state, SASS-C is a Radar Plot Evaluation and 
Radar Tracker Analysis tool [1].  It is usable to assess both 
monoradar and multiradar deployments during system 
commissioning, installation, operational life, and during 
incident investigation. The system contains means for: 

• recording radar data, 
• performing multiradar chaining (association) using a 

module called Object Correlator,  
• performing radar bias estimation [2] and trajectory 

interpolation using the Muratrec interpolation sys-
tem. 

• inserting simulated data, by means of the companion 
SMART system. 

• graphical display of measurements. 
• coverage prediction and evaluation. 

As new sensors appear in ATM (ADS, WAM, 3D primary 
radars), Eurocontrol faces the problem to keep updating 
current monolithic SASS-C versions with new modules 
(suites) and functionalities, or replacing it with a new de-
sign. This new design, from the beginning, takes into ac-
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count the different roles the software must play, and there-
fore it is integrated by several cooperating programs: 

• Recording radar data is performed by MAS  (Multi-
source Acquisition Suite) system. This is a pre-
existing ATC data recording product from COM-
SOFT, which has been adapted to be part of the new 
SASS-C.  This suite has also the capability of replay-
ing radar data inside SASS-C data-base and injecting 
them in a real tracker. 

• Association, bias estimation and correction, and tra-
jectory interpolation are performed by the new OTR 
(Opportunity trajectory Reconstruction) module. 
This module must not only use radar data, but it has 
been designed taking into account the current and 
near future sensors in ATC surveillance. Even more, 
the architecture has been developed in a way in 
which integrating new measures is relatively 
straightforward.  The main product of this module is 
the list of reconstructed trajectories from all targets 
in the interest area. 

• Assessments over plots and tracking statistics are 
performed by CMP (Comparator) module. It uses re-
constructed trajectories from opportunity traffic 
(provided by OTR) and analyses radar and tracking 
behavior (probabilities of detection, false alarms, ac-
curacy, … )  

• In order to further investigate anomalous results, a 
software tool-set (CAI: computer aided investiga-
tion) has been developed to help user in the analysis 
of OTR and CMP results. The graphical display of 
results is performed, in current design of the system, 
by reusing MAS display capabilities. 

• SMART system may be used to feed SASS-C analy-
sis with simulated data. This data can be injected in a 
real tracker using the “replay” functionality of MAS. 

• SCAS can be used to generate coverage maps and 
this information used by CMP and CAI for tracker 
and sensor performance analysis. 

 
 
 
  
 
 
 
 
 
 
 
 
Figure 2:  SASS-C new architecture 
 
All applications now share a common database (the SCDB, 
or SASS-C data base). So, each module is potentially inter-

changeable with another module provided inputs and out-
puts are respected.  
OTR, CMP, and CAI form what, in new SASS-C, is known 
as TRES.  This paper is centered in the description of TRES. 
Figure 2 shows the overall SASS-C architecture. 

2. TRES TECHNICAL DESCRIPTION 

TRES is in itself a suite composed of three elements (OTR, 
CMP and CAI), working over data injected in SCDB, and 
fulfilling the following general requirements: 

• Its first version must work with the following sen-
sors: 

• Secondary radars, both conventional and 
Mode S. 

• Primary radars, providing either 2D 
(range, azimuth) or 3D (range, azimuth, 
elevation) measures. 

• Wide Area Multilateration (WAM) sys-
tems, obtaining measures from either 
Mode S or SSR squitters or replies to radar 
interrogation. 

• ADS-B, with several potentially coexisting 
stations, which may have different com-
munication technologies. 

• Those sensors obtain their measurements using 
different procedures. Data are provided in dif-
ferent coordinates, with different systematic and 
stochastic errors… The different measures ob-
tained from all sensors will be called target-
reports in the following paragraphs. 

•  Data fusion to be performed in OTR demands 
time and space alignment of different sensors 
systematic errors. The error components to be 
taken into account are: 
• For all radars: Range bias, Range Gain, 

Azimuth bias, Azimuth eccentricity, and 
time offset between sensors. 

• Additionally, for secondary radars, response 
delay offset, different for each transponder. 

• For ADS-B, time and position offset, dif-
ferent for each aircraft. 

• For WAM system, a map/grid with position 
offsets depending on the position. 

• Target-report association to reconstructed trajec-
tory must take into account the different data 
(and its integrity) provided by the sensors: Mode 
A, Mode S, position, barometric (derived from 
Mode C) or geometric (from primary radar ele-
vation, aircraft navigation system in ADS-B, or 
multilateration based) height. Depending on the 
sensor, the available data is different, and there-
fore the association procedures must be differ-
ent. 
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• It is an offline system. Therefore, association 
need not be performed as a first stage, but, for 
not so clear cases, it may be delayed until more 
information is available. For instance, reconsi-
derations over associations are defined after sys-
tematic error correction. 

• New sensors allow the potential inclusion of 
geometric height in the ATM procedures and 
ATC systems. While more operational confi-
dence is gained over this data, OTR includes 
means to gain advantage of this information, 
while not perturbing potential assessments of 
barometric height measurements or barometrical 
height tracking. 

• TRES takes advantage of geographical informa-
tion, in the form of coverage, screening files, 
airport databases, …  

• It allows for data filtering at several stages, us-
ing either database methods, or built in filters 
(geographical, by sensor, by any code, by type 
of traffic, …). 

Its main purpose is the assessment, using real traffic, of both 
sensor characteristics and of real time tracking systems. 

3. OTR TECHNICAL DESCRIPTION 

The design of Opportunity Trajectory Reconstruction (OTR) 
algorithms has the philosophy of reducing interaction with 
TRES user. The objective is that user should not specify 
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OTR parameters related with smoothing data and sensor 
bias estimation. OTR works as an special multisensor fusion 
system, aiming to estimate target kinematic state, in which 
we take advantage of knowledge of future target position 
reports (smoothing). Figure 3 presents the block diagram of 
OTR algorithms. We will detail its steps in the following 
subsections. 

ASSOCIATION, NOISE CALIBRATION AND BIAS 
ESTIMATION AND CORRECTION 

The first task in trajectory reconstruction is to put all meas-
urements in the same coordinates system and correct sys-
tematic errors of each sensor. The system will use stereo-
graphic projection. The measurements of each sensor are 
converted from its measured coordinates system to stereo-
graphic central coordinates. If information about sensor 
measurement noise exists, it is also converted to noise co-
variance matrix in central coordinates. Next we select the 
data for Trajectory reconstruction applying filters specified 
by TRES user in order to allow exclude manually data 
items.  
The following step is to group sensor data in mono-sensor 
tracks related with a target, and monosensor tracks among 
them to form multisensor tracks. This is a prerequisite for all 
functions.  To do that, association algorithms takes into ac-
count code information, position compatibility, time of 
measurement compatibility, velocity on segments compati-
bility, etc. In this first stage, the association method should 
be conservative to permit a confident bias estimation, be-
cause a later stage will refine the association. 
There could be problems in the noise parameters injected by 
the user, and so overall system robustness and precision will 
be enhanced with the estimation of sensor noise covariance. 
The user could fix certain biases as correct and let the OTR 
algorithm determine the rest of the parameters. For each 
track we determine segments of rectilinear uniform mode of 
flight (MOF). The data in these segments will be used to 
estimate non corrected sensor biases. The data in rectilinear 
segments is used for bias estimation avoiding problems with 
the systematic errors in position predictions associated to 
target manoeuvres. These data are injected into the bias es-
timation algorithms. They are based in the Kalman filtering 
of error model parameters for each sensor. Models appropri-
ate for each sensor have been derived. Data for the same 
track segment are used to estimate sensor biases for all the 
sensors feeding the track in the segment. Then, the track 
related estimates are combined and sensor global biases are 
derived. Finally, the system corrects biases and group data. 
As bias models include bias terms related with all traffic and 
others related with each individual target, the bias estima-
tion/correction must be performed in two steps: 
1. Global bias estimation and correction for bias terms 

related with all traffic. 
2. Target bias estimation and correction for bias terms 

related with each individual target 
After global bias correction, data association may be en-
hanced, as we can reduce spatial compatibility gates and use 
aligned data. A process for association refinement is then 

set, which allows for more aggressive association heuristics, 
as bias estimation will be not corrupted by any problematic 
association. 

RECONSTRUCTION ALGORITHMS 
The trajectory reconstruction uses all reports associated to 
the multi-sensor trajectory, expressed in common coordi-
nates, and with systematic errors of each sensor corrected. 
This process is based on the segmentation phase dividing 
reports from the trajectory in time intervals corresponding to 
different Modes of Flight (MOFs). With this information, 
the reconstructed trajectory is interpolated in each segment 
using filtering models matched to the MOF segments using 
the parameters describing each segment. The 3D reconstruc-
tion is separated into 2D horizontal and vertical components, 
both for MOF recognition and for trajectory interpolation. 
Figure 4 summarizes the reconstruction process. It consists 
in a double tracking loop in the forward and backward direc-
tions, both for MOF classification and trajectory reconstruc-
tion, with appropriate filtering techniques and dynamic 
models for all representative situations. These loops have 
the following functions:  
1. Determine segments with uniform MOF. 
2. Detect outliers and solve problems of association of 

target reports to multiple tracks. 
3. Detect missed target reports. 
4. Reconstruct trajectories with position, velocity and 

acceleration estimates. 
5. Assess quality of reconstructed trajectories, characte-

rizing error ellipses and envelopes. 

Finally, after these loops, the reconstruction information is 
used for final interpolation and post-filtering issues covering 
the requirements on gap extrapolation, correlation of en-
richment of external trajectories, analysis of missed reports 
and track classification. 
The MOF recognition and classification phase provides an 
initial classification for the set of multi-sensor data con-
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tained in each trajectory. It divides segments with different 
modes of flight (MOF). This MOF segmentation basically 
defines time intervals containing multi-sensor data corre-
sponding to different types of motion: uniform motion, 
turns, and longitudinal maneuvers. This process is based on 
a set of matched Kalman filters used to estimate the prob-
ability of target flying accordingly to the different modes 
defined. For this application, one of the techniques in the 
state of the art in tracking filter has been employed, Interact-
ing Multiple Mode (IMM) filters, with appropriate mode 
matched to each considered MOF. This type of tracking fil-
ters has been extensively applied to ATC systems [3,4]. 
Since this kind of filters can have problems to detect ends of 
maneuver segments, the forward and backward filter run-
ning are complementary to address this problem effectively 
and take advantage of the use of past and future measure-
ments.  The execution of IMM tracking filter forward and 
backward over data in the trajectory allows estimation of 
probabilities for each mode of flight in both directions [5]. 
This is used to identify the start and end of typical maneu-
vers to build the segments dividing the trajectory (see Figure 
5). 

The parameters describing each MOF segment are computed 
for validation and for estimation of the final MOF category 
and level of confidence. These segments are additionally 
used in the comparator module to compare two RTs regard-
ing MOF. These MOF parameters are used by the final re-
construction algorithms to refine the transitions among dif-
ferent modes of flight and compute their parameters accord-
ingly to the available data. The outlier removal is also done at 
this phase to avoid triggering bad modes of flight. This logic 
basically analyses the residuals (difference between observa-
tions and tracker predictions), weighted with their associated 
covariance matrices, in order to identify those measurements 
with anomalous deviations. 
Also, in a separated step, all missed target reports are com-
puted, using sensors’ time scan, and considering special 

cases for ADS data possibly belonging to overlapped sta-
tions and data from combined primary-secondary radars. 
Besides, directly related with outlier removal, maneuvers of 
very high acceleration (High Energy Maneuvers, HEM) 
receive special attention. In these cases, very few reports in 
the MOF segment would be available to perform any rea-
sonable interpolation, so these segments are marked to pre-
clude interpolation applied in the rest of cases. The logic for 
HEM detection is an extension of outliers’ logic. 
After MOF reconstruction, tracking filters specialized for 
rectilinear segments and for non-uniform motion are applied 
to provide the best reconstruction of the real trajectories 
followed by all targets in the recording. They interpolate, 
using IMM forward-backward filters, the state vectors cor-
responding to available measurements, taking also into ac-
count the maneuvering parameters describing the “mean” 
values along the segment, but adapted to the specific condi-
tions of the time segment including the target reports. This 
solution, an extension with respect to previous proposals 
also based in forward-backward runs [5,6], imposes continu-
ity conditions in speed and position with adjacent segments, 
allows a high smoothing to filter out noise, and also adapta-
tion to dynamic conditions of maneuvers (for instance, the 
transversal acceleration or longitudinal acceleration may 
change along a turn trajectory).  
The quality of segment interpolation is attached here to each 
segment of a reconstructed trajectory. The estimation of the 
uncertainty will include the standard deviation of target po-
sition, both for each position with ellipse error parameters or 
both the trajectory segments, with the envelope of ellipse 
errors which can be also used to display the volume corre-
sponding to targets with probability 95%. 
This reconstruction is done first for time registers corre-
sponding to all available reports. Afterwards, the final set of 
reconstruction samples are generated through interpolation 
with a criterion of bounded error. The minimum possible set 
of samples are stored, considering the distortion due to 
stereographic projection in uniform motion and maximum 
linear errors for maneuvering segments to derive a minimum 
time separation between samples. 
Reconstruction phase ends doing a post-filtering function 
covering association and enrichment of external trajectories, 
and merging of trajectories with large gaps within, taking 
into account forbidden extrapolation cases (landing/take-off 
and coverage enter/exit pairs of trajectories).  
Finally, in this block the trajectory will be classified into 
aircraft classes, within certain confidence levels, using in-
formation from reconstructed trajectory parameters (veloc-
ity, height, maneuvering parameters, etc.). 

4. RESULTS AND CONCLUSION 

The performance of proposed OTR algorithms were ana-
lysed in some simulated representative situations, with the 
typical magnitudes of speeds and manoeuvre accelerations 
and different sensor configurations. The MOF classification 
obtained satisfactory results (the right sequences of seg-
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ments, with small errors in the time edges). Regarding the 
accuracy performance in position and velocity, the values 
obtained were consistent with the error bands corresponding 
to 96%, and a significant improvement was observed when 
DAP-ModeS or ADS-B velocity was included in the inter-
polation. 
Also, bias estimation procedures were validated in simulated 
scenarios, where we obtained accurate estimate of the simu-
lated biases, which were consistent with the simulated bias 
values and with their associated covariances. 
With an illustrative purpose, we present here some examples 
of  reconstructed trajectories with real data close to an airport 
area, where we have a set of aircraft in the take off and climb 
phases. We are selecting these trajectories as they are among 
the most problematic for commercial controlled traffic for the 
reconstruction due to: 

- Their higher lateral manoeuvrability. 
- The change of height and related change of velocity 

as the aircraft climbs. 
In figure 6, we can appreciate the sensor data and recon-
structed trajectories, in horizontal and vertical planes. The 
detected outliers (“OUT”) and missed reports (“MISS”) are 
also indicated, events used in the CMP module to analyze 
the sensors performance.  
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Figure 6: Reconstructed departures trajectories 
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Figure 7: Horizontal reconstruction (detail) 
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Figure 8: Vertical reconstruction (detail) 
 

Figure 7 has the detail in horizontal plane, indicating the un-
certainty ellipses of measures and reconstruction, and figure 
8 presents the detail of vertical reconstruction, indicating the 
barometric quantization interval. As we can appreciate, het-
erogeneous data were correctly aligned after bias removal so 
that the reconstruction could build a smooth reference curve 
for evaluation. Regarding the segmentation of mode of flight, 
the results are also satisfactory, with the detection of turns 
and longitudinal accelerations in horizontal plane, and climb-
ing in the vertical plane. 
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