
Wireless Sensor Networks Node with Remote

HW/SW Reconfiguration Capabilities

J. Portilla, Y. E. Krasteva, J. M. Carnicer, T. Riesgo

Centro de Electrónica Industrial, Universidad Politécnica de Madrid

{jorge.portilla, yana.ekrasteva, teresa.riesgo}@upm.es

Abstract- The inclusion of reconfigurable HW in nodes for

Wireless Sensor Networks (WSNs) is not a common issue in the
framework of the design of state of the art HW platforms for
WSNs, mainly due to its high power consumption. But, on the
other hand, reconfigurable logic as FPGAs can contribute to
improve the system performance by providing not only HW
acceleration as it has already been demonstrated by several
research groups, but also the possibility of node HW updates
after WSN deployment. This paper presents an entire working
flow to generate, remotely configure and reconfigure the HW
and SW in a reconfigurable node platform for WSNs. The
presented reconfiguration working flow targets the custom HW
platform designed at CEI (Centro de Electronica Industrial),
where the processing is carried out by both a microcontroller
and a partially reconfigurable Xilinx FPGA. The presented
reconfiguration process is based on the JTAG protocol and thus
permits to port the system to new, less power consuming FPGAs
that are appearing in the market to solve problems related to
energy lifetime.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) represents one of the most

outstanding and ambitious challenges in electronic design and

telecommunications nowadays. These special networks are

intended to be autonomous, low power consuming, context

aware and reconfigurable.

The particular features related to WSNs force the designer

to think in a new way. In this context, the hardware of the

node becomes critical, in order to overcome the hard

requirements imposed by these type of systems.

The applications in which WSNs may be involved can

include hundred or thousand of nodes. In such situations, it is

very important to be able to debug the network on-line and

reprogramming the nodes to solve problems of working or

performance. These tasks are related to the concept of

commissioning [1].

Usually, WSNs HW designers include a microcontroller

(uC) as the smart element, which carries out all the tasks

related to communication control, sensors processing and

global node management [2][3]. A modular HW

reconfigurable platform has been developed during the last

years at CEI, called Cookies. This platform includes a uC and

an FPGA as processing elements. The idea is to have a

processing support for the uC, to carry out specific tasks

which could overload the uC (special processing as video and

audio or sensor processing for particular digital interfaces

among others). Other groups face this topic as [4][5], but their

approach include the development of specific integrated

circuits where the reconfigurable logic is included. The

platform developed at CEI includes a commercial FPGA from

Xilinx, which makes easier the integration in new

environments for designers and engineers.

One of the problems that arise when a reconfigurable

element as an FPGA is introduced in a system as a WSN node

is the power consumption penalization. The architecture of

the hardware platform used in the present work will be

detailed in section II, but it can be said in advance that new

ultra low power FPGAs are appearing in the market as Actel

Igloo, and a new development is been carried out to introduce

this kind of elements to overcome the power consumption

problem in reconfigurable WSN nodes. The HW

reconfiguration feature improves the flexibility of the node,

and allows remote HW updates, which can be very useful to

improve node performance in new actualizations, to debug

on-line (commissioning) the WSN, and make the node

smarter.

This paper details the work developed to reconfigure the

FPGA HW integrated in the node, using a wireless link

(ZigBee in this case) and an example of application in which

this HW reconfiguration capability of the node is intended to

be used.

The basic idea is to use the uC to reconfigure the FPGA.

The uC will use the JTAG port of the FPGA to accomplish

this task. This decision was taken due to most of the market

FPGAs include a JTAG port to download its configuration

file. The uC will receive the bitstream from the ZigBee

module and will introduce it in the FPGA configuration

memory.

The current node design includes a Xilinx FPGA

(XC3S200 Spartan 3). This work has taken advantage of the

partial reconfigurability capabilities of such devices (other

manufactures do not offer this feature). Moreover, with this

approach the size of the bitstreams are much lower, and the

remote configuration process is much faster.

The idea will be tested over the reconfiguration of

hardware sensor interfaces. This is other line developed at

CEI and will be explained in section II. The concept is to

have a library of general HW digital interfaces for sensors (as

I2C, 1-Wire, SPI, etc.). These interfaces are designed in a

general way in order to be able to adapt them to new sensors

in a fast way. The demonstrator will start with a default

configuration for the FPGA with some interfaces configured

and one of these interfaces will be replaced for other interface

for the same sensor or another, in a dynamic (without

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

restarting the node) and partial way (only a part of the whole

configuration will be changed).

The rest of the paper is organized as follows. Section II

details the HW node architecture and the HW sensor

interfaces. Section III describes the remote reconfiguration

process and section IV how the partial reconfiguration is

carried out. Section V details the proof of concept and section

VI concludes the paper.

II. COOKIE SENSOR NODE

The WSN node in which the reconfiguration tasks are carried

out is the Cookie [6] (see “Fig. 1”). This node was designed

with a main philosophy in mind: modularity.

Modularity allows dividing and encapsulating the

functionalities included in the node. Therefore, future

redesigns may involve only part of the platform, which is

desirable considering the time to market. Moreover,

researching using this platform turns open, due to the node

flexibility, which makes possible the proof of several

concepts minimizing the effort.

TheCookie is composed of four main layers (more layers

can be added in future versions): processing, communication,

power supply and sensors. Every layer carries out a specific

task, and these encapsulates the functionality. In the

following paragraph these layers are detailed:

1. Processing: This is the heart of the node. It includes a

8052 uC from Analog Devices (ADuC841) and a

Xilinx XC3S200 Spartan 3 FPGA. The uC and the

FPGA share 3 8-bit ports for communication.

Hardware modifications had to be carried out to

connect the JTAG port of the FPGA to the uC, to

make possible remote reconfiguration.

2. Communication: The last version of this layer
includes a ZigBee module (ETRX2 from Telegesis).

This module is controlled by the uC through the

UART port. A layer version with Bluetooth is also

available.

3. Power supply: This layer generates all the voltages

needed within the Cookie. Two versions have been

developed, the latest with USB included, which

allows power supply from a PC and serial

programming for the uC.

4. Sensors: This layer includes those elements which are

intended to take measures from the environment.
Today, 3 different layers have been developed for

theCookie. These layers include sensors of

acceleration, temperature, humidity, light, infrared

and deformation.

One of the features of the sensor layer is that it can include

sensors with both digital and analog interfaces (sensors with

digital interfaces will be called digital sensors, and those with

analog interfaces will be called analog sensors in the rest of

the paper). Signals form analog sensors are connected to the

ADC of the uC. On the other side, signals from digital

sensors are connected to the FPGA. In principle, the FPGA

carries out all the processing related to digital sensors, to

release the uC, which manage the communications and

processes analog sensors.

Nowadays, there are a myriad of sensors in the market with

several different interfaces to communicate their

measurements. Much of them are digital sensors, with

different protocols as SPI, I2C, 1-Wire, etc. When this kind of

signals have to be processed using a uC, problems related to

timing and processor overhead can appear. In fact, some

manufacturers offer HDL code to implement the sensor

interfaces in a coprocessor [7].

In this context, a library of general HW interfaces has been

developed at CEI [8] in order to process signals of sensors

with very different digital interfaces. The interfaces included

in the library until now are:

 I2C and I2C modified (Sensirion Company interface)

 PWM

 Period/Frequency

 1-Wire

The library is divided in modules which represent sensor

(or actuator) interfaces. Every module has been designed

following a philosophy inspired in the IEEE 1451 family of

standards, but can also be used without being compatible with

them. Each transducer is “seen” as a channel (or set of

channels) by the sensor or actuator (transducer) controller.

Two kinds of channels are recognized: sensor channel and

actuator channel. Some sensors, like the SHT11 from

Sensirion, supply two or more measures (in this case,

humidity and temperature). Therefore, for the same sensor

two different channels are needed.

The uC sends triggers to the FPGA, specifying the sensor

from which the measure has to be taken, and the FPGA

activates the right sensor interface. Finally, the FPGA sends

the result of the measure in two bytes. So, the FPGA acts as a

reconfigurable coprocessor for the uC

Fig. 1 Processing layer (uC on the left, FPGA on the right)
 and full Cookie platform

III. REMOTE RECONFIGURATION

The remote reconfigurable system schematic view is shown

in “Fig. 2”. The problem of remote reconfiguration in the

Cookie platform presents two aspects to be covered: uC

reprogramming and FPGA reconfiguration.

A. uC Reprogramming

The uC included in the Cookies (ADuC841 from Analog

Devices) is programmed using its UART port. The uC

includes a serial protocol in order to be able to program the

uC through a host (i. e. a PC or other processor).

In the other hand, the ZigBee module is connected to the

uC serial port. The uC sends commands to the ZigBee to

manage the communications and sends the raw data to be

delivered to the network. In order to reprogram the uC using

the wireless ZigBee link a manager program (called Cookie

Manager) has been developed. This manager carries out all

the steps related to uC program downloading through the

serial port. First of all, a ZigBee channel must be establish

between the sink (network coordinator) and the remote node

in which the reprogramming has to be done. Next, Cookie

Manager sends all the commands needed to program the

remote uC as if a real serial cable was connected between the

host programmer and the remote node. Finally, the

programming file is sent and is introduced in the uC flash

memory. The serial downloading protocol allows starting

code executing in the remote uC through a specific command.

Not only a program but other data can be loaded into the

uC flash memory. So a typical file downloaded to the uC for

FPGA configuration includes a program that acts as a JTAG

controller and a file which includes the bitstream to be loaded

into the FPGA with the instructions that the JTAG controller

will follow to carry out the reconfiguration.

B. FPGA Reconfiguration

Regarding the FPGA reconfiguration, the selected Spartan3

does not have an internal configuration port (ICAP), so the

remaining configuration options are: i) Select Map and ii)

JTAG. As it has been already mentioned, JTAG has been the

selected reconfiguration interface. A SW implementation of

the JTAG controller, provided by Xilinx, has been used [11].

Therefore no additional FPGA area is required for the

reconfiguration process control, like for instance if Select

Map was selected, like in [9]. On the other hand, the main

disadvantage of using JTAG is the reconfiguration time

(JTAG is serial, while Select Map is parallel).

The JTAG configuration program running on the uC uses

Xilinx specific Boundary Scan configuration files (.xsvf)

where the configuration data is formatted in binary

commands. In the present paper, only partial bitstreams are

loaded into the FPGA, taking advantage of the partial

reconfiguration capabilities of the Xilinx Spartan 3 FPGA.

To retarget the system to other FPGAs (non Xilinx) that

can be programmed by JTAG, a Xilinx tool called svf2xsvf

[10] can be used to transform a boundary scan standard

ASCII file to a Xilinx binary file.

Once the FPGA has been configured by the uC, the final

code for the application is downloaded into the uC flash

memory. This step is done in the same way as it was

explained before.

All these tasks can be carried out between any number of

Cookies, exploiting the multihop capabilities of the ZigBee

standard. This allows reconfiguring every node connected to

the network with the only drawback of time delay. Tests have

been done for a two hop configuration as a proof of concept.

These results are shown in section V.

IV. FPGA PARTIAL RECONFIGURATION

Partial reconfiguration in FPGAs requires defining Virtual

Architectures (VA) on top of the selected device. For this aim,

a set of steps have to be followed. Details of VAs design are

outside the scope of this paper and can be found in [15]. Here,

only the main aspects applied to a target Spartan 3 FPGA are

included.

The first aspect to be taken into account is the VA model.

VA models can be one dimensional (1D) or two dimensional

(2D). According to [12], partial reconfiguration in Virtex II

based architectures (this includes Spartan 3 FPGAs) is frame

based, i.o.w. only reconfiguration regions that span entire

FPGA columns can be defined and this permits a direct use

only of 1D based VAs. A general view of the defined VA for

the sensor node Spartan 3 FPGA is presented in “Fig. 3”.

The structure of the Spartan 3 FPGA is quite regular in

comparison with other FPGAs (Virtex II for instance).

Therefore, the fixed area (the one that never changes) of the

FPGA occupies only the left and right FPGA sides, because

Fig. 2. HW-SW Reconfigurable Sensor Node Diagram

M
e

m
o

ry

FPGA
Controller

FPGA

Sensor 1

Sensor 2

Sensor N

HW
Reconfig.

Sensing data
retrieve

Microcontroller

Radio link

SW

Prog.

Fig. 3. HW Reconfigurable Sensor Node Spartan 3 FPGA
Virtual Architecture

BRAM/MUL Column

Fi
xe

d
A

re
a

A
cc

es
s

to
 s

en
so

rs

Fixed Area
Communication

with uC8051

Re
co

nf
ig

ur
ab

le
 S

lo
t

Used IOBs

JTAG
interface

Spartan 3

Communication

macros

of the regularity mentioned. The left side is in charge of the

communication with the external microcontroller, while the

right one is used to access the node sensors. The remaining of

the FPGA, defined as reconfigurable area has a very regular

structure and is divided into reconfigurable Slots (slots are

composed only of CLB columns). In this, first approach, only

one slot has been defined in the reconfigurable area because it

is restricted by the needed Input Output Blocks (IOBs) for the

communication with the microcontroller (left fixed area). The

defined slot is 6 CLBs wide and is composed of 144 CLBs

(576 Slices) in the target FPGA - XC3S200.

For slot communication with fixed areas, structures called

Bus Macros are used. Two types of bus macros have been

designed in this implementation. First, a vertical bidirectional

macro that passes four bits of data from left to right and four

bits from right to left in neighboring modules. This macro is

similar to the Xilinx Bus Macros, available for Spartan 3 in

[13], but the difference is that these ones are bidirectional.

Our experience shows that better routing results can be

achieved using bidirectional macros instead of unidirectional.

The second type of macro is also a bidirectional macro, but it

is used to cross the BRAM/MUL column that is allocated

between the right fixed area and the reconfigurable slot. This

BRAM/MUL column can be used by modules (HW Cores)

loaded in the slot.

The working flow that has been developed is presented in

“Fig. 4”. Once the FPGA VA has been defined, that includes

a user constraint file and the set of communication macros to

be used, the conventional (ISE) design flow can be followed.

This flow ends with the generation of a full configuration file,

from which the slot configuration region is extracted using

bitgen (the Xilinx tool for bitstream generation) with partial

mask options. Another approach is the use of the Xilinx

partial reconfiguration design flow, based on ISE and the

PlanAhead tool (suitable for testing different floorplanning

approaches). Differently from the first approach, the

PlanAhead design flow directly results in partial

configuration files and has better routing. Anyway, in the

current implementation we have selected the conventional

design flow because we have plenty of space in the slot and

the virtual architecture floorplanning has been well defined in

the first step of the working flow.

Independently from the method used to generate partial

configuration files, the next step is to use the iMPACT tool to

generate the needed binary formatted boundary scan

configuration file to partially reconfigure the node FPGA

New FPGA partial configurations as well as new node

microprocessor configurations are sent using the previously

described custom software.

V. USE CASE AND RESULTS

A use case has been setup as a proof of concept. Two

different applications have been created on top of the system

presented in this paper and have been alternatively loaded by

remotely reconfiguring the sensor node HW and SW.

The first application uses the node accelometer and is

referenced as ACCS, while the second one, referenced as

TMPS, uses the node temperature sensor. The application HW

part, mapped in the FPGA slot along with all the virtual

architecture components can be seen in “Fig.5”. Both designs

HW parts include multiplier functions that can be

implemented either using the embedded multipliers of the

FPGA or simply using FPGA LUTs. The used area by the

HW part of each application and each application version

(with and without embedded multipliers) is presented in

Table I. The percentage of the used slot area is also included,

and it can be noticed that the slot is underused and therefore

bigger designs can be loaded in it without having to redefine

the FPGA VA.

TABLE I
FPGA USED AREA

Design
Used

MULs

Used

FFs

Used

LUTs

Used

Slices

% of Slot

Slices

ACCS_HW_v1 0 170 68 311 54

TMPS_HW_v1 0 71 40 127 22

ACCS_HW_v2 2 127 68 232 40

TMPSI_HW_v2 2 63 40 111 19

Partial configuration files have been generated from each
design using the working flow presented in the previous
section and the resulting file sizes in both .bit and .xsvf
format are presented in Table II. Since the reconfiguration
unit is a slot, the configuration files sizes are the same for
both applications in “XX_v1” (without using the embedded
MULs). Differently for “XX_v2” designs, with MULs, that
use not only the slot, but also the standing next to it
BRAM/MUL column, the file size increase considerably. As
a reference it is important to mention that a complete
XC3S200 configuration file is 131 KB and thus makes partial
reconfiguration very useful for resource restricted devices.

Fig. 4. Working Flow

ISE conventional Design Flow + Bitgen partial Mask
or ISE + PlanAhead

Generate BoundaryScan configuration file with a
JTAG programmer (.xsvf)

Send new configuration to the node uC

Partially reconfigure the FPGA

VA definition
(user restriction file & FPGA interfaces)

uC 8051 JTAG

TABLE II
PARTIAL CONFIGURATION FILES SIZE

Design .bit (KB) .xsvf (KB)

ACCS_HW_v1 24,9 25,2

TMPS_HW_v1 24,9 25,2

ACCS_HW_v2 41,3 43,5

TMPSI_HW_v2 41,3 43,5

The microcontroller program memory is 62 KB. New HW

and SW configurations are loaded in this memory. The JTAG

configuration program occupies 6K of the available memory,

while the rest is left for the HW configuration files. A set of

HW/SW configurations for each application (ACCS and

TMPS) has been sent to the reconfigurable node using

different type of transmission media: i) using the available

communication in the sensor node (a ZigBee module) and ii)

using a serial cable connection. Table III summarizes both

transmission times and data rates.

TABLE III
CONFIGURATION TIMES

Mode SW (sec.) HW(sec.) Total (sec.)
data rate

(Bytes/s)

Cable 8B 19,06 73,5 87,22 333,04

ZigBee 8B 49,11 190,22 219,31 131,95

Cable 16B 13,72 53,56 67,28 470,70

ZigBee 16B 29,09 114,75 143,75 220,30

In the table two different packetized formats can be

differentiate: One of 16 Bytes and another of 8 Bytes. Both

transmission packet formats have been tested in two

configurations: i) a direct connection with the Node Under

Reconfiguration (NUR) and ii) in a long distance connection

with the NUR- using a node for intermediate routing

(multihop). Results, included in Table III, have been

measured under direct connection mode.

Reliability in WSN application is an important aspect, even

more if the network is also used for transmitting device

updates. Tests have shown that the 16 bytes transmission fails

with a high rate in long distance connections compared with 8

bytes based transmissions that are much more reliable, but

take considerably longer time. It is well known that the

ZigBee standard is intended for transmitting small amount of

data, also, the currently used ZigBee transmitter module does

not permit low level protocol optimization and therefore, the

presented results are far from being optimal. Anyway, with

the expansion of the wireless sensor networks application

range, new standards for nodes communication appear, like a

low power WiFi version [14].

The final step, once the HW and SW configuration have

been loaded into the microcontroller program memory, is to

execute the JTAG programmer. The time needed for this

application to partially program the FPGA is 4.2 seconds. As

a comparison the time needed by the Xilinx iMPACT SW

running on a PC is one second. This time can be drastically

reduced if a special, FPGA specific, parallel programmer is

used instead of the JTAG version.

VI. CONCLUSIONS AND FUTURE WORK

The paper has presented a remotely reconfigurable sensor

node system. The systems permits HW and/or SW updates. A

simple use case, as prove of concept, has been also included

in the paper. The presented approach exploits partial

reconfigurable capabilities of the node state of the art Spartan

3 FPGA. As the framework is based on the JTAG standard,

the solution is portable to other FPGAs. A method to use the

presented framework for other, full reconfigurable, FPGAs

has also been included. Results show that remote updates of

WSN nodes are possible. This remote reconfiguration

provides the possibility of building intelligent nodes and

WSN that can be adapted dynamically to achieve a certain

goal even after WSN deployment. The main drawback of the

presented system is the used wireless communication module

based on the ZigBee standard. High delay and fail rates

during the reconfiguration process have been reported. This

problem can be easily solved by simply changing the

communication layer of the modular platform with a new,

updated one, based on more reliable and fast communication,

like WiFi. Such layer design has already been planned in the

near future work. On the other hand the main drawback of

Fig. 5. System Applications: ACCS_HW on the left side and TMPS_HW on the right side

Communication

Macros

Fixed Area
Slot

Fixed Area
Slot

Communication

Macros

ACCS TMPS

Access
to

sensors

uC
communication

Access
to

sensors

uC
communication

currently used Xilinx FPGAs is the high power consumption,

again taking advantage of the modularity of the Cookies, a

new processing layer is under development that includes a

very low power full reconfigurable FPGA (5 uW best case

consumption) provided by Actel.

REFERENCES

[1] Analysis of Deployment Methodologies for Wireless Sensor

Networks, FP6-2005-IST-034642 European Project, Deliverable

8.

[2] S. Yamshita, T. Shimura, K. Aiki, K. Ara, Y. Ogata, I.

Shimokawa, T. Tanaka, H. Kuriyama, K. Shimada, K. Yano, “A

15x15, 1 µA, Reliable Sensor-Net Module: Enabling Application-

Specific Nodes,” in Proc. of the 5th IEEE/ACM International

Conference on Information Processing in Sensor Networks

(IPSN’06), April 2006, pp. 383–390.

[3] J. Polastre, S. Szewczyk, D. Culler, “Telos: Enabling Ultra-Low

Power Wireless Research”, in Proc. of the 4th IEEE/ACM

International Conference on Information Processing in Sensor

Networks (IPSN’05), April 2006, pp. 364-369.

[4] H. Hinkelmann, P. Zipf, M. Glesner, “Design Concepts for a

Dinamically Reconfigurable Wireless Sensor Node”, in

Proceedings of the 1st NASA/ESA Conference on Adaptive

Hardware and Systems (AHS’06), pp. 436-441, Jun 2006.

[5] A. E. Susu, M. Magno, A. Acquaviva, D. Atienza,

“Reconfiguration Strategies for Environmentally Powered

Devices: Theoretical Analysis and Experimental Validation”, in

Transactions on HiPEAC I, LNCS 4050, pp. 341-360, 2007.

[6] J. Portilla, A. de Castro, E. de la Torre, T. Riesgo, “A Modular

Architecture for Nodes in Wireless Sensor Networks”, Journal of

Universal Computer Science (JUCS), vol. 12, nº 3, March 2006,

pp. 328-339.

[7] “DS1WM, Synthesizable Verilog 1-Wire Bus Master”, Dallas

Semiconductor, http://www.maxim-ic.com/.

[8] J. Portilla, J.L. Buron, A. de Castro, T. Riesgo, “A Hardware

Library for Sensors/Actuators Interfaces in Sensor Networks”,

Proc. of the 13th IEEE International Conference on Circuits and

Systems (ICECS’06), Nice, France, Dec. 2006.

[9] K. Paulsson, M. Hubner, G. Auer, M. Dreschmann, L. Chen, and

J. Becker. “Implementation of a Virtual Internal Configuration

Access Port (JCAP) for enabling Partial Self-Reconfiguration on

Xilinx Spartan-III FPGAs”, in proceedings of 17th IEEE

international conference on Field Programmable Logic (FPL07),

Amsterdam, Netherland, August 2007.

[10] Brendan Bridgford and Justin Cammon, “SVF and XSVF File

Formats for Xilinx Devices “, XAPP 503, Xilinx, 2007.

[11] “XAPP 058 (v. 4.0): Xilinx In System Programming Using an

Embedded Microcontroller”, October 2007

[12] Davin Lim, Mike Peattie, “XAPP 290 (v1.0): Two Flows for

Partial Reconfigurtion: Module Based or Small Bit

Manipulation", XAPP 290,Xilinx, 2004.

[13] "Partial Reconfiguration Software User's Guide", Xilinx, 2006.

[14] http://www.gainspan.com/.

[15] Yana E. Krasteva, Eduardo de la Torre, Teresa Riesgo, “Virtual

Architectures for Partial Runtime Reconfigurable Systems.

Application to Network on Chip based SoC Emulation”, to be

published in Proc. of the The 34th Annual Conference of the IEEE

Industrial Electronics Society (IECON 08), Nov. 2008

http://www.maxim-ic.com/
http://www.gainspan.com/

