
Trade-off between energy savings and execution time applying

DVS to a microprocessor

Miroslav Vasić, Oscar García, Pedro Alou, Jesús A. Oliver, José A. Cobos

Universidad de Politécnica en Madrid, Centro de Electrónica Industrial, Spain

Abstract

DVS (Dynamic Voltage Scaling) is a technique used for reducing the power consumption of microprocessors.

The power consumed by these circuits has a main component (dynamic power) that is proportional to the square

of the supply voltage. Additionally, for every supply voltage, there is a maximum value of the clock frequency.

The advantage of using DVS is that the supply voltage (and hence clock frequency) can be adjusted depending

on the specific needs during execution. The DVS concept has been used in some commercial products like

Transmeta’s Crusoe [1], Intel Speed Step [2], AMD K6 [3], Hitachi SH4 [4], etc.

The DVS algorithm proposed in this work is based on the trade-off between the application’s execution time and

the energy consumed by the microprocessor. Indirectly, by controlling the execution time the consumed energy is

controlled as well. Longer execution time provides less energy demanded by the CPU. The algorithm has been

implemented on a platform with an Intel XScale PXA255 microprocessor and the energy saving has been calcu-

lated directly measuring currents and voltages on the platform.

Using this technique it is possible to achieve up to 50% of power savings, with 50% longer execution time.

1 Introduction

Decreasing power consumption in digital circuits is

getting on importance in these days, especially for

mobile and battery operated system and large data

centers. The reduction of the power consumption im-

plies more autonomy for mobile devices and im-

proved thermal management. Moreover, low power

consumption reduces the cost on packages and heat

sinks and its size and increases the circuit’s autonomy

and reliability. DVS is a technique used for reducing

the power consumption of microprocessors. The main

idea is based on the fact that the major part of the

power consumption is a quadratic function of the sup-

ply voltage and directly proportional to the clock fre-

quency as shown below:

 fDDCVP 2∝ (1)

where C is the equivalent capacitance of processor’s

gates. Naturally, there is relation between the voltage

and the maximum frequency which can be used. They

are related through time delay of digital circuit:

MAXf

thVDDV

DDV
kdt

1

)(
∝

−
= γ (2)

where k, Vth, γ are constants which depend on the

CMOS technology of the circuit.

Dynamic Voltage Scaling (DVS) is a technique that

offers adjustment of the voltage and the frequency de-

pending on the task requirements during the execution

time. This adjustment can be done in a way that it

takes advantage of CPU’s idle times (Figure 1) or by

slowing down the running processes (Figure 2).

In the first case, if there is latency, that means that as-

sociated task can be executed at lower frequency and,

therefore the supply voltage can be reduced, according

to Figure 1. In this way, each task will be executed

with the appropriate pair of supply voltage and clock

frequency to reduce power consumption as much as

possible without reducing performance, by using all

the available time for each task.

The second solution is based on the trade-off between

the execution time and the power savings. By using

lower frequencies of the CPU clock, and therefore

lower supply voltages, application’s execution time

will increase, but the energy consumption will be

lower.

IdleIdle timestimesSystemSystem

speedspeed IntensiveIntensive tasktask

timetime
LowLow latencylatencyExcessExcess ofof performanceperformance

workloadworkload

ProposedProposed DVS DVS

executionexecutionIdleIdle timestimesSystemSystem

speedspeed IntensiveIntensive tasktask

timetime
LowLow latencylatencyExcessExcess ofof performanceperformance

workloadworkload

ProposedProposed DVS DVS

executionexecution

Fig.1 DVS using CPU’s idle times

Fig.2 DVS by slowing down the running process

The DVS concept has been used in some commercial

products like Transmeta’s Crusoe [1], Intel’s Speed

Step [2], AMD K6 [3]. Thanks to this technique some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

praiseworthy results were made, for example 70% of

CPU energy saving for memory-bound and 15 ~ 60%

for CPU bound applications [5]. In [6] this technique

can prevail up to 48% of energy saving in a real-time

system. For a video application in [7] it is reported

15% to 80% of energy savings, with low number of

lost frames, and savings mainly depending on the

complicity of the images.

The implemented DVS algorithm is based on the

trade-off between execution time and power savings.

By using lower frequencies of the CPU clock, and

therefore lower supply voltages, the application’s ex-

ecution time will increase and the energy consump-

tion will decrease. Hence, the algorithm is trying to

estimate CPU activity and control the execution time

of the running application, and, therefore, the con-

sumed energy.

The algorithm has been implemented on a platform

with an Intel XScale PXA255 microprocessor (has

four possible CPU frequencies) and the energy saving

has been calculated directly measuring currents and

voltages on the platform. Using this technique it is

possible to achieve up to 50% of power savings, with

50% longer execution time. The main contributions of

this work are:

• Development of a closed loop algorithm that

adjusts the microprocessor’s frequency and

voltage of the core in order to meet the de-

sired performance.

• Development of time performance model of

the system, estimated at run time.

• The adaptation of the operating system in or-

der to facilitate and improve the measure-

ments of the power consumption for the

tested applications.

2 Proposed algorithm

The proposed algorithm is based on the decomposi-

tion of the CPU’s work in workload on-chip and off-

chip in order to control the execution time of the run-

ning application. The idea about the decomposition

about the microprocessor’s workload is presented in

[5] and [8]. The workload can be presented as a sum

of on-chip workload (Won-chip) and off-chip workload

(Woff-chip). On-chip workload is the number of CPU

clock cycles needed to perform instructions which are

executed inside the CPU only, and, on the other hand,

off-chip workload is the number of external clock cy-

cles needed to perform off-chip accesses (to fetch

datafrom external memory).

Knowing the application’s workload, clock and bus

frequency, as well, it is possible to estimate the execu-

tion time of the running task. Hence, the problem is to

estimate the workloads. Intel’s family of XScale proc-

essors has a special Performance Monitoring Unit

(PMU) which can monitor different CPU events as

number of cache misses, number of executed instruc-

tions, number of CPU stall cycles and number of

clock cycles. Using these variables it is possible to

know in every moment the application’s number of

Stall cycles per Instruction (SPI), number of Data

cache misses per Instruction (DPI) and number of Cy-

cles per Instruction (CPI). Using the linear depend-

ency between CPI and SPI (Figure 3), and the infor-

mation about DPI, the execution time is estimated as

it is explained in [5] and [8].

0 2500 5000 7500 10000

0

100

200

300

400

500

600

700

800

900

1000

100 x SPI

1
0
0
 x
 C
P
I

1000 x SPI

1
0

0
 x

 C
P

I

Fig. 3 The linear dependency between CPI and SPI

for gzip application

The data from the PMU are taken periodically, and on

the begging of each timer period, they are used to es-

timate the execution time. By being able to estimate

application’s execution time it is feasible control it by

changing the CPU clock frequency, and therefore,

calculate the needed frequency for each time period.

In [5] and [8] power savings up to 60% are achieved.

But the solution in [5] and [8] does not have in mind

the influence of the finite number of CPU frequencies.

If the calculated frequency is 135MHz, for example,

the applied frequency will be 100MHz, because it is

the closest one (the CPU has a finite number of clock

frequencies). Therefore, the active application will run

slower than it is supposed, and this error is not taken

into account in the next frequency calculation.

In this paper a similar algorithm is proposed, but with

a feedback about the applied frequency (Figure 4) in

order to compensate finite number of CPU frequen-

cies.

In the proposed algorithm if the calculated frequency

for two time intervals is, for example, 175 MHz. First

is applied the frequency of 200 MHz, because it is the

closest one, and then the one of 100 MHz. The algo-

rithm would do it in the manner that the application

lasts as if it was running 175 MHz all the time.

3 Proposed system model

As it was aforementioned, it is necessary to estimate

the application’s execution time. The estimation of the

workload on-chip and the workload off-chip is done

in the same way as in [6]. What is different is the fre-

quency calculation. The microprocessor used in the

tests is Intel’s XScale PXA255. This processor has an

internal and an external bus, and both of them are

used when some data is read or written into the exter-

nal memory or put in it. Having this in mind and the

analysis conducted in [8] the application’s execution

time can be written as:

 EXT

OFF

INT

OFF

CPU

ON
OFFON

f

W

f

W

f

W
TTT

⋅−
+

⋅
+=+=

)1(αα

avg
off

CPU
MAX

f
T

CPU
f

T

(5))('αα YX
f

W
T

CPU

OFF
OFF +⋅=

CPU
MAXf

CPU

MAXf

CPU
MAX

f

CPU

MAX
f

CPU
f

CPU
MAX

f
TTTPF −=⋅

EXTINTCPU f

avg
off

CPIM

f

avg
off

CPIM

f

avg
onCPIN

T
⋅⋅−

+
⋅⋅

+
⋅

=
)1(αα

 (3)

Where T
ON

 and T
OFF

 are the execution time of the on-

chip workload and the off-chip workload, respectively

,and f
CPU

, f
INT

, f
EXT

 are the CPU, the internal and the

external bus frequencies, respectively. stands

for the number of CPU clock cycles per an on-chip

instruction and CPI is the number of external clock

cycles per an off chip instruction. N and M are the

number of instructions and the number of off-chip ac-

cesses, respectively. The α is introduced as the ratio

between the time which is spent due to data transfer

on the internal bus and the time spent by the transfer

on the external bus [8].

Fig. 4 The block diagram of the proposed algorithm

Table 1 shows the frequency and voltage combina-

tions for the processor used in the tests. It is important

to notice that the CPU frequency conditions the fre-

quency of external and internal bus, in another words,

they are mutually correlated.

It is necessary to define next variables, too:

INT

CPU

EXT

CPU

f

f
Y

f

f
X ==

ααααβ −=+⋅== 1',)'(YX
W

W

T

T
ON

OFF

ON

OFF

 (4)

It can be seen that X represents the ratio of the fre-

quency of the CPU and the frequency of the external

data bus, Y stands for the ratio of the CPU’s frequency

and the frequency of the internal bus and β denomi-

nates the ratio of the time needed by off-chip accesses

and the time spent by chip-on instructions.

Using last definitions, it can be written:

Due to the increased execution time it is necessary to

define the application’s performance loss as follows:

 1−=
CPU
MAX

f

CPU
f

T

T

PF ; (6)

where stand for the execution time at the CPU’s

maximum frequency, and is the execution time

at the CPU frequency of f
CPU

. Thus, PF shows how

much the execution time of the tested application is

longer than the time when the application is executed

with maximal speed. For example, in the case of

PF=0.2, execution time of the application with the

frequency of CPU’s clock of f
CPU

is 20% longer than

the time in the case when the maximal frequency is

applied.

By estimating W
ON

 and W
OFF

 during one quantum pe-

riod, T can be estimated as well, or better said, how

long this period of time would last if CPU
MAXf were ap-

plied. Hence, equation (6) can be rewritten as:

CPU
MAX

CPUCPU
MAX fff

TTTPF −=⋅
' (7)

Doing this, the estimated “past” of the active applica-

tion is separated on the left side of the equation and

the “future” is on the right side.

Now it is necessary to calculate f
CPU

 for the given PF

and estimated β. For a given W
OFF

 and using the data

from table 1 and equations (4) and (5), as well, it can

be written:

'

'

'

' 2424

αα

αα
β

αα

αα

⋅+⋅

⋅+⋅
=

⋅+⋅

⋅+⋅
=

YXf

f

f

W

YXf

f
TT

CPU
MAX

CPU

CPU

ON

CPU
MAX

CPU
OFFOFF

CPU
MAX

f
 (8)

where T
OFF

 is the off-chip time of the application

when f
CPU

 is used as a core’s clock frequency and X

and Y are corresponding ratios of internal and external

bus frequencies and the core’s frequency, as earlier

defined.

Using equations (3) and (8), it is obtained:

)
24

1(
24

'''

'

'''

'
'

αα

αα
β

αα

αα
β

YXf

W

YXf

W

f

W
T

CPU
MAX

ON

CPU
MAX

ON

CPU
MAX

ON

f CPU

MAX +

+
+=

+

+
+= (9)

For example, let us assume that the estimated values

of β and T ON are 4.56 and 1.8ms respectively and that

in the time quantum of 10ms (when the statistics data

were collected and the estimation was done) the CPU

frequency was 300MHz and that α of the tested appli-

cation is 0.9. Having in mind these information and

the data from the table 1, T ’ is estimated, using equ-

ations (3) and (9):

ms
MHz

MHz
msT CPU

MAX
f 1476.9)

1.039.03

1.029.04
56.41(

400

300
8.1' =

⋅+⋅

⋅+⋅
⋅+⋅⋅=

This means that the workload that was processed in

10ms with 300MHz system clock would have been

processed in 9.1476ms if the frequency of 400MHz

had been used. Multiplying this value with demanded

time performance loss we obtain the amount of time

for which we need to slow down the application in the

next time quantum. If the PF is 40% that means that

we need to choose a frequency that will process the

same workload 3,659ms slower comparing with the

time needed when the maximal frequency of the CPU

clock is applied.

Next step is to calculate the needed frequency. Devel-

oping the right side of (6) and using (9):

 =
+

+
⋅+⋅⋅)

24
1(

'''

'

αα

αα
β

YXf

W
PF

CPU
MAX

ON

 '

'
24

αα

αα
ββ

YXf

W

f

W

f

W

f

W
CPU
MAX

ON

CPU

ON

CPU
MAX

ON

CPU

ON

+

+
⋅−⋅+−=

)
1

)(24(1PF

)1(

''''

'

αααα
ααβ

β

YXYX

PF

f
f

CPU
MAXCPU

+
+

+
+++

+
=

 (10)

The final equation, that expresses f
CPU

 needed for the

given PF and estimated β, clearly shows the influence

of internal and external bus on the frequency that

should be elected. When the nearest frequency is cho-

sen, the error in time performance is recalculated us-

ing equation (10), and that information is used as it

was shown in Figure 4.

 avg
 on

CPI

Xscale

PXA 255

D/A Converter

LTC 1659

Control &

Data

Reference

3.3 V

0.85 V - 1.3 V

3.3 V

Main Supply

Core

Flash Memory

DC/DC

Converter

MAX 1702

Fig. 5 The block scheme of the system

4 Hardware setup

Figure 5 shows the hardware setup used for the tests.

The microprocessor can operate from 100MHz to

400MHz with a corresponding core supply voltage

from 0.85V to 1.3V. This microprocessor can change

the working frequency by changing the value of Core

Clock Configuration Register (CCCR) [9]. The supply

voltage can be changed by setting the appropriate ref-

erence to the specialized chip MAX1702. The chip

contains three DC-DC converters that generate output

voltages for the core, flash memory and I/O pins. The

voltage reference is set by the microprocessor through

the D/A converter, LTC1659. The block diagram of

this part of the system is shown in Figure 5. The oper-

ating system is Linux 2.6.13 with RTCore extension.

The DVS algorithm is implemented as a real-time

module of RTCore and acts as a periodic task. The

used operating system is preemptive, i.e. the process

with the highest level of priority is the active one.

Thus, the tested application can be preempted by any

process with higher priority. In order to facilitate the

measurement of the power consumption and to be

sure that the measured power is used by the tested ap-

plication, a little adaptation of the operating system

was done. The application that is tested is recognized

directly in the scheduler of the operating system.

When the scheduler marks this application as the ac-

tive, one of the output pins is set to logical 1. There-

fore, by measuring the power consumed by the CPU

and the time intervals when this signal is active the

execution time and the energy consumed by the tested

application can be determined. The measurement of

the energy consumed by the DVS algorithm is done in

the similar way. Using this method it is not necessary

to know the priority level of tested application in or-

der to measure its energy consumption, as the control

signal shows us when the tested application is active.

5 Experimental results

The proposed algorithm has been tested with three

different applications: gzip (compression of files),

bfish (file encoding) and cjpeg (compression of pho-

tos). The time interval used to collect CPU data and

estimate its workload in all tests was 20ms. Figure 6

shows the actual performance loss of the system. It

can be seen that is very close to the values that are

demanded, all values are in ±5% of PFDEMANDED. Fig-

ure 7 presents the energy saving and it can be noticed

that they are asymptotically approaching certain

value. The reason for this is that the energy savings

cannot be higher than in the case of minimal CPU

frequency. By increasing the PFDEMANDED, the average

CPU frequency is getting closer to 100 MHz, so that

energy savings are drawing near the maximum sav-

ings. Figure 8 shows that without closing the loop in

the system some values of Performance Loss cannot

be accomplished correctly, for instance when the de-

manded PF is 50%, the difference between the com-

pensated algorithm and the algorithm without com-

pensation is about 10%.

The time and the energy spent during fre-

quency/voltage transitions should be negligible. Fig-

ures 9 and 10 show the execution time and the con-

sumed energy of the proposed DVS algorithm. The

presented values are calculated regarding the

time/energy of the tested application at the maximum

speed. The maximum values are less than 3% of ap-

plication’s performance and energy.

Each transition time is composed of the time needed

for the voltage change and the time spent by PLL to

lock to the new frequency. By measuring these times

it is determined that, approximately, 80% of the time

needed by one transitions is spent by PLL. In order to

see the influence of the power supply’s dynamics we

measured time and energy needed by the algorithm

for two cases of supply’s slew rate. Figure 11 shows

that because of the strong influence of PLL the dy-

namic of the power supply does not have great influ-

ence on the execution time of the algorithm. For this

test the time interval of frequency/voltage changes

was 5ms.

As it was aforementioned, the time needed for off

chip activities is estimated using a constant α. The

value of the constant is evaluated by conducting a se-

ries of experiment in order to find the best value that

would suite to whole range of PFWANTED. Hence, be-

fore applying the algorithm it is necessary to charac-

terize the application and find the optimum α. Ob-

viously, this is a drawback of the proposed algorithm.

Even more, we found out that for the same application

we need to adjust the value of α depending on the type

of file that application uses as the object of its algo-

rithm. For example, compression of a file filled with

ASCII code (txt files) needs α of 0.95, and in the case

of the same compression, but this time of an Acrobat

Reader file (pdf), we could not find optimum value of

α for all the range of PFWANTED. Similar problem we

found out trying to compress a black and white photo

to jpg format.

Fig. 6 Actual vs. demanded time performance loss

Fig. 7 Energy savings vs. demanded time perfor-

mance loss

Fig. 8 Compensated algorithm vs. algorithm without

compensation

Fig. 9 Additional DVS time vs. demanded time per-

formance loss

The main cause of this problem can be in the statistics

of the tested application. If we compare the statistics

for gzip application in the case when we want to

compress a txt file and when we want to compress a

pdf file, we can see a significant difference between

these two processes. In figure 12 CPI vs. SPI diagram

for gzip compressing a pdf file is presented. After a

series of tests we came with assumption that the algo-

rithm did not model the time needed to read a source

file, and later to write the results to an output file, but

it is yet to be proved.

6 Conclusions

A new energy savings algorithm for DVS applications

is proposed. The goal is to improve the energy effi-

ciency by demanding some acceptable performance

loss. According to the experimental results, it is pos-

sible to save up to 50% of the CPU energy with 50%

performance loss. The extra time needed for the volt-

age/frequency transitions and the energy consumed by

those transitions do not exceed 3% and 2% of the time

and the energy of the tested application, respectively.

The analysis of the extra time needed for DVS transi-

tions has been performed, showing that it does not

need a voltage supply with fast transitions, due to

long duration of frequency changes. The algorithm is

strongly dependent and very sensitive on good estima-

tion of CPU workload, what is very difficult to obtain

in some cases.

Fig. 10 Additional DVS energy vs. demanded time

performance loss

Fig. 11 Additional DVS time for different slew rates

of the power supply

Fig. 12 Dependency between CPI and SPI when the

algorithm does not work very well

7 Literature

[1] Transmeta’s Design guides and Datasheets

[2] Enhanced Intel SpeedStep, White paper, March 2004.

[3] Mobile AMD-K6 Processor Power Supply Design,

Application Note

[4] Kawaguchi, H.;Shin Y.;Sakurai T.: uITRON-LP:

Power-Conscious Real-Time OS Based on

Cooperative Voltage Scaling for Multimedia

Applications. IEEE trans. on multimedia, Feb. 2005.

[5] Choi, K.; Soma, R.; Pedram, M.: Fine-Grained

Dynamic Voltage and Frequency Scaling for Precise

Energy and Performance Tradeoff Based on the Ratio

of Off-Chip Access to On-Chip Computation Times.

IEEE trans. on computer-aided design of integrated

circuits and systems, vol. 24, No. 1, Jan. 2005

[6] P. Pillai, K. G. Shin, “ Real-Time Dynamic Voltage

Scaling for Low-Power Embedded Operating

Systems” Proc. of the 18th ACM Symp. on Operating

Systems Principles, 2001

[7] D. Son, C. Yu, H. Kim, "Dynamic Voltage Scaling on

MPEG Decoding" International Conference of

Parallel and Distributed System (ICPADS), June 2001

[8] Choi, K.; Soma, R.; Pedram, M: Dynamic Voltage and

Frequency Scaling based on workload Decomposition.

Proceedings of the 2004 International Symposium on

Low Power Electronics and Design, ISPLED, 2004

[9] Intel PXA255 Processor, Developer’s manual, 2004.

