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Abstract  

DVS (Dynamic Voltage Scaling) is a technique used for reducing the power consumption of microprocessors. 

The power consumed by these circuits has a main component (dynamic power) that is proportional to the square 

of the supply voltage. Additionally, for every supply voltage, there is a maximum value of the clock frequency. 

The advantage of using DVS is that the supply voltage (and hence clock frequency) can be adjusted depending 

on the specific needs during execution. The DVS concept has been used in some commercial products like 

Transmeta’s Crusoe [1], Intel Speed Step [2], AMD K6 [3], Hitachi SH4 [4], etc. 

The DVS algorithm proposed in this work is based on the trade-off between the application’s execution time and 

the energy consumed by the microprocessor. Indirectly, by controlling the execution time the consumed energy is 

controlled as well. Longer execution time provides less energy demanded by the CPU. The algorithm has been 

implemented on a platform with an Intel XScale PXA255 microprocessor and the energy saving has been calcu-

lated directly measuring currents and voltages on the platform. 

Using this technique it is possible to achieve up to 50% of power savings, with 50% longer execution time.

1 Introduction 

Decreasing power consumption in digital circuits is 

getting on importance in these days, especially for 

mobile and battery operated system and large data 

centers. The reduction of the power consumption im-

plies more autonomy for mobile devices and im-

proved thermal management. Moreover, low power 

consumption reduces the cost on packages and heat 

sinks and its size and increases the circuit’s autonomy 

and reliability. DVS is a technique used for reducing 

the power consumption of microprocessors. The main 

idea is based on the fact that the major part of the 

power consumption is a quadratic function of the sup-

ply voltage and directly proportional to the clock fre-

quency as shown below: 

  fDDCVP 2∝             (1) 

where C is the equivalent capacitance of processor’s 

gates. Naturally, there is relation between the voltage 

and the maximum frequency which can be used. They 

are related through time delay of digital circuit: 
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where k, Vth, γ are constants which depend on the 

CMOS technology of the circuit. 

Dynamic Voltage Scaling (DVS) is a technique that 

offers adjustment of the voltage and the frequency de-

pending on the task requirements during the execution 

time. This adjustment can be done in a way that it 

takes advantage of CPU’s idle times (Figure 1) or by 

slowing down the running processes (Figure 2). 

In the first case, if there is latency, that means that as-

sociated task can be executed at lower frequency and,  

therefore the supply voltage can be reduced, according 

to Figure 1. In this way, each task will be executed 

with the appropriate pair of supply voltage and clock 

frequency to reduce power consumption as much as 

possible without reducing performance, by using all 

the available time for each task. 

The second solution is based on the trade-off between 

the execution time and the power savings. By using 

lower frequencies of the CPU clock, and therefore 

lower supply voltages, application’s execution time 

will increase, but the energy consumption will be 

lower. 
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Fig.1 DVS using CPU’s idle times 

 

Fig.2 DVS by slowing down the running process 

The DVS concept has been used in some commercial 

products like Transmeta’s Crusoe [1], Intel’s Speed 

Step [2], AMD K6 [3]. Thanks to this technique some 
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praiseworthy results were made, for example 70% of 

CPU energy saving for memory-bound and 15 ~ 60% 

for CPU bound applications [5]. In [6] this technique 

can prevail up to 48% of energy saving in a real-time 

system. For a video application in [7] it is reported 

15% to 80% of energy savings, with low number of 

lost frames, and savings mainly depending on the 

complicity of the images. 

The implemented DVS algorithm is based on the 

trade-off between execution time and power savings. 

By using lower frequencies of the CPU clock, and 

therefore lower supply voltages, the application’s ex-

ecution time will increase and the energy consump-

tion will decrease. Hence, the algorithm is trying to 

estimate CPU activity and control the execution time 

of the running application, and, therefore, the con-

sumed energy.  

The algorithm has been implemented on a platform 

with an Intel XScale PXA255 microprocessor (has 

four possible CPU frequencies) and the energy saving 

has been calculated directly measuring currents and 

voltages on the platform. Using this technique it is 

possible to achieve up to 50% of power savings, with 

50% longer execution time. The main contributions of 

this work are: 

• Development of a closed loop algorithm that 

adjusts the microprocessor’s frequency and 

voltage of the core in order to meet the de-

sired performance. 

• Development of time performance model of 

the system, estimated at run time. 

• The adaptation of the operating system in or-

der to facilitate and improve the measure-

ments of the power consumption for the 

tested applications. 

2 Proposed algorithm 

The proposed algorithm is based on the decomposi-

tion of the CPU’s work in workload on-chip and off-

chip in order to control the execution time of the run-

ning application. The idea about the decomposition 

about the microprocessor’s workload is presented in 

[5] and [8]. The workload can be presented as a sum 

of on-chip workload (Won-chip) and off-chip workload 

(Woff-chip). On-chip workload is the number of CPU 

clock cycles needed to perform instructions which are 

executed inside the CPU only, and, on the other hand, 

off-chip workload is the number of external clock cy-

cles needed to perform off-chip accesses (to fetch 

datafrom external memory). 

Knowing the application’s workload, clock and bus 

frequency, as well, it is possible to estimate the execu-

tion time of the running task. Hence, the problem is to 

estimate the workloads. Intel’s family of XScale proc-

essors has a special Performance Monitoring Unit 

(PMU) which can monitor different CPU events as 

number of cache misses, number of executed instruc-

tions, number of CPU stall cycles and number of 

clock cycles. Using these variables it is possible to 

know in every moment the application’s number of 

Stall cycles per Instruction (SPI), number of Data 

cache misses per Instruction (DPI) and number of Cy-

cles per Instruction (CPI). Using the linear depend-

ency between CPI and SPI (Figure 3), and the infor-

mation about DPI, the execution time is estimated as 

it is explained in [5] and [8]. 
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Fig. 3 The linear dependency between CPI and SPI 

for gzip application 

The data from the PMU are taken periodically, and on 

the begging of each timer period, they are used to es-

timate the execution time. By being able to estimate 

application’s execution time it is feasible control it by 

changing the CPU clock frequency, and therefore, 

calculate the needed frequency for each time period. 

In [5] and [8] power savings up to 60% are achieved.  

But the solution in [5] and [8] does not have in mind 

the influence of the finite number of CPU frequencies. 

If the calculated frequency is 135MHz, for example, 

the applied frequency will be 100MHz, because it is 

the closest one (the CPU has a finite number of clock 

frequencies). Therefore, the active application will run 

slower than it is supposed, and this error is not taken 

into account in the next frequency calculation.  

In this paper a similar algorithm is proposed, but with 

a feedback about the applied frequency (Figure 4) in 

order to compensate finite number of CPU frequen-

cies. 

In the proposed algorithm if the calculated frequency 

for two time intervals is, for example, 175 MHz. First 

is applied the frequency of 200 MHz, because it is the 

closest one, and then the one of 100 MHz. The algo-

rithm would do it in the manner that the application 

lasts as if it was running 175 MHz all the time. 

3 Proposed system model 

As it was aforementioned, it is necessary to estimate 

the application’s execution time. The estimation of the 

workload on-chip and the workload off-chip is done 

in the same way as in [6]. What is different is the fre-

quency calculation. The microprocessor used in the 

tests is Intel’s XScale PXA255. This processor has an 

internal and an external bus, and both of them are 

used when some data is read or written into the exter-

nal memory or put in it. Having this in mind and the 

analysis conducted in [8] the application’s execution 

time can be written as: 
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Where T
ON

 and T
OFF

 are the execution time of the on-

chip workload and the off-chip workload, respectively 

,and  f 
CPU

, f 
INT

, f 
EXT

 are the CPU, the internal and the 

external bus frequencies, respectively.            stands 

for the number of CPU clock cycles per an on-chip 

instruction and CPI      is the number of external clock  

cycles per an off chip instruction. N and M  are the 

number of instructions and the number of off-chip ac-

cesses, respectively. The α is introduced as the ratio 

between the time which is spent due to data transfer 

on the internal bus and the time spent by the transfer 

on the external bus [8]. 

 
Fig. 4 The block diagram of the proposed algorithm  

Table 1 shows the frequency and voltage combina-

tions for the processor used in the tests. It is important 

to notice that the CPU frequency conditions the fre-

quency of external and internal bus, in another words, 

they are mutually correlated. 

It is necessary to define next variables, too: 
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It can be seen that X represents the ratio of the fre-

quency of the CPU and the frequency of the external 

data bus, Y stands for the ratio of the CPU’s frequency 

and the frequency of the internal bus and β denomi-

nates the ratio of the time needed by off-chip accesses 

and the time spent by chip-on instructions.  

Using last definitions, it can be written: 

 

 

Due to the increased execution time it is necessary to  

define the application’s performance loss as follows: 
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where           stand for the execution time at the CPU’s  

maximum frequency, and          is the execution time  

at the CPU frequency of f 
CPU

. Thus, PF shows how 

much the execution time of the tested application is 

longer than the time when the application is executed 

with maximal speed. For example, in the case of 

PF=0.2, execution time of the application with the 

frequency of CPU’s clock of f 
CPU  

is 20% longer than 

the time in the case when the maximal frequency is 

applied. 

By estimating W
ON

 and W
OFF

 during one quantum pe-

riod, T     can be estimated as well, or better said, how  

long this period of time would last if CPU
MAXf were ap-

plied. Hence, equation (6) can be rewritten as: 

CPU
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CPUCPU
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Doing this, the estimated “past” of the active applica-

tion is separated on the left side of the equation and 

the “future” is on the right side. 

Now it is necessary to calculate f 
CPU

 for the given PF 

and estimated β. For a given W
OFF

 and using the data 

from table 1 and equations (4) and (5), as well, it can 

be written: 
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where T
OFF

 is the off-chip time of the application 

when f 
CPU

 is used as a core’s clock frequency and X 

and Y are corresponding ratios of internal and external 

bus frequencies and the core’s frequency, as earlier 

defined. 

Using equations (3) and (8), it is obtained: 
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For example, let us assume that the estimated values 

of β and T ON are 4.56 and 1.8ms respectively and that 

in the time quantum of 10ms (when the statistics data 

were collected and the estimation was done) the CPU 

frequency was 300MHz and that α of the tested appli-

cation is 0.9. Having in mind these information and 

the data from the table 1, T ’    is estimated, using equ-

ations (3) and (9): 

ms
MHz

MHz
msT CPU

MAX
f 1476.9)

1.039.03
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56.41(

400

300
8.1' =
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⋅+⋅⋅=  

This means that the workload that was processed in 

10ms with 300MHz system clock would have been 

processed in 9.1476ms if the frequency of 400MHz 

had been used. Multiplying this value with demanded 

time performance loss we obtain the amount of time 

for which we need to slow down the application in the 

next time quantum. If the PF is 40% that means that 

we need to choose a frequency that will process the 

same workload 3,659ms slower comparing with the 

time needed when the maximal frequency of the CPU 

clock is applied.  

Next step is to calculate the needed frequency. Devel-

oping the right side of (6) and using (9): 
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The final equation, that expresses f
CPU

 needed for the 

given PF and estimated β, clearly shows the influence 

of internal and external bus on the frequency that 

should be elected. When the nearest frequency is cho-

sen, the error in time performance is recalculated us-

ing equation (10), and that information is used as it 

was shown in Figure 4. 
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Fig. 5 The block scheme of the system 

4 Hardware setup 

Figure 5 shows the hardware setup used for the tests. 

The microprocessor can operate from 100MHz to 

400MHz with a corresponding core supply voltage 

from 0.85V to 1.3V. This microprocessor can change 

the working frequency by changing the value of Core 

Clock Configuration Register (CCCR) [9]. The supply 

voltage can be changed by setting the appropriate ref-

erence to the specialized chip MAX1702. The chip 

contains three DC-DC converters that generate output 

voltages for the core, flash memory and I/O pins. The 

voltage reference is set by the microprocessor through 

the D/A converter, LTC1659. The block diagram of 

this part of the system is shown in Figure 5. The oper-

ating system is Linux 2.6.13 with RTCore extension. 

The DVS algorithm is implemented as a real-time 

module of RTCore and acts as a periodic task. The 

used operating system is preemptive, i.e. the process 

with the highest level of priority is the active one. 

Thus, the tested application can be preempted by any 

process with higher priority. In order to facilitate the 

measurement of the power consumption and to be 

sure that the measured power is used by the tested ap-

plication, a little adaptation of the operating system 

was done. The application that is tested is recognized 

directly in the scheduler of the operating system. 

When the scheduler marks this application as the ac-

tive, one of the output pins is set to logical 1. There-

fore, by measuring the power consumed by the CPU 

and the time intervals when this signal is active the 

execution time and the energy consumed by the tested 

application can be determined. The measurement of 

the energy consumed by the DVS algorithm is done in 

the similar way. Using this method it is not necessary 

to know the priority level of tested application in or-

der to measure its energy consumption, as the control 

signal shows us when the tested application is active. 

5 Experimental results  

The proposed algorithm has been tested with three 

different applications: gzip (compression of files), 

bfish (file encoding) and cjpeg (compression of pho-

tos). The time interval used to collect CPU data and 

estimate its workload in all tests was 20ms. Figure 6 

shows the actual performance loss of the system. It 

can be seen that is very close to the values that are 

demanded, all values are in ±5% of PFDEMANDED. Fig-

ure 7 presents the energy saving and it can be noticed 

that they are asymptotically approaching certain 

value. The reason for this is that the energy savings 

cannot be higher than in the case of minimal CPU 

frequency. By increasing the PFDEMANDED, the average 

CPU frequency is getting closer to 100 MHz, so that 

energy savings are drawing near the maximum sav-

ings. Figure 8 shows that without closing the loop in 

the system some values of Performance Loss cannot 

be accomplished correctly, for instance when the de-

manded PF is 50%, the difference between the com-

pensated algorithm and the algorithm without com-

pensation is about 10%.  

The time and the energy spent during fre-

quency/voltage transitions should be negligible. Fig-

ures 9 and 10 show the execution time and the con-

sumed energy of the proposed DVS algorithm. The 

presented values are calculated regarding the 

time/energy of the tested application at the maximum 

speed. The maximum values are less than 3% of ap-

plication’s performance and energy. 

Each transition time is composed of the time needed 

for the voltage change and the time spent by PLL to 

lock to the new frequency. By measuring these times 

it is determined that, approximately, 80% of the time 

needed by one transitions is spent by PLL. In order to 

see the influence of the power supply’s dynamics we 

measured time and energy needed by the algorithm 

for two cases of supply’s slew rate. Figure 11 shows 

that because of the strong influence of PLL the dy-

namic of the power supply does not have great influ-

ence on the execution time of the algorithm. For this 

test the time interval of frequency/voltage changes 

was 5ms. 

As it was aforementioned, the time needed for off 

chip activities is estimated using a constant α. The 

value of the constant is evaluated by conducting a se-

ries of experiment in order to find the best value that 

would suite to whole range of PFWANTED. Hence, be-

fore applying the algorithm it is necessary to charac-

terize the application and find the optimum α. Ob-

viously, this is a drawback of the proposed algorithm. 

Even more, we found out that for the same application 

we need to adjust the value of α depending on the type 

of file that application uses as the object of its algo-

rithm. For example, compression of a file filled with 

ASCII code (txt files) needs α of 0.95, and in the case 

of the same compression, but this time of an Acrobat 

Reader file (pdf), we could not find optimum value of 

α for all the range of PFWANTED. Similar problem we 

found out trying to compress a black and white photo 

to jpg format.  

 

Fig. 6 Actual vs. demanded time performance loss 



 
Fig. 7 Energy savings vs. demanded time perfor-

mance loss 

 
Fig. 8 Compensated algorithm vs. algorithm without 

compensation 

 
Fig. 9 Additional DVS time vs. demanded time per-

formance loss 

The main cause of this problem can be in the statistics 

of the tested application.  If we compare the statistics 

for gzip application in the case when we want to 

compress a txt file and when we want to compress a 

pdf file, we can see a significant difference between 

these two processes. In figure 12 CPI vs. SPI diagram 

for gzip compressing a pdf file is presented. After a 

series of tests we came with assumption that the algo-

rithm did not model the time needed to read a source 

file, and later to write the results to an output file, but 

it is yet to be proved. 

6  Conclusions 

A new energy savings algorithm for DVS applications 

is proposed. The goal is to improve the energy effi-

ciency by demanding some acceptable performance 

loss. According to the experimental results, it is pos-

sible to save up to 50% of the CPU energy with 50% 

performance loss. The extra time needed for the volt-

age/frequency transitions and the energy consumed by 

those transitions do not exceed 3% and 2% of the time 

and the energy of the tested application, respectively. 

The analysis of the extra time needed for DVS transi-

tions has been performed, showing that it does not 

need a voltage supply with fast transitions, due to 

long duration of frequency changes. The algorithm is 

strongly dependent and very sensitive on good estima-

tion of CPU workload, what is very difficult to obtain 

in some cases.   

 
Fig. 10 Additional DVS energy vs. demanded time 

performance loss 

 
Fig. 11 Additional DVS time for different slew rates 

of the power supply 

 
Fig. 12 Dependency between CPI and SPI when the 

algorithm does not work very well 
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