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Abstract— The dependence on the Reynolds number of shal-
low depth sloshing flows inside rectangular tanks subjected to
forced harmonic motion is studied in this paper with weakly-
compressible SPH. We are interested in assessing the influence
of viscous effects on the dynamics of shallow depth sloshing flows
by using an SPH solver and by comparing with a Navier-Stokes
level-set solver results. The goal of trying to model these viscous
flows is compromised by the resolution requested due to their
Reynolds number, if boundary layer effects are to be modeled.
The convenience and feasibility of the implementation of free-slip
and no-slip boundary conditions is also discussed.

I. INTRODUCTION

Sloshing flows are those occurring when free surface waves
are generated inside tanks, usually creating significant torque
and pressure peaks on the tank due to the impact of traveling
waves. These phenomena are of interest for several branches of
engineering including marine, aerospace and civil engineering.
An abundant literature on sloshing can be found, reviewed in
the indispensable book of Prof. Raouf Ibrahim [1], one of the
most prominent researchers in the field.

Among the sloshing flows, shallow depth ones are specially
attractive due to the structure of the wave systems that are
generated under these depth conditions. When dealing with
fluids of small viscosity like water, for low frequencies a set of
small traveling waves appear. With a small rise in frequency,
the train of waves is suddenly transformed into a bore, or
hydraulic jump, a distinct step in the water surface [2].

We are interested in assessing the effect on these shallow
depth flows of modifications in the Reynolds number due to
changes in the physical viscosity. For shallow water flows,
previous attempts with SPH codes [3], [4] have been successful
in modeling both the bulk flow in terms of the torque [4] and
the wave height, even for resonant conditions [3]. Nevertheless
concerns on the role of the SPH viscous term [5] on the
simulations, when focusing on the time evolution of the bores,
have suggested to pursuing the study by checking the flow
dependence on the Reynolds number Re, keeping constant all
the parameters apart from the physical viscosity. The initial
results of such study are presented in this paper. Also, the
convenience and feasibility of the implementation of free-
slip and no-slip conditions is discussed, paying attention to
the characteristic dimensions of the boundary layers (BL) to
model, to the computational effort required and to the quality
of the results in terms of a correct approximation of the viscous
stress term in the SPH momentum equation.

Although comparing experimental data is on our agenda,
it has not been possible for this article. Nevertheless, having
information from a better established numerical technique, at
least for the pre-splashing part of the motion, is also necessary
to assess the quality and limitations of the SPH approaches.
This reference data has been specifically produced for this
study with a Navier-Stokes solver combined with a level-set
technique (NSLS) for the tracking of the free surface evolution
[6].

The paper is organized as suggested in this introduction:
first, the case studies are exposed, documenting the specific
flows to resolve as well as the fluid physical properties. Sec-
ond, the SPH treatment of the viscosity and the BL numerical
treatment are discussed. Finally, comparisons with the level
set technique data will be provided.

II. CASE STUDIES

A. Shallow water flows

The simplest mean to characterize shallow depth sloshing
flows is to resort to the dispersion relation for gravity waves
in limited depth areas [7].

ω2 = g k tanh (kH) (1)

In this expression, g is the gravitational acceleration, H the
liquid level, ω is often called the sloshing frequency and k its
corresponding wave number. The free surface height function
in a two dimensional rectangular container partially filled with
liquid can be decomposed in a Fourier series with infinite
wave numbers kn = nπ/L where L is the tank breadth. If we
focus on the first mode, the hyperbolic tangent argument of
equation 1 becomes a factor of the ratio H/L. If the depth is
great, then the tangent tends to one. If the ratio is for instance
1, the tangent value is 0.996, which means that the effect of
the depth on the waves will be very small. In this study a
ratio of 0.06 has been chosen, for which the tangent factor is
0.19, which means that this is clearly a shallow water case.
The first sloshing frequency, the one corresponding to the first
mode will be noted w1.

The tank is subjected to sway motion with a sinusoidal type
excitation. The amplitude A of this motion will be set constant
for this study with a value of A/L = 0.03. The frequency
range for the excitation is 0.5 ≤ ω/ω1 ≤ 2.0. The tank length
L is 1 meter.
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Fig. 1. Shallow water free surface paterns. From [2]

As mentioned in the introduction, the shallow water flows
than can be found in a sloshing tank either subjected to
sway or roll motion are extremely dependent on the excitation
frequency. Olsen and Johnsen [2] performed systematic studies
dealing with fluids of small viscosity like water. They found
that for very low excitation frequency the water follows
completely the tank motion, with no lag, and the free surface
stays almost flat (figure 1(a)). For slightly higher excitation
frequency, a set of small traveling waves appear (figure 1(b)).
With a small rise in frequency, the train of waves is suddenly
transformed into a bore or hydraulic jump that travels from
mid section (figure 1(c)). For even higher frequency, the bore
travels from one side of the tank to the other (figure 1(d)). If
the frequency keeps rising, the bore becomes a solitary wave
(figure 1(e)).

In our particular case, these five scenario can be obtained by
changing the excitation frequencies from zero up to the first
bifurcation, which occurs for H/L = 0.06 around ω/ω1 ∼
1.4. The presence of these different propagation patterns
highlight the complexity and the non-linearities present in the
phenomena.

B. Liquids

Three different liquids have been considered in this study.
The first one has been water, with which the concerns on
influence of the viscous term on the wave shape and prop-
agation arouse. The second one has been sunflower oil, which
is 50 times more viscous than water. The last one was
glycerine, approximately 1000 times more viscous than water.
The three liquids can be considered newtonian in the range of
temperatures that we have operated.

In order to characterize the flows, a consistent definition of
the Reynolds number Re has to be considered. The water depth

H has been taken as the characteristic length. The magnitude√
gH connected with the bore front speed propagation in a

dam-breaking problem has been taken as the characteristic
velocity.

During the first tests, we thought that the lack of imple-
mentation of surface tension effects on the evolution of the
wave fronts could be a main cause for the discrepancies, as
suggested for instance by Miller [8] and as it will be later
discussed (section VI-B). Therefore, the Weber number We
was checked, and similar values were obtained for the three
liquids. As a consequence, at least initially, the surface tension
has been discarded as an influence in this problem. A summary
of all the magnitudes can be found in table I. Regarding
specifically the Reynolds number, a wide range, from 60 to
50000 is covered with this selection.

Bass et al. [9] considered the influence of viscosity for
large amplitude sloshing. They tested Re > 4000 to find no
influence of this magnitude on the impact pressures. Let’s take
into account that in the present study we have focused on
smaller values of Re.

III. SPH VISCOSITY

Since we are interested in the Re number of the simulation,
it is convenient to have a formulation of the SPH equations
in which the dynamic viscosity is present. Although some
authors [10] have been interested in the past in defining a
consistent shear viscosity term in the SPH formalism, Cleary
was interested in establishing the relationship between the
Monaghan SPH viscous term [11] and the shear viscosity from
a practical point of view [12], [13]. Using a gaussian kernel,
the Monaghan SPH formalism [11] can be compared, term
by term, with the original viscous term in the Navier-Stokes
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ρ µ ν σ Re We

Water 998 8.94e-4 8.96e-7 0.0728 51000 500
Oil 900 0.045 5e-5 0.033 920 900

Glycerine 1261 0.934 7.4e-4 0.064 62 700

TABLE I
PHYSICAL PROPERTIES (UNITS SI) OF THE LIQUIDS AND NON-DIMENSIONAL PARAMETERS.

ρ FOR DENSITY, µ FOR THE DYNAMIC VISCOSITY, ν FOR THE KINEMATIC VISCOSITY AND σ FOR SURFACE TENSION.

equations to give an effective kinematic viscosity for the SPH
simulation, that Cleary tried to calibrate [14].

His work was completed by Hu and Adams [15], who
elegantly devised the connection between the continuum ve-
locity laplacian in the incompressible NS equations and the
Monaghan SPH viscous term, using the equally elegant ap-
proximation to the second derivatives due to Español etal [16].

The specific expression that will be used in this study for
the viscous term is the one from [13].

Πab = −8
µ

ρa ρb

vab · rab
rab2 + ε h2

(2)

where a, b refer to the particles’ indexes, rab, vab, refer to
the difference between positions and velocities respectively, h
is the smoothing length, and ε is a parameter to avoid any
singularity.

For the sake of completeness of the paper, the complete
SPH formulation will be the following:

dρa
dt

=
∑
b∈Na

mb vab∇Wa(rb) (3)

dva
dt

=
∑
b∈Na

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

+ Πab

)
∇Wa(rb) + g(4)

dra
dt

= va (5)

P =
ρ0 c

2
s

γ

((
ρ

ρ0

)γ
− 1
)

(6)

in which ∇Wa(rb) is the gradient of the a-centered kernel at
point b, Na is the index set of particle a neighbors regarding
the kernel support, m is the mass, P the pressure, ρ0 the
reference density, cs is the numerical sound speed and γ =
7. The kernel will be a renormalized Gaussian kernel with a
support of 3h and h = 1.33 dx where dx is the typical initial
separation among particles.

IV. REYNOLDS NUMBER AND BOUNDARY LAYERS (BL)

A. Reynolds number

When comparing the Cleary viscosity factor(eq. 2) with the
Monaghan [11] viscous term, for which abundant analysis
in terms of stability are available, the following relation is
obtained:

ν ∼ 1
8
αhcs (7)

The α factor should be not less than 0.01, with cs being
10 times the maximum expected velocity umax, if time in-
tegration is expected to remain stable. If it is assumed that

umax ∼ 2
√
gH , we get that

Re ∼ 2
dx

(8)

The minimum number of particles for each of the cases in table
I, required to expect time integration stability is therefore the
following.

water oil glycerine
number of particles 46e6 17e3 60

The water case (46 million particles) cannot be hence tackled
with our means, but if we could, probably instabilities in the
flow itself would appear due to the onset of turbulence. Nev-
ertheless, the effects of such instabilities would keep basically
constrained to the BL area and would not significantly affect
the wave patterns. This will be later confirmed (section VI-B)
with the comparisons between the experiments and the oil case
simulations, which match in what respects to the free-surface
shape.

B. Boundary layers (BL)

In order to establish the solid boundary conditions (BC),
ghost-particles (GP) have been used. Monaghan [17] showed
the accuracy of SPH to model shear in a Couette flow. The
boundaries were modeled with fixed fluid particles. These
particles can not stand the normal forces needed to stop the
fluid particles getting out of the tank in the sloshing case.

When the oil case was run with GP and free-slip BCs, it was
found that the dynamics was different to the one obtained with
the NSLS solver with no-slip BCs. The numerical Re seemed
to be greater, with free surface patterns similar to those typical
from water: overturning waves, splashing, etc... These patterns
were also obtained with the NSLS solver with free-slip BC.
Therefore, the BL have to taken into account.

It seems that in the oil case and even more in the glycerine
one, due to their Re number at least in principle both flows
should stay laminar. In order to resolve the viscous character
of the flow, the momentum transfer from the flow to the solid
boundaries has to be, as justified, properly modeled. Properly
resolving the proposed flows is not just a question of stability
but also of accuracy, and therefore the scales corresponding
to the BL have to be estimated in order to define the required
resolution to capture the velocity gradients close to the walls.

To simplify the problem of estimating the BL thickness,
a steady flow over a flat plate of length H or L has been
considered. The Blasius formula for the laminar BL thickness
δ will be used, taking into account that the velocity of the bulk
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flow U could be of the order of
√
gH/2 because only those

belonging to the leading crest would achieve the characteristic
value (section II-B).

δx ∼
√
νx

U
=

√
2xH
Re

(9)

For the oil case, the values obtained are δH ∼ 3 mm and
δL ∼ 12 mm. The value of dx ∼ 2 mm obtained in this case
from the stability considerations of section IV-A suggests that
it will be very hard to simulate the BL for the oil case. In
particular, what was found is that the SPH solver is unstable
for this case and it is necessary the use of a periodic rezoning
where the particles are redistribute on a regular lattice [18].
The developed rezoning algorithm [19] minimizes the error
on the total volume. This means that this error when referred
to the total fluid volume remains close to the initial one even
after a large number of rezoning events. This characteristic is
quite important when dealing with free surface problems.

The use of periodical rezoning introduces numerical noise
which in turn affects the accuracy of the SPH solution. For
the lowest Re number case (i.e. using glycerine), the BL is
thicker and the drawbacks of the periodical rezoning are less
evident since the velocity gradients are not so strong as in the
oil case.

V. TANGENTIAL VELOCITY OF THE GHOST PARTICLES.

The no-slip boundary condition at a solid-liquid interface is
at the very heart of our understanding and intuition of fluid
mechanics. There is abundant research ongoing in the field of
Micro-fluidics regarding the convenience and physical validity
of this condition [20], [21]. We mention this fact to introduce
the issue of how no-slip BC will be treated in the present paper
with SPH, which, as usually mentioned, mimics molecular
dynamics.

In principle the classical Takeda [10] technique of creating
GP by mirroring not only the normal but also the tangential
velocity was used in this study to implement the no-slip BC.
A more naif try of just making equal to zero the tangential
velocity of the GP was finally selected to surprisingly find
results of the same quality and with less instabilities; actually
rezoning was not needed for the low Re for this possibility.
We will try now to justify the reason for this behavior.

From equations 2 and 4, the SPH approximation to the
divergence of the viscous part of the stress tensor T ν for a
particle of index a can be written as:

〈∇ · T νa 〉 = −8µ
∑
b∈Na

mb

ρb

vab · rab
rab2 + ε h2

∇Wa(rb) (10)

The frame of reference is now considered centered on the a
particle. The expression 10 can be reformulated at a continuous
level as:

〈∇ · T νa 〉 = −8µ
∫

Ωa

(v − va) · r
r2

∇Wa(r)dV (11)

in which Ωa is the support of the particle a centered kernel
function, and dV is the volume element. Considering a Gaus-
sian kernel and using polar coordinates (r, θ):

W (r) =
e−(r/h)2

πh2
; ∇W =

∂W

∂r
ur; (12)

where ur is the normalized r direction vector. Equation 13
can be therefore written as:

〈∇·T νa 〉 = −8µ
∫ 2π

0

∫ ∞
0

(v − va) · r
r2

∂W

∂r

(
cos θ
sin θ

)
rdrdθ

(13)
Let’s consider a divergence free velocity field such as v =
(u, v) := (y2/2, 0), the fluid domain will be the set Ω =
{r, y > 0}, and the solid boundary ∂Ω will be hence the line
y = 0 (figure 2(a)). The continuum value of the viscous stress
for this velocity field will be constant:

∇ · T ν = µ∇2v = µ

(
1
0

)
(14)

In particular this would be the value at the solid boundary.
Since v(x,−y) = v(x, y) for this particular velocity field, this
is like having the GP with the same tangential velocity as the
fluid particles. If the expression 13 is evaluated, it is possible
to see that the same value is obtained. This means that the
SPH continuum interpolation produces a correct estimation of
∇ · T νa in this case.

On the contrary, let’s define v(x,−y) = −v(x, y), which
is the equivalent of mirroring the tangential velocity for the
boundary particles. In this case, the equation 13 would give an
incorrect null value of the viscous stress in the solid boundary.
We think now of the particle a as being close to the solid wall
(figure 2(d)). The notation is overloaded by writing ya = a,
and the origin of the frame of reference is placed at the particle
a, overloading again the notation by using y for the new axis
(ya = 0). The velocity field in the new system would be:

v =
(

y2

2 + ay + a2

2
0

)
; va =

(
a2

2
0

)
(15)

If we set the velocity for the ghost particles as the symmetric
(same sign) of the fluid particles (figure 2(d)), the correct
answer for the divergence of the stress tensor is again obtained:

〈∇ · T νa 〉 = µ

(
1
0

)
(16)

On the other hand if the velocity of the GP is defined with
antisymmetry, the result is incorrect. Midway, if the velocity
of the GP is set zero (figure 2), the result is not correct
but is better than by the usual antisymmetry. This result
is represented in figure 3, in which the stress at the solid
boundary for the two last possibilities is shown. The case
with zero velocities for the ghost particles gives a better
estimate of the stress divergence continuum approximation at
the boundary.
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(a) Test case 1 (b) Test case 2. Red line is u(y)− u(a)

(c) Test case 2 variant: GP mirroring velocity field. (d) Test case 2 variant with zero velocity for GP.

Fig. 2. Test cases to check adequate GP tangential velocity

Fig. 3. Stress divergence at the solid boundary

VI. RESULTS

A. General

As exposed in the introduction, although obtaining good
quality experimental data to compare with is programmed
for next months, it has not been possible for this article.
Only previous experimental results obtained taking advantage
of a campaign leaded by Dr. Lugni [22] for studying water
wave impact related problems have been used. Besides, it
is not feasible in the experiments to accurately measure the
characteristics of the BL whilst with the numerical outputs all
this information can be processed and compared. Therefore,
we have resorted to a well established numerical technique to
model these shear flows and produce specific reference data
for this study. The choice, as mentioned in the introduction,
has been a Navier-Stokes solver combined with a level-set

technique (NSLS) for the tracking of the free surface evolution
[6].

B. Oil, Re = 920, free-slip BC
In the oil case, as mentioned, there is both the possibility of

comparing with the NSLS solver and with water experiments
performed at INSEAN . The oil case is of the order of
the highest Re number case than can be run with SPH. It
makes sense hence to compare the free-slip oil SPH with
the experiments performed with water, since the BL for the
water is very thin. In figure 4 the maximum wave height at
three different position for a range of frequencies is shown.
The position are 1cm from the vertical wall, 5cm from the
vertical wall and 50cm from the vertical walls, i.e., the middle
of the tank. To evaluate such maximum with the SPH, 10
periods have been considered. Due to the breaking events some
dispersion on the data exists and reflect this, the standard
deviation of the SPH data has also been plot. On the plot
4(a), the different wave propagation regimes from Olsen &
Johnsen [2] as described in section II-A have been marked.
The large discrepancies between SPH and experiments for the
points around ω/ω1 ∼ 1.2 are due to the run-up event. In the
experiments the run-up jet breaks with large fragmentation
while in the simulation it remains attached to the vertical wall
and only few particles leave the wall. Conversely, at 5 cm far
from the wall (figure 4(b)) the agreement is good.

If we focus on the point ω/ω1 ∼ 0.9, steep traveling waves
form, with the leading crest starting to break as the wave front
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(a) I (b) II (c) III

Fig. 4. Maximum wave height response at 1cm (I), 5cm (II), 50cm (III) from the wall (10 periods)

Fig. 6. SPH (blue) vs NSLS (black), Re = 920, free-slip BC, ω/ω1 ∼ 1.2

approaches the vertical wall (figure 5(a)). From this figure, it
is quite clear that the surface tension has some effects on the
breaking waves. In the experiments, the breaking occurs in
a spilling more than in a plunging manner, the latter being
the case both in the SPH (figure 5(b)) and in the NSLS
simulations. Therefore, even since these surface tension effects
should not be neglected, we have done so on the basis of
the Weber number, which is similar for the three fluids, as
discussed in section II-B. Nevertheless, it could be possible
that there is an interaction between viscous and surface tension
effects, something that demands a future investigation.

We proceed now with the comparison between SPH and the
NSLS for the free-slip case. In figure 6 the wave shape for an
excitation frequency equal to ω/ω1 ∼ 1.2 is shown for both
cases. The comparison is good except at the breaking region,
where there is a clear lag, with both solvers predicting the
breaking event.

C. Oil, Re = 920, no-slip BC

The NSLS solver can provide a good quality solution for the
no-slip conditions for this case in order to compare it with the

SPH one. For the SPH solver, the no-slip condition has been
imposed with zero tangential velocity of the GP, as described
in section IV-A. The results are shown in figure 7. The most
interesting feature is that the propagation does not lead now to
an overturning and wave breaking event. In the bottom figure
a zoom of the LS solution is presented. The maps of colors
are relative to the vorticity; this allows a direct estimation of
the the BL thickness.

A maximum BL thickness of 8mm at a vertical section
distance 4H from the beginning of the BL has been measured.
The velocity just outside the BL is close to

√
gH/2, as

had been assumed in section IV-B. The thickness is in good
agreement with the Blausis formula, which gives an estimation
of 7mm for the BL thickness in these conditions. In the mid
plot of figure 7 the SPH vorticity map is shown. A periodic
rezoning of the particles has been performed every 0.1 seconds
aimed at stabilizing the SPH scheme, as discussed in section
IV-B. The SPH solution is affected by some numerical noise
due to this rezoning but the thickness of the boundary layer
is in a good agreement with the one evaluated by the NSLS
solver.

D. Glycerine, Re = 62, free-slip BC

From the analysis with the oil, it is clear the influence of the
boundary layers on the flow, and therefore, the convenience of
imposing no-slip BC. For the Glycerine, with a quite smaller
Re, the interest of studying the flow obtained wit free-slip BC
condition is related not so much with its experimental value
but with the comparison between a NSLS solution and an SPH
one with the classical Monaghan viscous term. With the free-
slip assumption, the dominant effect in this quite viscous flow
is the presence of the free surface and it is challenging to check
how nicely SPH can handle the combination of viscosity and
free-surfaces.

After finding in the equivalent case with the oil (section VI-
B) that the dynamics was similar but a bit lagged, we did not
expect much new in this case. Nevertheless, the differences
found have been quite significative (figure 8). The SPH solver
provides a steeper wave, but it is in the vorticity field where
the differences are more evident. The SPH solution presents
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(a) (b)

Fig. 5. Experiments with water (left) and free-slip SPH with oil (right) for ω/ω1 ∼ 0.9

Fig. 7. SPH (mid) vs NSLS (bottom), Re = 920, no-slip BC, ω/ω1 ∼ 1.2.
Both (top). Colors refer to vorticity.

a stronger vorticiy field than the NSLS solution. This is very
interesting because SPH tends to usually perform with more
diffusion than Finite Difference schemes. This suggest that
we need further study in this case for the understanding of the
combined effects of the viscosity models and the free surface
effects.

E. Glycerine, Re = 62, no-slip BC

After the analysis documented in section VI-C It is evident
that for the glycerine (20 times even more viscous than the
oil) the only realistic condition is the no-slip one, which has
been run both with the NSLS solver and with SPH.

In figure 4 the response operator regarding the wave height
for the Glycerine case has been shown. The influence of
viscosity on the response is clear from these graphs, reducing
the wave height for all the excitation frequencies. The flow is
slightly sensitive to the excitation frequency with the maxi-
mum response corresponding to ω/ω1 ∼ 1.1. No overturning
waves can be found, the free surface being very smooth (figure
9).

In the same figure, the thickness of the BL can be appreci-
ated. From Blasius expression, a thickness of 30mm was ex-

Fig. 8. SPH (mid) vs NSLS (bottom), Re = 62, no-slip BC, ω/ω1 ∼ 1.21.
Both on the top one. Colors refer to vorticity.

pected mid-tank. This is approximately what has been obtained
both with the NSLS solver and with the SPH computations.
Two SPH computations have been presented. In the mid-upper
one the GP tangential velocity has been set to zero. In the
mid-bottom one, the GP tangential velocity of each particle
has mirrored the one of the fluid particle [10]. The rezoning
algorithm forces that the particles are approximately at least
at a distance dx from the boundary. At that distance, as seen
in figure 9, the differences between both possibilities in the
evaluation of the stress divergence is almost negligible, thus
justifying the similitude of both boundary layers. The main
shortcoming about the mirroring of the tangential velocity is
that the flow is more unstable when no rezoning is used [18].

VII. CONCLUSIONS, FUTURE WORK

The dependence on the Reynolds number of shallow depth
sloshing flows inside rectangular tanks subjected to harmonic
sway motion has been studied with weakly-compressible SPH.
The importance of properly imposing the no-slip boundary
conditions for these types of flows as well as the difficulties
encountered have been highlighted. The different responses
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Fig. 9. SPH (mid-upper, mid-bottom) vs NSLS (bottom), Re = 62, no-slip
BC, ω/ω1 ∼ 1.2. All on the top one. Colors refer to vorticity.

according to the Reynolds number have been presented by
studying a low Reynolds number case and a mid-range one.

No-slip boundary conditions have been imposed with the
use of the ghost particle technique. The convenience of mir-
roring the velocity of the fluid particles to define the ghost
particles’ velocity, or the possibility of just canceling it has
been studied, the latter showing the same quality performance
when the solution has been compared with a Navier Stokes
Level Set solver one and with less numerical instabilities. A
justification of this result based upon the continuum SPH ap-
proximation of the stress tensor divergence has been motivated
and discussed.

A range of future investigations are suggested from this
work. Just to mention a few, the effects of the viscosity on the
wave pattern and the capacity of SPH to model them are not
yet well understood. The structure of the viscous SPH term
which has not only a shear but a bulk viscosity component
needs further investigation when modeling sloshing flows. Bet-
ter and specific experiments aimed at supporting the research
are needed. The issue of the ghost particles velocity is not yet
completely clear in relation to how it affects the boundary
layer profiles, which in turn, for higher Reynolds number,
demand multi-resolution techniques, and eventually turbulence
modeling. Finally the role of surface tension interactions with
viscosity is not yet clear.
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