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Abstract- The inclusion of reconfigurable HW in nodes for 

Wireless Sensor Networks (WSNs) is not a common issue in the 
framework of the design of state of the art HW platforms for 
WSNs, mainly due to its high power consumption. But, on the 
other hand, reconfigurable logic as FPGAs can contribute to 
improve the system performance by providing not only HW 
acceleration as it has already been demonstrated by several 
research groups, but also the possibility of node HW updates 
after WSN deployment. This paper presents an entire working 
flow to generate, remotely configure and reconfigure the HW 
and SW in a reconfigurable node platform for WSNs. The 
presented reconfiguration working flow targets the custom HW 
platform designed at CEI (Centro de Electronica Industrial), 
where the processing is carried out by both a microcontroller 
and a partially reconfigurable Xilinx FPGA. The presented 
reconfiguration process is based on the JTAG protocol and thus 
permits to port the system to new, less power consuming FPGAs 
that are appearing in the market to solve problems related to 
energy lifetime. 

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) represents one of the most 

outstanding and ambitious challenges in electronic design and 

telecommunications nowadays. These special networks are 

intended to be autonomous, low power consuming, context 

aware and reconfigurable. 

The particular features related to WSNs force the designer 

to think in a new way. In this context, the hardware of the 

node becomes critical, in order to overcome the hard 

requirements imposed by these type of systems. 

The applications in which WSNs may be involved can 

include hundred or thousand of nodes. In such situations, it is 

very important to be able to debug the network on-line and 

reprogramming the nodes to solve problems of working or 

performance. These tasks are related to the concept of 

commissioning [1]. 

Usually, WSNs HW designers include a microcontroller 

(uC) as the smart element, which carries out all the tasks 

related to communication control, sensors processing and 

global node management [2][3]. A modular HW 

reconfigurable platform has been developed during the last 

years at CEI, called Cookies. This platform includes a uC and 

an FPGA as processing elements. The idea is to have a 

processing support for the uC, to carry out specific tasks 

which could overload the uC (special processing as video and 

audio or sensor processing for particular digital interfaces 

among others). Other groups face this topic as [4][5], but their 

approach include the development of specific integrated 

circuits where the reconfigurable logic is included. The 

platform developed at CEI includes a commercial FPGA from 

Xilinx, which makes easier the integration in new 

environments for designers and engineers. 

One of the problems that arise when a reconfigurable 

element as an FPGA is introduced in a system as a WSN node 

is the power consumption penalization. The architecture of 

the hardware platform used in the present work will be 

detailed in section II, but it can be said in advance that new 

ultra low power FPGAs are appearing in the market as Actel 

Igloo, and a new development is been carried out to introduce 

this kind of elements to overcome the power consumption 

problem in reconfigurable WSN nodes. The HW 

reconfiguration feature improves the flexibility of the node, 

and allows remote HW updates, which can be very useful to 

improve node performance in new actualizations, to debug 

on-line (commissioning) the WSN, and make the node 

smarter. 

This paper details the work developed to reconfigure the 

FPGA HW integrated in the node, using a wireless link 

(ZigBee in this case) and an example of application in which 

this HW reconfiguration capability of the node is intended to 

be used. 

The basic idea is to use the uC to reconfigure the FPGA. 

The uC will use the JTAG port of the FPGA to accomplish 

this task. This decision was taken due to most of the market 

FPGAs include a JTAG port to download its configuration 

file. The uC will receive the bitstream from the ZigBee 

module and will introduce it in the FPGA configuration 

memory. 

The current node design includes a Xilinx FPGA 

(XC3S200 Spartan 3). This work has taken advantage of the 

partial reconfigurability capabilities of such devices (other 

manufactures do not offer this feature). Moreover, with this 

approach the size of the bitstreams are much lower, and the 

remote configuration process is much faster.  

The idea will be tested over the reconfiguration of 

hardware sensor interfaces. This is other line developed at 

CEI and will be explained in section II. The concept is to 

have a library of general HW digital interfaces for sensors (as 

I2C, 1-Wire, SPI, etc.). These interfaces are designed in a 

general way in order to be able to adapt them to new sensors 

in a fast way. The demonstrator will start with a default 

configuration for the FPGA with some interfaces configured 

and one of these interfaces will be replaced for other interface 

for the same sensor or another, in a dynamic (without 
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restarting the node) and partial way (only a part of the whole 

configuration will be changed). 

The rest of the paper is organized as follows. Section II 

details the HW node architecture and the HW sensor 

interfaces. Section III describes the remote reconfiguration 

process and section IV how the partial reconfiguration is 

carried out. Section V details the proof of concept and section 

VI concludes the paper. 

II. COOKIE SENSOR NODE 

The WSN node in which the reconfiguration tasks are carried 

out is the Cookie [6] (see “Fig. 1”). This node was designed 

with a main philosophy in mind: modularity. 

Modularity allows dividing and encapsulating the 

functionalities included in the node. Therefore, future 

redesigns may involve only part of the platform, which is 

desirable considering the time to market. Moreover, 

researching using this platform turns open, due to the node 

flexibility, which makes possible the proof of several 

concepts minimizing the effort. 

TheCookie is composed of four main layers (more layers 

can be added in future versions): processing, communication, 

power supply and sensors. Every layer carries out a specific 

task, and these encapsulates the functionality. In the 

following paragraph these layers are detailed: 

1. Processing: This is the heart of the node. It includes a 

8052 uC from Analog Devices (ADuC841) and a 

Xilinx XC3S200 Spartan 3 FPGA. The uC and the 

FPGA share 3 8-bit ports for communication. 

Hardware modifications had to be carried out to 

connect the JTAG port of the FPGA to the uC, to 

make possible remote reconfiguration. 

2. Communication: The last version of this layer 
includes a ZigBee module (ETRX2 from Telegesis). 

This module is controlled by the uC through the 

UART port. A layer version with Bluetooth is also 

available. 

3. Power supply: This layer generates all the voltages 

needed within the Cookie. Two versions have been 

developed, the latest with USB included, which 

allows power supply from a PC and serial 

programming for the uC. 

4. Sensors: This layer includes those elements which are 

intended to take measures from the environment. 
Today, 3 different layers have been developed for 

theCookie. These layers include sensors of 

acceleration, temperature, humidity, light, infrared 

and deformation. 

One of the features of the sensor layer is that it can include 

sensors with both digital and analog interfaces (sensors with 

digital interfaces will be called digital sensors, and those with 

analog interfaces will be called analog sensors in the rest of 

the paper). Signals form analog sensors are connected to the 

ADC of the uC. On the other side, signals from digital 

sensors are connected to the FPGA. In principle, the FPGA 

carries out all the processing related to digital sensors, to 

release the uC, which manage the communications and 

processes analog sensors. 

Nowadays, there are a myriad of sensors in the market with 

several different interfaces to communicate their 

measurements. Much of them are digital sensors, with 

different protocols as SPI, I2C, 1-Wire, etc. When this kind of 

signals have to be processed using a uC, problems related to 

timing and processor overhead can appear. In fact, some 

manufacturers offer HDL code to implement the sensor 

interfaces in a coprocessor [7]. 

In this context, a library of general HW interfaces has been 

developed at CEI [8] in order to process signals of sensors 

with very different digital interfaces. The interfaces included 

in the library until now are: 

 I2C and I2C modified (Sensirion Company interface) 

 PWM 

 Period/Frequency 

 1-Wire 

The library is divided in modules which represent sensor 

(or actuator) interfaces. Every module has been designed 

following a philosophy inspired in the IEEE 1451 family of 

standards, but can also be used without being compatible with 

them. Each transducer is “seen” as a channel (or set of 

channels) by the sensor or actuator (transducer) controller. 

Two kinds of channels are recognized: sensor channel and 

actuator channel. Some sensors, like the SHT11 from 

Sensirion, supply two or more measures (in this case, 

humidity and temperature). Therefore, for the same sensor 

two different channels are needed. 

The uC sends triggers to the FPGA, specifying the sensor 

from which the measure has to be taken, and the FPGA 

activates the right sensor interface. Finally, the FPGA sends 

the result of the measure in two bytes. So, the FPGA acts as a 

reconfigurable coprocessor for the uC 

 

 

Fig. 1 Processing layer (uC on the left, FPGA on the right) 
 and full Cookie platform 



 

III. REMOTE RECONFIGURATION   

The remote reconfigurable system schematic view is shown 

in “Fig. 2”. The problem of remote reconfiguration in the 

Cookie platform presents two aspects to be covered: uC 

reprogramming and FPGA reconfiguration. 

A. uC Reprogramming 

The uC included in the Cookies (ADuC841 from Analog 

Devices) is programmed using its UART port. The uC 

includes a serial protocol in order to be able to program the 

uC through a host (i. e. a PC or other processor). 

In the other hand, the ZigBee module is connected to the 

uC serial port. The uC sends commands to the ZigBee to 

manage the communications and sends the raw data to be 

delivered to the network. In order to reprogram the uC using 

the wireless ZigBee link a manager program (called Cookie 

Manager) has been developed. This manager carries out all 

the steps related to uC program downloading through the 

serial port. First of all, a ZigBee channel must be establish 

between the sink (network coordinator) and the remote node 

in which the reprogramming has to be done. Next, Cookie 

Manager sends all the commands needed to program the 

remote uC as if a real serial cable was connected between the 

host programmer and the remote node. Finally, the 

programming file is sent and is introduced in the uC flash 

memory. The serial downloading protocol allows starting 

code executing in the remote uC through a specific command. 

Not only a program but other data can be loaded into the 

uC flash memory. So a typical file downloaded to the uC for 

FPGA configuration includes a program that acts as a JTAG 

controller and a file which includes the bitstream to be loaded 

into the FPGA with the instructions that the JTAG controller 

will follow to carry out the reconfiguration. 

B. FPGA Reconfiguration 

Regarding the FPGA reconfiguration, the selected Spartan3 

does not have an internal configuration port (ICAP), so the 

remaining configuration options are: i) Select Map and ii) 

JTAG. As it has been already mentioned, JTAG has been the 

selected reconfiguration interface. A SW implementation of 

the JTAG controller, provided by Xilinx, has been used [11]. 

Therefore no additional FPGA area is required for the 

reconfiguration process control, like for instance if Select 

Map was selected, like in [9]. On the other hand, the main 

disadvantage of using JTAG is the reconfiguration time 

(JTAG is serial, while Select Map is parallel).  

The JTAG configuration program running on the uC uses 

Xilinx specific Boundary Scan configuration files (.xsvf) 

where the configuration data is formatted in binary 

commands. In the present paper, only partial bitstreams are 

loaded into the FPGA, taking advantage of the partial 

reconfiguration capabilities of the Xilinx Spartan 3 FPGA. 

To retarget the system to other FPGAs (non Xilinx) that 

can be programmed by JTAG, a Xilinx tool called svf2xsvf 

[10] can be used to transform a boundary scan standard 

ASCII file to a Xilinx binary file. 

Once the FPGA has been configured by the uC, the final 

code for the application is downloaded into the uC flash 

memory. This step is done in the same way as it was 

explained before. 

All these tasks can be carried out between any number of 

Cookies, exploiting the multihop capabilities of the ZigBee 

standard. This allows reconfiguring every node connected to 

the network with the only drawback of time delay. Tests have 

been done for a two hop configuration as a proof of concept. 

These results are shown in section V. 

IV. FPGA PARTIAL RECONFIGURATION  

Partial reconfiguration in FPGAs requires defining Virtual 

Architectures (VA) on top of the selected device. For this aim, 

a set of steps have to be followed. Details of VAs design are 

outside the scope of this paper and can be found in [15]. Here, 

only the main aspects applied to a target Spartan 3 FPGA are 

included.  

The first aspect to be taken into account is the VA model. 

VA models can be one dimensional (1D) or two dimensional 

(2D). According to [12], partial reconfiguration in Virtex II 

based architectures (this includes Spartan 3 FPGAs) is frame 

based, i.o.w. only reconfiguration regions that span entire 

FPGA columns can be defined and this permits a direct use 

only of 1D based VAs. A general view of the defined VA for 

the sensor node Spartan 3 FPGA is presented in “Fig. 3”.  

The structure of the Spartan 3 FPGA is quite regular in 

comparison with other FPGAs (Virtex II for instance). 

Therefore, the fixed area (the one that never changes) of the 

FPGA occupies only the left and right FPGA sides, because 

 

Fig. 2. HW-SW Reconfigurable Sensor Node Diagram 
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Fig.  3. HW Reconfigurable Sensor Node Spartan 3 FPGA  
Virtual Architecture 

BRAM/MUL Column

Fi
xe

d 
A

re
a

A
cc

es
s 

to
 s

en
so

rs

Fixed Area
Communication  

with uC8051 

Re
co

nf
ig

ur
ab

le
 S

lo
t

Used IOBs

JTAG 
interface

Spartan 3

Communication 

macros



of the regularity mentioned. The left side is in charge of the 

communication with the external microcontroller, while the 

right one is used to access the node sensors. The remaining of 

the FPGA, defined as reconfigurable area has a very regular 

structure and is divided into reconfigurable Slots (slots are 

composed only of CLB columns). In this, first approach, only 

one slot has been defined in the reconfigurable area because it 

is restricted by the needed Input Output Blocks (IOBs) for the 

communication with the microcontroller (left fixed area). The 

defined slot is 6 CLBs wide and is composed of 144 CLBs 

(576 Slices) in the target FPGA - XC3S200.  

For slot communication with fixed areas, structures called 

Bus Macros are used. Two types of bus macros have been 

designed in this implementation. First, a vertical bidirectional 

macro that passes four bits of data from left to right and four 

bits from right to left in neighboring modules. This macro is 

similar to the Xilinx Bus Macros, available for Spartan 3 in 

[13], but the difference is that these ones are bidirectional. 

Our experience shows that better routing results can be 

achieved using bidirectional macros instead of unidirectional. 

The second type of macro is also a bidirectional macro, but it 

is used to cross the BRAM/MUL column that is allocated 

between the right fixed area and the reconfigurable slot. This 

BRAM/MUL column can be used by modules (HW Cores) 

loaded in the slot. 

The working flow that has been developed is presented in 

“Fig. 4”. Once the FPGA VA has been defined, that includes 

a user constraint file and the set of communication macros to 

be used, the conventional (ISE) design flow can be followed. 

This flow ends with the generation of a full configuration file, 

from which the slot configuration region is extracted using 

bitgen (the Xilinx tool for bitstream generation) with partial 

mask options. Another approach is the use of the Xilinx 

partial reconfiguration design flow, based on ISE and the 

PlanAhead tool (suitable for testing different floorplanning 

approaches). Differently from the first approach, the 

PlanAhead design flow directly results in partial 

configuration files and has better routing. Anyway, in the 

current implementation we have selected the conventional 

design flow because we have plenty of space in the slot and 

the virtual architecture floorplanning has been well defined in 

the first step of the working flow.  

Independently from the method used to generate partial 

configuration files, the next step is to use the iMPACT tool to 

generate the needed binary formatted boundary scan 

configuration file to partially reconfigure the node FPGA 

New FPGA partial configurations as well as new node 

microprocessor configurations are sent using the previously 

described custom software.  

 

V. USE CASE AND RESULTS 

A use case has been setup as a proof of concept. Two 

different applications have been created on top of the system 

presented in this paper and have been alternatively loaded by 

remotely reconfiguring the sensor node HW and SW. 

The first application uses the node accelometer and is 

referenced as ACCS, while the second one, referenced as 

TMPS, uses the node temperature sensor. The application HW 

part, mapped in the FPGA slot along with all the virtual 

architecture components can be seen in “Fig.5”. Both designs 

HW parts include multiplier functions that can be 

implemented either using the embedded multipliers of the 

FPGA or simply using FPGA LUTs. The used area by the 

HW part of each application and each application version 

(with and without embedded multipliers) is presented in 

Table I. The percentage of the used slot area is also included, 

and it can be noticed that the slot is underused and therefore 

bigger designs can be loaded in it without having to redefine 

the FPGA VA. 

TABLE I 
FPGA USED AREA 

Design 
Used 

MULs 

Used  

FFs 

Used  

LUTs 

Used 

Slices 

% of Slot 

Slices 

ACCS_HW_v1 0 170 68 311 54 

TMPS_HW_v1 0 71 40 127 22 

ACCS_HW_v2 2 127 68 232 40 

TMPSI_HW_v2 2 63 40 111 19 

Partial configuration files have been generated from each 
design using the working flow presented in the previous 
section and the resulting file sizes in both .bit and .xsvf 
format are presented in Table II. Since the reconfiguration 
unit is a slot, the configuration files sizes are the same for 
both applications in “XX_v1” (without using the embedded 
MULs). Differently for “XX_v2” designs, with MULs, that 
use not only the slot, but also the standing next to it 
BRAM/MUL column, the file size increase considerably. As 
a reference it is important to mention that a complete 
XC3S200 configuration file is 131 KB and thus makes partial 
reconfiguration very useful for resource restricted devices. 

 

 

 

 

Fig.  4. Working Flow 
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TABLE II 
PARTIAL CONFIGURATION FILES SIZE 

Design .bit (KB) .xsvf (KB) 

ACCS_HW_v1 24,9  25,2  

TMPS_HW_v1 24,9  25,2   

ACCS_HW_v2 41,3   43,5 

TMPSI_HW_v2 41,3  43,5  

The microcontroller program memory is 62 KB. New HW 

and SW configurations are loaded in this memory. The JTAG 

configuration program occupies 6K of the available memory, 

while the rest is left for the HW configuration files. A set of 

HW/SW configurations for each application (ACCS and 

TMPS) has been sent to the reconfigurable node using 

different type of transmission media: i) using the available 

communication in the sensor node (a ZigBee module) and ii) 

using a serial cable connection. Table III summarizes both 

transmission times and data rates. 

TABLE III 
CONFIGURATION TIMES 

Mode SW (sec.) HW(sec.) Total (sec.) 
data rate 

(Bytes/s) 

Cable 8B  19,06  73,5  87,22  333,04 

ZigBee 8B  49,11  190,22  219,31  131,95 

Cable 16B  13,72  53,56  67,28  470,70 

ZigBee 16B 29,09  114,75  143,75  220,30 

In the table two different packetized formats can be 

differentiate: One of 16 Bytes and another of 8 Bytes. Both 

transmission packet formats have been tested in two 

configurations: i) a direct connection with the Node Under 

Reconfiguration (NUR) and ii) in a long distance connection 

with the NUR- using a node for intermediate routing 

(multihop). Results, included in Table III, have been 

measured under direct connection mode. 

Reliability in WSN application is an important aspect, even 

more if the network is also used for transmitting device 

updates. Tests have shown that the 16 bytes transmission fails 

with a high rate in long distance connections compared with 8 

bytes based transmissions that are much more reliable, but 

take considerably longer time. It is well known that the 

ZigBee standard is intended for transmitting small amount of 

data, also, the currently used ZigBee transmitter module does 

not permit low level protocol optimization and therefore, the 

presented results are far from being optimal. Anyway, with 

the expansion of the wireless sensor networks application 

range, new standards for nodes communication appear, like a 

low power WiFi version [14]. 

The final step, once the HW and SW configuration have 

been loaded into the microcontroller program memory, is to 

execute the JTAG programmer. The time needed for this 

application to partially program the FPGA is 4.2 seconds. As 

a comparison the time needed by the Xilinx iMPACT SW 

running on a PC is one second. This time can be drastically 

reduced if a special, FPGA specific, parallel programmer is 

used instead of the JTAG version. 

VI. CONCLUSIONS AND FUTURE WORK 

The paper has presented a remotely reconfigurable sensor 

node system. The systems permits HW and/or SW updates. A 

simple use case, as prove of concept, has been also included 

in the paper. The presented approach exploits partial 

reconfigurable capabilities of the node state of the art Spartan 

3 FPGA. As the framework is based on the JTAG standard, 

the solution is portable to other FPGAs. A method to use the 

presented framework for other, full reconfigurable, FPGAs 

has also been included. Results show that remote updates of 

WSN nodes are possible. This remote reconfiguration 

provides the possibility of building intelligent nodes and 

WSN that can be adapted dynamically to achieve a certain 

goal even after WSN deployment. The main drawback of the 

presented system is the used wireless communication module 

based on the ZigBee standard. High delay and fail rates 

during the reconfiguration process have been reported. This 

problem can be easily solved by simply changing the 

communication layer of the modular platform with a new, 

updated one, based on more reliable and fast communication, 

like WiFi. Such layer design has already been planned in the 

near future work. On the other hand the main drawback of 

 

Fig. 5. System Applications: ACCS_HW on the left side and TMPS_HW on the right side 
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currently used Xilinx FPGAs is the high power consumption, 

again taking advantage of the modularity of the Cookies, a 

new processing layer is under development that includes a 

very low power full reconfigurable FPGA (5 uW best case 

consumption) provided by Actel.  
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