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ABSTRACT 

In this paper, a series of new fluid and structure interac­
tions test cases with strong free surface effects are pre­
sented and computations of such flows with the Particle 
Finite Element Method (PFEM) (Idelsohn, Oiiate, Del 
Pin and Calvo, 2006) are documented. The structures 
object of study are elastic cantilever bars clamped inside 
sloshing tanks subjected ro roll motion. The possibili­
ties of PFEM for the coupled simulation of moderately 
violent free surface flows interacting with elastic bodies 
are investigated. The problem can be described as the 
coupling of a sloshing flow with an easily deformable 
elastic body. A series of experiments designed and exe­
cuted specifically for these tests are also described. The 
experiments comprise cases with different liquid height 
and liquids of different viscosity. The aim is to identify 
canonical benchmark problems in FSI (Fluid and Struc­
ture Interactions), including free surfaces, for future 
comparisons between different numerical approaches. 

INTRODUCTION 

The availability of sufficient computer power, together 
with the maturity of the tools for CFD analysis, open 
the way to the simulation of flow problems of increasing 
complexity. Between the many potential applications, 
the simulation of FSI problems including free-surface 
flows represents a particularly interesting case. The 
challenge is in this case connected both to the inherent 
difficulty to solve FSI problems with the simulation of a 
highly unsteady flow with a rapid variation of the fluid 
domain. 

There are in the literature abundant comparisons 
between experiments and numerical solutions for FSI 

problems without free surfaces. Publications concern­
ing the comparison between experimental data and re­
sults computed with different numerical techniques for 
pure fluid mechanics problems with free surface flows 
are also available. Nevertheless, the combined case in 
which the fluid flow including the free surface motion 
interacts with elastic structures has not been well doc­
umented and it is difficult to find experimental results 
with which to compare the simulations in order to check 
their accuracy. 

The objective of this work is to present a series of 
three examples for FSI problems for which the presence 
of free surfaces is a significant factor in the types of 
flows that can be found. The examples fall in the range 
of sloshing type problems, for which previous works 
have been done by the authors, using other numerical 
techniques (Souto-Iglesias, Delorme, Perez-Rojas and 
Abril-Perez, 2006). 

From the numerical point of view, different methods 
have been devised over the last years to deal with this 
challenge. In this work, only a comparison with the Par­
ticle Finite Element Method (PFEM) will be performed. 
A complete description of PFEM may be found in (Idel­
sohn, Oiiate and Del Pin, 2004). Only a light overview 
of this numerical method will be described in the next 
section for the sake of completeness. 

A comprehensive comparison of the PFEM method 
with experimental results including mesh refinement and 
convergence test can be found in (Larese, Rossi, Onate 
and Idelsohn, in press). In this reference only fluid flow 
problems with no interaction with elastic structures are 
discussed. The extension to deal with the elastic defor­
mation of an structure in a fluid is the objective of this 
worL 

Experimentation dealing with sloshing flows has 
been been a field mainly leaded by classification soci-



eties like DNV, ABS or LRS (Rognebakke, Hoff, Allers, 
Berget, Berge and Zhao, 2005), with some exceptions 
like Akyildiz and Erdem (2005), who studied the pres­
sure distribution in a sloshing tank during roll motion. 
Nevertheless, not much experimental work on combined 
sloshing flows and elastic bodies can be found apart 
from specific studies dealing mainly with dam-breaking 
and breakwaters problems (Antoci, Gallati and Sibilla, 
2007). The very few existing studies correspond to 
Reynolds numbers regimes difficult to reproduce numer­
ically due to the onset of turbulence. Therefore, the au­
thors believe the present paper has quite ample possibil­
ities as validation information for fluid-structure interac­
tion simulation codes because experimental data corre­
sponding to lower Reynolds numbers are provided. For 
these regimes, the numerical results do not present res­
olution problems because turbulence does not appear or 
it is very limited. Also, having elastic bodies implies 
bigger deformations thus reducing experimental uncer­
tainties. Engineering applications of such sloshing flows 
are for instance the design of the pump-towers inside the 
LNG tanks. These bodies are subjected to extreme fluid 
loads during the sloshing events (Rognebakke, Hoff, 
Allers, Berget, Berge and Zhao, 2005). Other interest­
ing application of these problems is the FSI inside safety 
valves for pressure reduction, where an elastic plate de­
forms owing to water pressure, allowing part of the fluid 
to flow out at atmospheric conditions, thus causing a 
pressure relief in the connected pipe (Antoci, Gallati and 
Sibilla, 2007). 

Extremely interesting experimental work in a related 
FSI field was carried out in the sixties by Lindholm, 
Kana, Chu and Abramson (1965). They conducted tests 
with steel cantilever plates clamped to a rigid I-beam 
support structure and partially submerged in water. They 
devised a series of corrections to linear beam and thin-
plate theories to account for the plate aspect and thick­
ness ratios. They also included apparent mass factors de­
rived from hydrodynamic strip theory. Finally, and most 
interestingly, they studied the influence of the plates be­
ing partially submerged on their resonance frequencies. 
Lindholm, Kana, Chu and Abramson (1965) work is so 
crucial that it has been used as experimental reference 
for the most recent modeling papers (Ergin, A., Ugurlu 
2003), (Kara and Vassalos 2007), (Liang, Liao, Tai and 
Lai, 2001) on hydroelasticity problems. 

Nevertheless, when studying a cantilever plate par­
tially immersed in a liquid with a free surface, not only 
its mechanical behavior should be addressed but also the 
type of free surface flow that can be found in the fluid. 
Therefore, the experimental results should cover also the 
fluid dynamics part of the problem and it is desirable 
that the deformations in the body are non negligible in 
order to make the case useful for validating a range of 

numerical codes as well as for reducing relatives experi­
mental uncertainties. Actually, there is at the moment an 
increasing interest to model and simulate fluid and struc­
ture interactions in which the deformation rates of both 
the fluid and the body are of the same order of magnitude 
as well as the motion characteristic scales. Good exam­
ples of such attempts can be found in Idelsohn, Marti, 
Limache and Onate (2008) and Walhorn, Koike, Hiibner 
and Dinkier (2005), in which a dam-breaking impact on 
an elastic cantilever is simulated. 

In order to perform experiments in which defor­
mations are high under not extreme fluid loads, elastic 
bodies with Young's Modulus of the order of 10s are 
necessary. Also, since the computations are very time 
consuming, a pure two-dimensional experimental case 
would be desirable. Apart from the experiments of An­
toci, Gallati and Sibilla (2007), more focused on the 
simulations than in the completeness of the experimen­
tal work, no such characteristics empirical tests can be 
found in the literature. In order to fill this gap a set of ex­
periments clamping an elastic body both to the roof top 
as well as to the bottom of a rectangular tank subjected 
to roll motion have been performed. The length of the 
body, the liquid, the roll frequency and other parameters 
are varied. Both the shape of the free surface as well 
as the mode decomposition of the probe deflected shape 
are discussed. 

NUMERICAL SIMULATION 

Different methods have been devised over the years 
to deal with transient free surface problems. A first cat­
egory of algorithms is based on the idea of tracking the 
evolution of a free surface defined with the help of a 
smooth distance function (Level Set)(Osher and Fedkiw, 
2001) , or of a scalar value representing the quantity 
of fluid in a given area. This is the basis of the Vol­
ume of Fluid (VOF) technique. This scalar function is 
converted according to the flow velocity field once a 
suitable discretization of the space is provided. This 
philosophy interacts quite nicely with existing Eulerian 
codes thus justifying the success of the VOF method 
in the CFD community. The VOF formulation is able 
to compute the separation (or reattachment) of parts of 
the fluid domain; nevertheless some concerns remain 
particularly related with the imposition of the Dirichlet 
boundary conditions on the free surface. Even if all the 
advantages of Eulerian methods on fixed meshes can 
be retained, the VOF approach tends to introduce some 
diffusion in the position of sharp interfaces (see for ex­
ample Zalesak's circle benchmark in Osher and Fedkiw 
(2006)). 

An alternative formulation, known as Smooth Par-



tide Hydrodynamics (SPH), allows a Lagrangian sim­
ulation of a number of particles through the use of a 
simple meshless technology (Roubtsova and Kahawita, 
2006), (Antoci, Gallati and Sibilla, 2007). This tech­
nique, which is raising an increasing interest in the sci­
entific community due to its simplicity and computa­
tional efficiency, faces however some severe drawbacks. 
First it has troubles in representing constant functions 
(it is not a partition of unity) which implies problems 
in proving the convergence. Secondly its application 
is appealing as long as an explicit formulation for the 
fluid can be used, which makes it unattractive for truly 
incompressible flows (Bonet, Kulasagaram, Rodriguez-
Paz and Profit, 2004). It has also the drawbacks of the 
difficulties to perform dynamic refinement which means 
it is very difficult to resolve boundary layers. This tech­
nique has been, as already mentioned, used by Antoci, 
Gallati and Sibilla (2007) to simulate the coupling of a 
dam-break with an elastic curtain, providing as well ex­
perimental data for water, with which the numerical re­
sults are compared in terms of displacements of the solid 
body and liquid levels at specific locations. 

The possibility exists to blend the advantages of 
"Particle" methods with finite element (FE) methods. 
The Particle Finite Element Method (PFEM from now 
on) achieves this result by converting in a Lagrangian 
way the fluid "particles" while redefining at the begin­
ning of each step a new mesh. This allows to reproduce 
very accurately the convection of the nodes and to im­
pose Dirichlet conditions in a natural way. Further, all 
the convergence results can be inherited from the FEM 
which guarantees the reliability and good convergence 
properties of the computational predictions (Idelsohn, 
Onate and Del Pin, 2004). 

The PFEM treats the mesh nodes in the fluid domain 
as particles which can freely move and even separate 
from the main fluid domain representing, for instance, 
the effect of water drops. A finite element mesh con­
nects the nodes defining the discretized domain where 
the governing equations are solved in the standard FEM 
fashion. The PFEM is the natural evolution of recent 
work of the authors for the solution of FSI problems 
using Lagrangian finite element and meshless methods 
(Idelsohn, Onate and Del Pin, 2004), (Onate, Idelsohn, 
Del Pin and Aubry, 2004). 

An obvious advantage of the Lagrangian formula­
tion is that the convective terms disappear from the fluid 
equations. The difficulty is however transferred to the 
problem of adequately (and efficiently) moving the mesh 
nodes. We use innovative mesh regeneration procedure 
blending elements of different shapes using an extended 
Delaunay tesselation (Idelsohn, Onate, Calvo and Del 
Pin, 2003), (Idelsohn, Calvo and Onate, 2003). 

The need to properly treat the incompressibility con­

dition in the fluid still remains in the Lagrangian for­
mulation. The use of standard finite element interpo­
lations may lead to a volumetric locking defect unless 
some precautions are taken (Donea and Huerta, 1998), 
(Zienkiewicz, Taylor and Nitharasu, 2005). In our work 
the stabilization via a finite calculus (FIC) procedure 
has been chosen (Onate, 2000). Applications of the FIC 
method for incompressible flow analysis using linear 
triangles and tetrahedral meshes have been reported in 
(Onate, Idelsohn, Del Pin and Aubry, 2004) and Onate 
and Idelsohn (1998). 

OVERVIEW OF THE PARTICLE FINITE ELE­
MENT METHODS (PFEM) 

Let us consider a domain containing both a fluid and 
a solid body sub domains. The moving particles in­
teract with the solid boundaries thereby inducing the 
deformation of the solid which in turn affects the flow 
motion making the problem a fully coupled one. In 
the PFEM method, both the fluid and the solid domains 
are modeled using an updated Lagrangian formulation. 
This means that all the variables in the fluid and solid 
domains are assumed to be known at time t. The finite 
element method (FEM) is used to solve the continuum 
equations in both domains. 

A mesh discretizing these domains must be gener­
ated in order to solve the governing equations for both 
the fluid and solid problems in the standard FEM fash­
ion. 

We note that the nodes discretizing the fluid and solid 
domains are viewed as material particles whose motion 
is tracked during the transient solution. This is useful 
to model the separation of fluid particles from the main 
fluid domain and to follow their subsequent motion as 
individual particles with a known density, initial accel­
eration and velocity and subjected to gravity forces. It 
is important to note that each particle is a material point 
characterized by the density of the solid or fluid domain 
to which it belongs. The mass of a given domain is ob­
tained by integrating the density at the different material 
points over the domain. The quality of the numerical 
solution depends on the discretization chosen, as in the 
standard FEM. 

Adaptive mesh refinement techniques can be used to 
improve the solution in zones where large gradients of 
the fluid or the structure motion description fields oc­
cur. For clarity purposes we will define the collection or 
cloud of nodes (G) pertaining to the fluid and solid do­
mains, the volume (V) defining the analysis domain for 
the fluid and the solid and the mesh (M) than is used for 
the discretization of both domains (fig. 1). The process 
of calculation is then as follows: 
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FIGURE 1: Sequenceof steps to update a "cloud" of nodes from time n(t = tn) to time n + l(t = t̂ j+A*) 

1. The starting point at each time step is the cloud of 
points with which the fluid and solid domains are 
represented. C denotes the cloud at time t = tn 

(fig. 1). 

2. The boundaries for both the fluid and solid do­
mains defining the analysis domain V in the fluid 
and the solid phases have then to be identified. 
This is an essential step as some boundaries (such 
as the free surface in fluids) may be severely dis­
torted during the solution process including sepa­
ration and re-entering of nodes. The Alpha Shape 
method (Edelsbruner and Mucke, 1994) is used 
for the boundary definition. 

3. Discretize the fluid and solid domains with a fi­
nite element mesh M. In our work we use an in­
novative mesh generation scheme based on the ex­
tended Delaunay tessellation (Idelsohn, Calvo and 
Onate, 2003). 

4. Solve the coupled Lagrangian equations of mo­
tion for the fluid and the solid domains. Compute 
the relevant state variables in both domains at the 
next (updated) configuration for t + At: veloci­
ties, pressure and viscous stresses in the fluid and 
displacements, stresses and strains in the solid. 

5. Move the mesh nodes to a new position Gn+1 

where n + 1 denotes the time tn + At, in terms 
of the time increment size. This step is typically a 
consequence of the solution process of step 4. 

6. Go back to step 1 and repeat the solution process 
for the next time step. 

FIGURE 2: Tank testing device 

EXPERIMENTAL MODEL 

The experimental data used for the comparison have 
been obtained with laboratory tests carried out specif-



ically for this study, using the tank testing facilities at 
UPM. The experimental equipment is represented in fig­
ure 2. It is composed of a structure that holds the tank 
and an electrical engine that produces a harmonic rolling 
motion on the moving part of the structure, which em­
braces a tank with the liquid inside. Thesystemincorpo-
rates a high precision torquemeter with a 200 Nm range 
because it is routinely used for the design of the pas­
sive anti-roll tanks for fishing vessels. It has been used 
previously aimed at providing validation data for CFD 
studies, both in terms of free surface shape as well as in 
terms of the effect of the liquid with respect to the tank 
motion, by measuring the torque produced by the motion 
of the liquid (Souto-Iglesias, Delorme, Perez-Rojas and 
Abril-Perez, 2006) as well as the wave impact pressures 
(Delorme, Roca-Fernandez-Vizarra, Souto-Iglesias and 
Gonzalez-Gutierrez, 2007). In figure 3 an image corre­
sponding to a sloshing experiment performed with the 
same system, corresponding to a campaign for study­
ing the the value of the pressure peaks during the wave 
impacting events on tank roofs is presented. 

FIGURE 3: Sloshing experiment 
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The tank, with which the experiments of the present 
study have been performed is a prismatic one, made of 
methacrylate. Their main dimensions are a length of 
609.0mm, a height of 344.5 mm and a width of 39.0mm 
(figure 4). The is for to move in an oscillatory way 

around a fixed point in order to produce the waves. In 
this study the rotation center is the center of the bottom 
of the tank. The magnitude of maximum angle as well as 
the angular can be regulated, aimed at matching the crit­
ical sloshing frequencies for different liquid levels. The 
container is closed in the upper wall, but two holes were 
made on the top in order to let the air circulate freely 
without affecting the liquid and the solid body behavior. 

On the bottom wall or in the upper one, an elastic 
beam may be clamped to interact with the incompress­
ible fluid. The beams used have a thickness of 4 mm and 
a width of 33.2 mm which is enough to simulate a 2D 
flow without touching the lateral walls. The minimum 
admissible gap was found to be 2.9 mm for the longest 
configuration of the probes (287.1 mm). It would be 
desirable to have a smaller gap with the tank walls but 
due to the flexibility of the material, the rubber beam 
is prone to slightly bend on the front direction driven 
by capillarity and surface tension effects, thus touching 
the tank walls and invalidating the experiment. On top 
of this, it was discovered that smaller gaps made it ex­
tremely difficult the positioning of the clamp anchorage. 
Another rubber band with a wider gap was also tested in 
the same conditions (fig. 6) and for every experiment the 
bands were placed in both symmetric configurations, to 
find no significant variations in the body displacements. 
An image of the fitting of the rubber inside the tank can 
be found in figure 7. 

L C 

FIGURE 6: Rubber bands drafts (not to scale) 

FIGURE 7: Rubber band inside the tank 

The material for the probes clamped to the bottom is a 
dielectric polyurethane resin, whose trademark is AX-



FIGURE 5: Mould for the probes, synthesizingprocess, traction test and anchorage 

SON RE 11820-(9). It was specifically syntethized for 
these tests by mixing the components and carefully fill­
ing a mould milled with the probe dimensions (fig. 5). 
The density of the probes was established as 1.1 gr/cm3. 
The Young modulus (initial slope), measured with a trac­
tion test is approximately 0.006 GPa. A spare probe was 
manufactured to be used for the traction destructive tests 
(fig. 5). An important aspect to be taken into account is 
that the mechanical properties of this material are not af­
fected by its immersion in the liquids during the sloshing 
tests. For the probes clamped to the top, a commercial 
neoprene rubber was used. Its density is 1.9 gr/cm3 and 
its Young modulus is 0.004 GPa. 

An anchorage piece was designed and milled to 
clamp the probe to the tank roof or bottom guaranteeing 
both a very good bending restriction at the base, as well 
as an accurate leveling of the piece at the bottom/top of 
the tank(see fig. 5). In this way, the flow is not signif­
icantly affected on the vicinity of the probe by the an­
chorage. A hole was prepared in the tank to receive the 
anchorage piece. 

Regarding the liquids, fresh water and a commercial 
sunflower oil were used. The temperature of the tests 
was 23 °C. The sunflower oil density was 0.917. The 
kinematic viscosity of the sunflower oil was measured 
using a Canon-Fenske viscosimeter running a series of 
tests at 23 °C, 40 °C and at 50 °C and by extrapolating 
the tabulated constants for the viscosimeter that corre­
sponded to the latter temperatures. At 23 °C its value is 
50 est (5e-5 m2/s). This means that the Reynolds num­
ber of the tests will be in principle 50 times lower for 
the sunflower oil when compared with the water case. 
The liquid levels considered were the same as the probe 
lengths, which implies that for all the probes there are 
two cases, one hanging, and the other clamped at the 
bottom, with the bar tip just at the free surface a rest 
This is a limit case worth studying. 

A computer program was implemented aimed at 
measuring the total displacement of the elastic beam at 
different heights. The program facilitates the analysis 
of the individual frames obtained from a conventional 

25 FPS video register of the experiment. For the short 
beam cases, only the displacement of the end-point of 
the cantilever was measured. For the cases with a long 
beam, where several bending modes appear, displace­
ments have been measured at several points marked on 
the beam front 

There seem to be several uncertainties to be bound in 
this experiment They have their origin on the gap effect 
in terms of the two-dimensionality of the case. Mea­
surement of the displacement means around 2mm un­
certainty. Dimensioning the solid body is also not trivial 
due to its flexibility. It is not completely stable in its long 
configuration due to own weight, etc. For the moment 
all these considerations have been discarded, waiting for 
an ampler experimental campaign focused on addressing 
these and other issues. 
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FlGURE 8: One end fixed and the other free vibration 
modes, from Volterra and Zachmanoglou (1965). 



DEFLECTED BARS ANALYSIS 

In their essential book, Volterra and Zachmanoglou 
(1965)(chapter 4.5) discussed the free transverse vi­
bration of uniform continuos bars under various end 
conditions. They treated the most relevant cases start­
ing with a bar with both ends simply supported. A 
very interesting physical and mathematical treatment of 
the equations allowed them to obtain the characteristic 
modes ofvibrationofthe bar under those end conditions. 

They extended the discussion to the case of one end 
fixed (clamped) and one end free, which is the one we 
are interested in. For this case, the characteristic modes 
of vibration are given by equation 2, in which L is the 
bar length, and the values of knL (wavelengths of the 
modes) as well as the modes shapes can be seen in fig­
ure 8, taken from (Volterra and Zachmanoglou, 1965). 

Xn(x) = {cosh(knx) — cos(knx) (1) 

~ • / , " r v , • w , " r v [sinh(fcns) - sin(fcnai)] I 
sm(knL) + smh(knL) j 

The time history of the lateral displacement w(x,i) in a 
free vibration process can be expressed as in equation 2, 
in which the coefficients An and Bn are a function of the 
initial conditions and of the characteristic modes func­
tions. They are found with a projection scheme, with the 
inner product 4, for which the characteristic modes are 
orthogonal functions. 

w(x,t)=Y,Xn(x)fn(t) (2) 

nsin('j)nt) (3) 

(u.,v) := / u(x)v(x)dx (4) 
Jo 

Each frequency o% depends of the mode n wavelength 
as well as of the mechanical characteristics of the bar 
(Volterra and Zachmanoglou, 1965). 

FIGURE 9: Several modes deformation 

The analysis can be extended to forced vibrations by 
lateral forces, like the ones produced by the fluid on the 

bar in the experiments described in the paper. In this 
case, the time factors of equation 2 are not harmonic. 
Moreover, in our case, the influence of the bar on the 
flow field is big enough to induce very significant effects 
on those lateral forces. Therefore, we have a coupling ef­
fect between the velocity and pressure fields of the fluid 
and the bar motion, very difficult to model with a CFD 
code. 

Since the characteristic modes are orthogonal with 
respect to the inner product 4, it would interesting to an­
alyze the shape of the bar during the motion and check 
whether more modes than the first are excited by the 
fluid motion. In order to do so, the bar shape is digi­
tized at different time steps and projected with the inner 
product 4 onto the function basis defined by the charac­
teristic modes. Unfortunately no such analysis has been 
done in time to be included in this study, but it is worth 
thinking deeper about it because, clearly, higher modes 
are relevant in the motion as can be seen in figure 9. 

EXPERIMENTAL VERSUS NUMERICAL COM­
PARISONS 

Clamped elastic beam immersed in a shallow oil 

The first two examples consist in a clamped beam of 
different lengths immersed in sunflower oil. Figure 10 
represents the geometry of the first example and 11 the 
roll angle. The bar length is exactly the same as the 
liquid depth. This corresponds to a shallow depth case 
as will be now discussed. 

6091 mm | 

FIGURE 10: Clamped elastic beam in shallow oil setup 

The simplest mean to characterize shallow depth slosh­
ing flows is to resort to the dispersion relation for gravity 
waves in limited depth areas (Lamb, 1932). 

u? =gk tanh(kH) (5) 

In this expression, g is the gravitational acceleration, H 
the liquid level, OJ is often called the sloshing frequency 
and k its corresponding wave number. The free surface 



height function in a two dimensional rectangular con­
tainer partially filled with liquid can be decomposed in 
a Fourier series with infinite wave numbers kn = rmjL 
where L is the tank breadth. If we focus on the first 
mode, the hyperbolic tangent argument of equation 5 be­
comes a factor of the ratio H/L. If the depth is great, 
then the tangent tends to one. If the ratio is for instance 
1, the tangent value is 0.996 and therefore the effect of 
the depth on the waves will be very small. In this first 
case, the liquid depth is 57.4mm, with L being 609mm 
The hyperbolic tangent factor is 0.29 which means that 
this is clearly a shallow water case. The first sloshing 
frequency, the one corresponding to the first mode will 
be noted wlr and its corresponding period will be noted 
asTi, being for this case 1.65s. The tank is excited with 
a 4 degrees amplitude roll motion whose frequency is 
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FIGURE 11: Clamped elastic beam in shallow oil: roll 

angle versus time 

It is interesting to notice the ramp during the first in­
stants of the motion(fig. 11). If pure harmonic motion is 
imposed during the simulations, this will translate into a 
lag with respect to the real motion. This is the reason for 
providing the real roll-angle history. 

The numerical model has 15480 fluid particles and 
a total of 16939 nodes including the solid and the fluid 
part. The average time step used was equal to 0.0025s. 
Snapshots of different instances of the experiment are 
shown and compared with the PFEM results at the same 
times in fig. 14. The first frame, fort = 0.92 shows how 
PFEM is able to capture the hydraulic jump over the bar. 
Nevertheless, lack of resolution is appreciated in the last 
frame, fort = 1.68, forwhich the jump leaves a vacuum 
area which does not appear in the experiment. 

For a more quantitative assessment of the agreement, 
we resort to figure 13 in which the x displacement cor­
responding to the end point of the beam has been repre­
sented for both the experiments and the PFEM solution. 

This displacement is measured in a local coordinate sys­
tem of the tank attached to the roll motion. In figure 
12, an example of such measure is shown, correspond­
ing to a negative x displacement. Figure 13 shows that 
the amplitude of the curve is well reproduced but there 
are small discrepancies that need further study. Also, 
for this case, the experimental displacements were very 
small thus implying bigger uncertainties in their values. 

FIGURE 12: Local coordinate system for comparisons. 

FIGURE 13: Clamped elastic beam in shallow oil: 
comparison of the displacement in X direction 
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FIGURE 15: Clamped elastic beam immersed in 
mid-depth oil setup 
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FIGURE 14: Clamped elastic beamin shallow oil: experimental versus numerical comparison for 
t = {0,92,1,20,1,40,1,68}[s] 



Clamped elastic beam immersed in mid-depth oil. 

The second example is similar to the previous one but 
with twice the depth. The geometry and the motions of 
the container are shown in figures 15 and 16. The first 
sloshing period T\ is in this case 1.21s and the forced 
roll amplitude is again 4 degrees. The PFEM mesh has 
a total of 16731 nodes with 15371 nodes corresponding 
to the liquid part 

ments, again with very good amplitudes and some dis­
persion that needs further study. 

It is interesting to observe the shape of the free sur­
face. The free surface deformations are much damped in 
comparison with the unbaffled tank, for which free sur­
face patterns in the resonance cases are similar to those 
of figure 3. 

Hanging elastic beam with shallow water 
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FIGURE 16: Clamped elastic beam immersed in 
mid-depth oil: roll angle 

FIGURE 18: Clamped elastic beam immersed in 
mid-depth oil: comparison of the displacement in X 

direction 

Figs. 17 and 18 show the free surface and the beam 
displacement of the end point at different time steps re­
spectively. This is a complicated example in which the 
interaction between the fluid and the elastic beam is very 
strong. The x displacements have increased in one order 
of magnitude as can be seen by comparing the vertical 
scales in figures 13 and 18. The comparison of the nu­
merical and experimental results is good in terms of the 
free surface shapes as well as in the bar end displace-

This is the most difficult example, with the beam hang­
ing from the upper wall in such a fashion that the in­
teraction with the fluid can be attained only due to the 
waves generated during the motion, otherwise having no 
interaction. The figures 19 and 20 show the initial ge­
ometry and the roll angle curve of the container whose 
maximum value was set to 2 degrees. The fundamental 
period is 1.65 because is the same liquid depth as in 
the first case (57.4mm). The number of particles used 
for the numerical solution was 16924 and time step was 
equal to 0.0025 s. Snapshots of the different instances 
of the experiment versus the PFEM results are shown in 
figure 21. 
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FIGURE 19: Hanging elastic beam with shallow water 
setup 
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FIGURE 20: Hanging elastic beam with shallow water: 

roll angle versus time 
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FIGURE 17: Clamped elastic beam in mid-depth oil: experimental versus numerical comparison 
t = {1,84, 2,12, 2,32, 2,56}[s] 



In this example the natural frequency of the free surface 
wave does not coincide with the natural frequencies of 
the beam as a bending cantilever or as a pendulum. This 
produces a violent motion of the bar at time 2.96s (fig. 
21) when the fluid structure interaction starts. Higher 
frequency motions of the elastic beam are induced at this 
moment, as can be appreciated on that frame, in which 
the interlacing problems of high speed motions recorded 
with conventional video cameras are clear. Both the free 
surface shape as well as the deformed bar shape are well 
reproduced even after more than three periods. 
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FIGURE 23: Hanging elastic beam in shallow water: 
comparison of the endpoint displacement in X direction 
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FIGURE 24: Hanging elastic beam in shallow water: 
comparison of the midpoint displacement in X direction 

Figures 23 and 24 show the displacement of endpoint 
and midpoint of the beam as a function of time. The 
agreement between the numerical results and the exper­
imental ones is good, taking in account the complexity 
of the example but further work has to be done. Other 
interesting figure is 25 in which the zero angle crossings 
instants marked in figure 20 are represented. As the 

motion builds up, the free surface becomes a bit steeper 
at each period. This is captured reasonably well by the 
simulations. The experimental frames come in this case 
not from a video register but from direct synchronized 
photographic pictures. 

CONCLUSIONS AND FUTURE WORK 

A series of new experimental tests have been presented 
in this paper aimed at providing data for the validation 
of FSI codes. The experiments have tried to document 
the interaction of confined sloshing flows with the defor­
mations of elastic bars that interact with the free surface 
flows. The experiments show that the presence of the 
free surface is critical for some of the cases because on 
one hand the elastic body is a crucial factor in the wave 
amplitude response, and also the free surface waves can 
be crucial in the excitation of deformations in the bar for 
certain cases. 

Numerical simulations have been performed using 
the Particle Finite Element Method (PFEM). PFEM is 
a powerful tool for solving free surface flow problems 
involving large deformation of the fluid domain. Good 
results have been obtained for the relevant parameters 
for the flow field and the elastic structure analyzed (such 
as the free surface and elastic beam position) as shown 
in the comparison with experimental data. 

These new experiments suggest future work direc­
tions, both from the numerical and the experimental 
point of view. These can be summarized as: 

1. Experimentally, it would be interesting to deeper 
analyze the two-dimensionality of the case stud­
ies by checking the deformations with broader 
containers and by providing more accurate data 
regarding the dependance of the deformed bar 
shapes and the bar gaps with the container walls. 

2. Experimentally, it would be interesting to have 
PIV measurements of the velocity field. It seems 
a lot of vorticity is shed from the bar tips onto the 
flow. 

3. Experimentally, as mentioned, it would be neces­
sary to have error bounds to the different data, by 
performing a rigorous uncertainty analysis. 

4. Numerically, it would be interesting to have de­
tailed comparisons with other methods, like SPH, 
capable of simulating these problems. Actually, 
no convergence study has been provided in terms 
of the mesh resolution, neither comparisons in 
terms of the computation time with other numeri­
cal techniques. 

5. Numerically, it would be interesting to study the 
vorticity fields as well as the influence of the 



FIGURE 21: Hanging elastic beam in shallow water: experimental versus numerical comparison 
t = {0.76,1.64, 2.4, 2.68, 2.96, 3.32, 3.4, 3.56, 3.80, 3.84,4,4.16}[s] 
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FIGURE 22: Cont. 



FIGURE 25: Zero crossings, approx. 0.5TU 1.5TU 2.5Ti and 3.5Ti, as marked in figure 20 



Reynolds numbers in some of the configurations. 
It seems turbulence is quite significant for some of 
the cases and this could partially justify the over 
damping in the experiments in the third test case, 
the hanging bar. 
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