
Towards the Improvement of the Software Quality:
An Enterprise 2.0 Architecture for

Distributed Software Developments
Rafael Fernández#1,Javier Soriano#2,Xabier Larrucea*3,Andrés Leonardo Martínez†4,Jesus M. Gonzalez-Barahona‡5

#Computer Networks & Web Technologies Lab., School of Computing,
Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Madrid, Spain

1rfernandez@fi.upm.es
2jsoriano@fi.upm.es

*European Software Institute (ESI), Bizkaia, Spain
3xabier.larrucea@esi.es

†Telefónica Research & Development, 28043, Madrid, Spain
4jsoriano@fi.upm.es

‡GSyC/LibreSoft, Universidad Rey Juan Carlos, Madrid, Spain
5jgb@gsyc.es

Abstract— Software development is tightly dependent on the
tools available for supporting its processes. Organizational and
sociotechnical peculiarities such as indefinition of roles,
geographically distributed development teams, new business
models and diverse cultural interactions steer these tools.
Software development supported by web-based services, built on
top of Web 2.0 technologies, is emerging as a new paradigm for
distributed software development. New generation software
forges (web-based development environments) such as EzForge
are becoming the infrastructure that provides the required
features for hosting collections of software development projects.
They are composed of an integrated set of tools, interacting in a
mashup-like environment, each one suited for a specific task, and
therefore simple enough to keep total complexity low. An
adequate selection of tools helps developers to focus on the
implementation of the requirements, while at the same time they
cope with complex information coming from many individuals
and organizations. The complexity of distributed software
development requires a controlled and a strong collaboration
amongst developers, which has to be supported by the selected
architecture. Moreover, an increased demand on quality
assurance is required by the many organizations aiming to
achieve a certain quality level. A new architecture based on the
Web 2.0 core ideas and methods overcomes these challenges in
software development, representing a cornerstone to achieve
satisfactory results in this ambitious environment.
Index Terms— Web/Enterprise 2.0 Distributed Software
Development, Process Definition, EzForge, Quality

I. WEB/ENTERPRISE 2.0 TECHNOLOGIES AND QUALITY
ASSURANCE

Nowadays many organizations are worried mainly about
two issues: collaboration and quality assurance. As global
market opportunities and competition increase, collaboration
is becoming more and more essential for improving
productivity and accelerating innovation at the personal, team,
group, enterprise and business coalition levels. Many
enterprise collaboration platforms have already been

developed and successfully deployed in both large, and small-
and medium-sized enterprises (SMEs). Enterprise
collaboration has recently come to benefit from the emergence
of an enterprise-oriented specialization of the Web 2.0 vision,
commonly referred to as Enterprise 2.0 [1], providing new
models and tools for emergent collaboration and co-creation.
Enterprise collaboration is thus being enhanced by virtual
communities that leverage social linking and tagging tools
(such as those for social networking, social bookmarking and
social search), user-contributed content management
platforms (like enterprise Wikis, blogs and forums), tools to
leverage user opinions (such as those supporting commenting
and voting), subscription-based information distribution tools
(such as corporate RSS feeds), etc. Used in the context of a
carefully engineered collaboration strategy, these technologies
provide a wealth of collaborative services for software
developers [2].

On the other side, quality still represents a nightmare for
too many organizations. In fact, quality cost is one of the most
important considerations in software production [3], [4].
Quality assurance practices and software products quality
represent in most of cases the forgotten requirement, and it is
becoming a hard task to select an appropriate infrastructure
capable of fulfilling, at the same time, customers'
requirements and some level of quality assurance. The
resulting solutions are usually defined in terms of which
functionalities are exposed, and the question about what is the
quality required and how do we achieve this quality are
effaced from stakeholders' memory.

This situation is found in a broad range of scenarios, such
as consultancy, in-house and outsourcing developments. The
evolution of Internet technologies such as Web 2.0 and
mashup platforms is supporting collaboration mechanisms,
but at the same time they need to fulfil quality models
requirements (e.g., Capability Maturity Model Integrated-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CMMI) [5]. In order to facilitate the fulfilment of these two
challenges, we present in this paper a reference architecture
that combines the evolution of these new Web/Enterprise 2.0
technologies, the mashup philosophy, and quality assurance
facilities. The resulting collaborative environment is enriched
with the savoir-faire (knowledge management) in software
production environments.

The remainder of the paper is organized as follows. Section
II presents an overview of EzForge, our Web 2.0-based
networked forge. We then concisely set in section III the basis
for enriching the forge with savoir-faire in software
production environments. Section IV focuses on Method
Engineering and the EzForge architecture from a holistic
view, and describes the reference architecture for distributed
quality software development. Section V elaborates on why
this approach covers the main quality practices, and finally,
we conclude the paper in section VI.

II. EZFORGE: NEW GENERATION OF NETWORKED FORGES
SUPPORTING COLLABORATIVE SOFTWARE DEVELOPMENT

Organizations tend to behave like dynamically
reconfigurable networked structures that carry out their tasks
by means of collaboration and teamwork. Effective teamwork
is an essential part of any non-trivial engineering process, and
collaborative capabilities are an essential support for these
teams. Software development is no exception; being in itself a
collaborative team effort with its own peculiarities. Both in
the context of open source software development projects and
in organizations that develop corporate products, more and
more developers need to communicate and liaise with
colleagues in geographically distant areas about the software
product that they are conceiving, designing, building, testing,
debugging, deploying or maintaining. In their work, these
development teams face significant collaborative challenges
caused by barriers raised by geographic distance, time factors,
number of participants, business units or differences in
organizational hierarchy or culture that inhibit and constrain
the natural flow of communication and collaboration. To
successfully overcome these barriers, they need tools to
communicate with each other, and coordinate their work.
These tools should also take into account the functional,
organizational, temporal and spatial characteristics of this
collaboration. Software product users are now becoming
increasingly involved in this process, which means that they
should also be considered. In response to this necessity, forges
are gaining importance both in the open source context and
the corporate environment.

Following the ideas in [6], a forge can be described as a
kind of collaborative development environment (CDE) that
provides a virtual space wherein all the stakeholders of a
software development project, even if distributed by time or
distance, may negotiate, brainstorm, discuss, share
knowledge, and work together to carry out a software product
and its supporting artefacts. It integrates multiple collaborative
tools and resources, offering a set of services to aid all the
stakeholders in the software development area, including
managers, developers, users, commercial software

manufacturers and software product support enterprises, to
communicate, cooperate and liaise. Forges consider the social
nature of software development and assure that the people
who design, produce, maintain, commercialize and use
software are aware of and communicate about the activities of
the others simply, efficiently and effectively, also encouraging
creativity and driving innovation. In doing so, forges provides
with a safe a centralized solution conceived to optimize
collaborative and distributed software development generally
based on Internet Standards. This solution serves a number of
essential purposes, including:

• Holistic integration of disparate collaborative processes
and tools through a collaborative environment,

• Expansion of visibility and change control,
• Centralization and administration of resources, and
• Reinforcement of collaboration, creativity and

innovation.

A. EzForge
The appearance of Enterprise 2.0-based forges, such as

EzForge [7], supported by Enterprise Mashup platforms
(EzWeb in this case, http://ezweb.morfeo-project.org/lng/en)
and Gadget Development Environments (FAST in this case
http://fast.morfeo-project.eu), enable software development
teams to find, customize, combine, catalogue, share and
finally use tools that exactly meet their individual demands.
Supported by the EzForge platform, they can select and
combine development tools hosted by third parties rather than
buying a pre-determined, inflexible and potentially
heavyweight software development environment.

EzForge, as the main part of the proposed architecture, is
based on the idea of considering forges not as single sites
providing a monolithic set of services to host projects as
isolated silos of knowledge, but as a collection of distributed
components providing services among which knowledge is
shared. Each project decides on its own customized set of
services, and users can configure their own mashup-based
user interface. The main components are:

• Integrated systems. Those specifically built to feet into
the proposed framework. Their interfaces will be
described below.

• Legacy systems, which can be semantic or non-
semantic. They are pre-existing systems that have to be
integrated in the networked forge. The former offer
some kind of semantically tagged information (RDF
channels or some other XML markup) usually through
REST interfaces. The latter provide just a non-
semantically annotated HTML interface.

• Client components. Usually web browsers, interacting
with the rest of the system via HTTP, will provide the
user interfaces. They can as well be other systems
capable of interfacing to RDF channels via HTTP, such
as plugins for IDEs.

• Connectors. They connect non-semantic legacy
components to the rest of the system. They usually
parse HTML pages translating them into RDF channels,

and receive REST invocations converting them into
HTTP interaction with the legacy service.

• Adapters. They interface to semantic legacy
components. Since those already provide XML access,
adapters just translate and ``adapt'' the XML
information of the legacy system to the RDF
conventions used in the forge.

• Operators. They are made of aggregators, filters, and
others. All of them are extended versions of the
traditional ones, because they not only collect RDF
channels, they also process them in several ways.

• Locators. Used as name services, allow for the
registration of specific components, and offer their
descriptions to clients and interconnecting components.
Usually, each networked forge will maintain at least one
locator, but each component can be registered in as
many locators as needed.

• Catalogues. Components available for a certain
community register in the corresponding catalogues.
They are used by project administrators to select the set
of components they will use by default, and by users to
locate the components for their personalized forge.
Depending on access policies, users can drag and drop
information from a catalogue to a locator, or add new
information to a catalogue.

Fig. 1 depicts the 3-tier EzForge architecture. The back-

end tier is where integrated and legacy systems reside.
Several connectors or adapters can work with the same legacy
service, providing different interfaces to it. Conversely, a
given connector or adapter can work with several instances of
the same kind of legacy service, providing the same interface
to several sites. It is important to realize that the EzForge
architecture imposes no limitations to where the different

components may be hosted. Those systems have their own set
of basic forge services, such as source code management,
wiki, and issue/bug tracking services, and they are integrated
into the forge following a Web 2.0 approach consisting in the
wrapping of their legacy services by a uniform layer of
resources. These resources are components designed
following the REST architectural style [8] that can be
accessed through an URI via HTTP. Integrated systems
already follow this approach, while legacy systems needs
adapters to perform this task.

Thanks to the aforementioned layer of resources, the
EzForge tier can access them to gather and process their data
by means of special resources called operators, elements
designed to get data from resources and use it to produce new
data that can be processed by other resources, enabling their
remix and composition. This way, EzForge creates the set of
resources that will be delivered to end-users.

Once the EzForge tier has its forge resources set, final users
are empowered by allowing them to design their own front-
end (the front-end tier or forge user interface) by means of
composing user interface building blocks called gadgets,
which are endowing with the forge resources. Following this
approach, users can mix and compose forge resources on their
own, allowing them to choose the best resources to meet their
needs. User can even include external resources, such as
Google Maps or RSS feeds, into their UI, using all of them as
a whole. They will use whichever resources they like to create
ad hoc instant forge UI, encouraging resources mashup, and
following the DIY (“do it yourself”) philosophy.

III. SAVOIR-FAIRE IN SOFTWARE PRODUCTION ENVIRONMENTS
More often than can be imagined, developers are plunged

in an ocean of tools and procedures required in their daily
work. Until this point, in this paper we have defined a forge as

Fig. 1 EzForge Architecture

a development platform, with project responsibilities
delegated to developers, and without taking into account the
management of their know-how. How do we materialize the
know-how of your developments? How can we assure that our
software products are developed as defined by the
organization? These questions represent some of the factors
that guide organizations to consider the materialization of
their know-how and their internal procedures in some
structure that assists them to avoid or overcome barriers and
hurdles rising during their work. For example, some of these
elements are the integration of new developers within
development teams, and the quality assurance with respect to
the requirements of quality models such as CMMI.

This is a cornerstone in our software development, and it is
a part of the knowledge management (KM) broached by our
architecture. One of the competitive advantages for
organizations is their know-how, their human capital.
Therefore we need to convert tacit knowledge into explicit
knowledge, in order to share information and to promote the
savoir-faire within the organizations. In the area of KM Peter
M. Senge [9] defines “learning organizations”, and states five
interrelated disciplines for the creation of smart and
competitive organizations. In our approach we have used the
method engineering approach as the way to make explicit tacit
software production processes and methods in order to spread
knowledge within the organization.

Method engineering [10] is used for several software
developments and approaches [11], [12]. We have adopted
Software Process Engineering Metamodel (SPEM) 2.0 [13] as
a language for the definition of software development
processes, and the Eclipse Process Framework (EPF) as a tool
support for defining processes and methods in a Eclipse-based
environment. The main idea is to define a methodology that
relates method elements to the EzForge resources required for

the software development. The huge number of resource-
oriented services that are envisioned to be available in an
Internet-scale networked forge will become unmanageable
and thus useless for its users. Even if a repository service is
provided, it will eventually become difficult for software
development stakeholders to find out which resources (i.e.
tool services) are appropriate for their development process.

This is the reason why we have created dedicated
catalogues. In fact they provide navigation services for
software development stakeholders and help them to find out
which resources (i.e. tool services) they need to create the
mash-ups they want. EzForge provides a user-contributed,
“living” catalogue of resources founded on the Web 2.0 vision
for user co-production and harnessing of collective
intelligence (see Fig. 2). This would provide all stakeholders
with a collaborative semantic Wiki, and tagging and
searching-by-recommendation capabilities for editing,
remixing and locating resources of their interest.

The catalogue sets out the knowledge available within a
certain community for composing resources (e.g. a method
from its fragments) in a graphical and intuitive fashion and for
sharing them in a worldwide marketplace of forge services.

The catalogue allows users to create complex mash-up
solutions by just looking for (or being recommended) “pre-
cooked” or off-the-shelf resources and customizing these
resources to suit their personal needs and/or the project
requirements, interconnecting resources, and integrating the
outcome in their development workspace. These decisions are
defined during the development process definition.

Folksonomies of user-created tags will emerge and grow as
users add information over time, acting as important
facilitators of a useful marketplace of resources for the
networked forge. Earlier approaches to service discovery and
description like UDDI are not adequate to support human

Fig. 2 Cataloguing Resources

beings in easy resource retrieval and evaluation. By contrast,
the exploitation of collective intelligence and user-driven
resource categorization is beneficial for users.

A straightforward application of our savoir-faire approach
using the catalogue is split in four steps:

• Evaluation of new developments: taking into account
previous experiences, method engineers evaluate a new
software development. In this phase, Knowledge
Management plays a relevant role identifying software
development phases, tasks and problems that are
resident in developers' minds. Method engineers should
evaluate previous experiences and clearly specify what
objectives of this new development are.

• Selection of method fragments based on previous
experiences: method engineers select the appropriate set
of method fragments fitting software requirements. In
fact in this context each method fragment is related to a
set of Web 2.0 resources. A basic catalogue contains the
relationships between software processes and Web 2.0
resources. Each task is related to workproducts
representing a resource and therefore method engineers
could specify the appropriate tools support at each
software development stage.

• Composition of method fragments in order to produce
a software development process used in the
organization. In this step the selected method fragments
are composed defining a flow that it is guided by the
methodology. This composition determines which are
the selected resources at each stage of the development
process. This approach is similar to Business Process
Execution Language (BPEL) where web services are
called following a specific order and sequence.

• Deployment within the organization. The resulting
software development process is represented as a model
and it is used by our forge. At this step, following
CMMI terminology, the result represents a defined and

managed Standard Software Process (SSP) for an
organization. This is a requirement for organizations
aiming to achieve compliancy with CMMI level 3.

This novel approach uses a method engineering approach in
order to make explicit the savoir-faire in software
developments within an organization. A catalogue contains
relationships between method fragments represented by the
methodology using SPEM 2.0, and resources that are
represented within the forge as aggregators or connectors.
Method engineers select the required method fragments
needed for their software developments. In this context they
select indirectly a set of aggregators and/or connectors that are
related to specific resources. These resources are the basic
tools within the development environment. Therefore we are
reducing the gap between methodologies and software
development tools support. This process allows the
customisation of the resources and therefore the user's
interfaces.

IV. METHOD ENGINEERING AND EZFORGE ARCHITECTURE: A
HOLISTIC VIEW

EzForge is a highly configurable and extensible user-centric
collaborative software development tool that follows a novel
mashup-based lightweight approach, provided by the EzWeb
|14] core technology. Its user interface is defined by users
theirselves, being able to make it up by assembling a set of
small web applications called gadgets, which are the face of
the services being offered by the forge. Up to now, there have
been several attempts to bring mashup-based tools to the
organizations [15], with satisfactory results. But with regard to
software development, open source development tools don't
take into account a key point in the software development
within organizations: quality.

Method Engineering and EzForge architecture (Fig. 3) is
compatible with the savoir-faire process defined previously
and technically it is defined in three stages:

Fig. 3 A holistic view of Method Engineering and EzForge

• Model stage. The goal of this stage is to link the
available gadgets from the EzForge catalogue with the
method fragments that exist in the method repository
and that will conform lately the used methodology. This
catalogue provides access in an automated way to
EzForge catalogue in the execution level. For this
purpose, we have developed a folksonomy-based
mapping, which allows us to create that link by using
social tagging techniques. By using these tags we will
be able to choose the gadget or gadget group labelled
with the method identifier in methodology run time in
an easy way. Besides, it gives us a way to incorporate
the organization internal knowledge about how things
work better, as it is their own developers who carry out
this tagging process.

• Methodology stage. It is in between model and run
stages, and as we said before, it is where method
workers select the method fragments that will make up
the organization's methodology. To do so, method
workers use the Eclipse Process Framework, which
helps us to get, among other things, an XML
representation of the methodology.

• Run stage. Once we've got the methodology, the next
step is to put it in execution by means of a workflow
engine. Thanks to this, EzForge can choose the
appropriate and required development tools depending
on the ongoing development phase.

Thus, our proposed reference architecture takes the
advantages of method engineering and brings them all to
EzForge, allowing companies and organizations to have a
user-centric collaborative development tool which can guide
its users through the development process.

An instance of the running application is shown in Fig. 4,
using a web browser. Gadgets presented in this interface are
those that have been defined by the method engineer when he

was defining the organization's standard software process.
Obviously there are some permanent gadgets in this interface,
but most of them are configured during the model and
methodology levels. Once we start/continue a software
development, these gadgets are modified accordingly to a
software development phase. In Fig. 4, the main gadget
marked as “1”, acts upon the existence of gadgets marked as
“2”. Moreover, there are some other relationships amongst
gadgets, also shown in this figure. When an element in one
gadget is selected, related elements in other gadgets are
automatically selected. These relationships are not specified
by the defined and managed methodology, they are
implemented by the forge as a mean to achieve
interoperability between gadgets. For this matter, EzForge
follows the interoperability techniques proposed in [16].

V. WHY THIS APPROACH COVERS QUALITY PRACTICES?
Managers are usually not worried about the technical

architecture, but are more focused on costs and quality
requirements used for the developments carried out in their
organizations. Method engineering & EzForge architecture
combine quality practices and a development infrastructure
based on Web 2.0, ensuring quality aspects with low cost,
open to new tools, representing an integrated environment,
and overcoming new developer's barriers.

Why this approach covers quality practices? CMMI is one
of most used quality reference model and it comprises two
representations: staged and continuous. Whatever CMMI
representation stakeholders select for their adoption, there is a
common problem: a separation among process areas, due to a
scarce tool support from a holistic perspective. Nowadays,
engineering practices and process/project practices are
separated, being one of the main tasks for adopters to assure
that all process areas are coherent and consistent among them.
Method engineering & EzForge architecture ensures quality

Fig. 4 Runtime execution overview

practices because the process defined and managed is used
accordingly to its specification, and the development forge is
guided by the methodology designed. In addition it also
covers engineering and support process area because it
provides an integrated development environment gathering
requirements and configuration managements.

VI. ON THE ROAD
The presented approach combines method engineering and

Web 2.0 technologies in order to create a new generation of
software developments tools and methods. Our approach starts
from an explicit definition of the main tasks that a developer
should carry out and its development environment is modified
with respect to the organization's development process. This
novel approach combines an extendable development
environment based on Web 2.0 technologies with quality
practices and tools. As results, we reduce the gap between
development tools with low cost; we implement an extendable
environment where we can select the appropriate tools
support, and quality practices and tools are assured by this
architecture. Web 2.0 technologies relevance is becoming
during these last years a new wave in several environments
and method engineering approach provides architecture to
make explicit the knowledge managed by organizations. Our
experience combining both approaches places us on the road
for a new tool generation of software developments whose
benefits are:

• Facilitate collaboration in heterogeneous contexts:
Web 2.0 technologies facilitate software developments
on the Web.

• User interface configuration: another advantage that
comes directly from using method engineering and
EzForge altogether is the possibility of generating the
user interface based either on the methodology used.
Thus, when creating a new project on the forge, it will
be able to help the user to choose the tools to be used

• Help developers to add new tools within the
development process.

• Compliancy at CMMI levels 2 and 3 through the
definition of defined and managed standard software
processes. The use of method engineering opens the
door to the definition and management of the
development processes. That is why EzForge will give
support, for example, to the use of CMMI. This will
make it possible to ensure that carried out developments
will place the organization in a certain maturity level,
allowing an improvement of the methodology used.

• Establish a relationship between process a project
management tools (EPF) and engineering tools (forge).

• Provide a new tool in the knowledge management area
through the use of method engineering.

Currently we are applying this approach in several test
cases and projects. A step forward in this development is to
provide facilities to the forge in order to collect all kind of
metrics. This characteristic will provide a better understanding
of our current developments.

ACKNOWLEDGMENT
This work is being supported in part by the Spanish

Ministry of Industry, Tourism and Commerce under the
National Research, Development and Innovation Program
(VULCANO Project, Grant Agreement No. TSI-020301-
2008-22, and EzWeb Project, Grant Agreement No. TSI-
020301-2008-4), and by the European Commission under its
7th Framework Programme (FAST Project, Grant Agreement
N0. FP7-ICT-2007-1-216048). The work has benefited from
many discussions in the context of the Morfeo Open Source
Community (http://morfeo-project.org). We thank all the
people who contributed with ideas, comments, and criticisms.

REFERENCES
[1] A. McAfee, “Enterprise 2.0: The dawn of emergent collaboration,”

MIT Sloan Management Review, vol. 47, no. 3, pp. 21–28, Spring
2006.

[2] J. Soriano, D. Lizcano, M. Canas, M. Reyes, and J. Hierro, “Fostering 
innovation  in  a  mashup‐oriented  enterprise  2.0  collaboration 
environment,”System and  Information Sciences Notes,  vol. 1, no. 1, 
July 2007. 

[3] L. Huang and B. Boehm, “How much software quality investment is 
enough:  a  value‐based  approach,”  IEEE  Software,  vol.  23,  no.  5, 
pp.88–95, Sept.‐Oct 2006. 

[4] J.  Campanella,  “Principles  of  quality  costs,”  American  Society  for 
Quality Press. 

[5] S.  S.  Mary  Beth  Crisis,  Mike  Konrad,  CMMI  Second  Edition. 
Guidelines  for  Process  Integration  and  Product  Improvement. 
Addison Wesley. 

[6] G.  Booch  and  A.  W.  Brown,  “Collaborative  development 
environments,”  in  Advances  in  Computers,  A.  Press,  Ed.,  vol.  59, 
2003. 

[7] (2008)  The  Ezforge  project  website.  [Online].  Available: 
http://ezforge.morfeoproject.org/lng/en 

[8] R.  T.  Fielding,  “Architectural  styles  and  the  design  of  network‐
based  software  architectures,”  Ph.D.  dissertation,  University  of 
California, Irvine, 2000. 

[9] P. M. Senge, The fifth discipline, Doubleday, Ed., 1990. 
[10] S. Brinkkemper,  “Method engineering:  engineering of  information 

systems  development  methods  and  tools,”  Information  and 
Software Technology, vol. 38, no. 4, pp. 275–280, 1996. 

[11] B.  Henderson‐Sellers,  R.France,  G.Georg,  and  R.Reddy,  “A method 
engineering  approach  to  developing  aspect‐oriented  modelling 
processes based on the open process framework,” Information and 
Software Technology, vol.49, no. 7, pp. 761‐773, 2007. 

[12] X.  Larrucea,  “Method  engineering  approach  for  interoperable 
systems development,” Journal Software Process: Improvement and 
Practice, 2008. 

[13] O.  M.  Group.  (2007)  Software  process  engineering  metamodel 
(spem)  2.0  on  OMG.  [Online].  Available: 
http://www.omg.org/docs/ptc/07‐11‐01.pdf 

[14] (2007)  The  Ezweb  project  website.  an  open  source  enterprise 
mashup  platform.  [Online].  Available:  http://ezweb.morfeo‐
project.org/lng/en 

[15] E.  Driver,  Road  map  to  an  enterprise  collaboration  strategy,  F. 
Research, Ed., August 2 2004 

[16] D.  Lizcano,  J.  Soriano,  R.  Fernández,  J.  López,  and  M.  Reyes, 
“Tackling  interoperability  in  composite  applications  from  an 
enterprise  mash‐up  perspective,”  in  Proceedings  of  the  14th 
International Conference on Concurrent Enterprising (ICE 2008):  ’A 
new wave of innovation in Collaborative Networks’, T. Klaus‐Dieter, 
P.  Kulwant  S.,  and  R.  Gonsalves,  Eds.  Centre  of  Concurrent 
Enterprise,  Nottingham  University  Business  School,  University  of 
Nottingham, UK., June 2008. 

