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ABSTRACT 
 
This work evaluates the capabilities of the Glottal to Noise 
Excitation Ratio for the screening of voice disorders. A lot of 
effort has been made using this parameter to evaluate voice 
quality, but there do not exist studies that evaluate the 
discrimination capabilities of this acoustic parameter to classify 
between normal and pathological voices. A set of 226 speakers 
(53 normal and 173 pathological) taken from a voice disorders 
database were used to evaluate the usefulness of this parameter 
for discriminating normal and pathological voices. In order to 
evaluate this parameter, the effect of the bandwidth of the 
Hilbert envelopes and the frequency shift have been analyzed, 
concluding that a good discrimination is obtained with a 
bandwidth of 1000 Hz and a frequency shift of 300 Hz. The 
results confirm that the Glottal to Noise Excitation Ratio 
provides reliable measurements in terms of discrimination 
among normal and pathological voices, comparable to other 
classical long-term noise measurements found in the literature, 
such as Normalized Noise Energy or Harmonics to Noise Ratio, 
so this parameter is a good candidate to be used for screening 
purposes. 
 

1. INTRODUCTION 
 

A wide range of complementary acoustic parameters 
have been developed to measure different irregularities or 
perturbations. Most of the parameters [1-5] found in 
existing literature focus on perturbation measurements 
and the evaluation of voice pathologies by means of 
long-term parameters calculated by averaging local short-
time perturbations measured from the speech. These 
parameters are usually grouped into three main 
categories: a) amplitude perturbation (or shimmer 
parameters); b) frequency perturbation (or jitter 
parameters); and, c) noise parameters.  

Noise parameters give an indication of the noise 
content of the signal and have an extensive application in 
the evaluation of voice quality (because of their 
relationship with many dysphonia [6;7], and because they 
are well correlated with the perceptual ratings) and for 
screening purposes.  

Apart from the physical interpretation of each 
acoustic parameter and its ability to measure different 
aspects of voice quality, it is very important to know how 
likely it is that a voice register is normal or not given 
each of the previously mentioned acoustic parameters. In 
the context of screening, there does not exist a single 
feature which is capable of differentiating between 
normal and pathological voices, since voice pathologies 

tend to combine different kinds of perturbations. To date, 
very few studies have evaluated the discriminative 
capabilities of the acoustic parameters. With the same 
database utilized in this study, Parsa evaluated the 
discriminative capabilities of several noise features [8]: 
NNE, SNR, zHNR, fHNR, PA, SPR; reporting accuracies 
equal to 79.8, 82.5, 83.3, 88.6, 94.7 and 98.7% 
respectively. Yumoto [3] first proposed the HNR 
parameter for acoustic discrimination of voice disorders 
reporting an error rate of 16.7%. Kasuya [1] obtained a 
classification accuracy of 78.6% for the NNE and 74.1% 
for the HNR. Other works [6;8-11] indicate that an 
accurate screening can be carried out using a combination 
of several of the above mentioned acoustic parameters, 
enabling each individual voice utterance to be quantified 
by a single set of one-dimensional parameters (similar to 
those enumerated above). Although the multidimensional 
studies reported a good efficiency in screening (obtaining 
accuracy of up to 96%) [10;11], such analysis is not 
always easy to interpret from the perspective of a human 
evaluator and it is usually carried out by methods based 
on complex pattern recognition techniques. In this sense, 
the best acoustic features for screening would be those 
with the lowest correlation against the others and with the 
best discrimination capabilities. Among these lines, the 
GNE, as reported in [5;12], provides a low correlation 
with respect to the amplitude perturbation and noise 
features, but the classification accuracy of the GNE has 
never been documented consistently. Moreover, an 
advantage of this parameter is that its calculation is not 
based on a previous estimation of the fundamental 
frequency, a difficult task in the presence of pathology. 
Thus, the GNE is a good candidate to be used for 
screening purposes.  

The main goal of this work is to evaluate the 
discrimination capabilities to separate normal and 
pathological voices (i.e. screening accuracy) of the GNE, 
and comparing its reliability with several noise and 
amplitude/frequency perturbation parameters found in 
related literature. To date, the GNE has only been used 
previously in voice quality studies to represent the 
“hoarseness diagram” [12], but there are no existing 
extensive studies about the validity of this particular 
parameter for screening purposes in related literature.  

 
2. THE GLOTTAL TO NOISE EXCITATION 

RATIO  
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The algorithm to calculate the Glottal to Noise Excitation 
Ratio (GNE) was first proposed by Michaelis in [5;12]. 
The GNE represents an interesting approach to quantify 
the amount of excitation due to vocal fold oscillations 
versus the excitation given by turbulent noise. Thus, it is 
closely related to breathiness, and it is considered a 
reliable measure for the relative noise level even in the 
presence of strong amplitude and frequency 
perturbations.  

In contrast to other acoustic parameters -such as jitter, 
shimmer, NNE and NHR-, one of the most interesting 
aspects of the GNE is that its calculation can be 
considered very robust because it does not require a 
previous estimation of the fundamental frequency, a 
difficult task in the presence of pathology, and it is thus 
suited even to highly irregular glottal oscillations.  

The GNE is based on the correlation between Hilbert 
envelopes of different frequency channels uniformly 
distributed throughout the spectrum (channels with a 
bandwidth: BW; and separated with a frequency shift: 
FShift). Triggered by each glottis closure, all the 
frequency channels are simultaneously excited so that the 
Hilbert envelopes in all channels should be of the same 
shape, leading to high correlation between envelopes. In 
the case of turbulent signals (whisper or pathological 
voices) a narrow band noise is excited in each frequency 
channel. These narrow band noises can be considered 
uncorrelated if the windows that define the frequency 
bands do not overlap too much [5]. The noise leads to a 
lower correlation between envelopes. The output of each 
frequency channel can be considered as a pass-band 
signal, and the Hilbert envelope an estimation of the 
amplitude envelope of these signals.  
 

3. DATABASE 
 
The tests have been carried out using a commercially 
available database developed by the Massachusetts Eye 
and Ear Infirmary Voice and Speech Labs (MEEI). It was 
compiled partly at the MEEI Voice and Speech Lab. and 
partly at Kay Elemetrics Corp. and it features recordings 
of the sustained phonation of vowel /ah/ (53 normal and 
657 pathological files).  

The voices were recorded with a sampling frequency 
of 50 kHz and 16 bits of quantization. Each subject was 
asked to produce a sustained phonation at a comfortable 
pitch and loudness. The process was repeated three times 
for each subject, and a speech pathologist chose the best 
sample for the database. The acoustic samples are 
sustained phonations (1~3 s. long) of vowel /ah/ from 
patients (males and females) with normal voices and a 
wide variety of organic, neurological, traumatic, and 
psychogenic voice disorders. The samples were edited to 
remove the first and the last part of the utterance to avoid 
onset and offset effects. The duration of the pathological 
records stored in the database is around 0.8 s., whereas 
the normal voices are 3 s. long. When necessary, a 
downsampling with a previous half band filtering has 

been done to adjust every utterance to the sampling rate 
of 25 kHz. 

The database has been segmented according to the 
criteria explained in [8] and previously used in other 
studies [13]. These criteria ensure that all the files are 
labelled with their diagnosis, and also that gender and age 
are uniformly distributed amongst the samples belonging 
to both classes. The normal talkers exhibited no abnormal 
vocal characteristics and had no history of voice 
disorders. The final subset taken from the database 
contains 53 normal and 173 pathological talkers.  
 

4. RESULTS 
 
The accuracy of the parameters is tested and compared 
using the Relative Operating Characteristic (ROC) [14] 
plots. The ROC curve displays the diagnostic accuracy 
expressed in terms of sensitivity (or true positive rate) 
against 1- specificity (or false acceptance rate) at all 
possible decision threshold values. The ROC is analyzed 
calculating the Area Under the Curve (AUC) and its 
standard error (SE) as suggested in [14]. The AUC 
represents an estimation of the screening accuracy, and 
the SE provides the confidence intervals of this 
measurement.  

The discriminative capabilities of the GNE are 
presented graphically in Figure 1, Figure 2, and Figure 3. 
Figure 1 depicts the AUC among its standard error SE for 
the experiments performed. Figure 2 show the influence 
of the FShift on the screening accuracy through three 
plots corresponding to the GNE extracted with 60 ms 
windows and BW=1000 Hz for a FShift equal to 100, 
200 and 300 Hz.  
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Figure 1: Screening accuracy of the GNEl parameter 
extracted with 60 ms windows for the 15 experiments 
performed: BW={250, 500, 1000, 2000, 3000} Hz, 
FShift={100, 200, 300} Hz.  
 

Figure 3 shows the influence of the BW on the 
screening accuracy. This plot shows the curves that 
correspond to the GNE extracted with 60 ms windows 
and FShift=300 Hz for a BW equal to 250, 500, 1000, 
2000 and 3000 Hz. The plots show that if BW≥1000 Hz, 



the lower the BW the better the discrimination capability 
of the parameter is; and also if BW≤500 Hz, the lower 
the BW the worse the discrimination is. In addition, 
Figure 3 shows that the efficiency in the detection of 
voice pathologies reached 90% using BW=1000 Hz and 
FShift=300 Hz. The worst results in terms of 
discrimination were obtained with the smallest and 
largest bandwidths (BW=250 Hz and BW=3000 Hz) 
tested.  
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Figure 2: Accuracy of the GNE parameter. The 
bandwidth used is 1000 Hz, and the frequency shift 
(FShift) 100, 200 and 300 Hz. a) ROC plots for the 
different frequency shifts: FShift=100 Hz (AUC=0.97), 
FShift=200 Hz (AUC=0.97); and FShift=300 Hz 
(AUC=0.97).  
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Figure 3: Accuracy of the GNE parameter. The frequency 
shift is 300 Hz, and the bandwidth (BW) 250, 500, 1000, 
2000 and 3000 Hz. a) ROC plots for the different 
bandwidths: BW=250 Hz (AUC=0.93), BW=500 Hz 
(AUC=0.96), BW=1000 Hz (AUC=0.97), BW=2000 Hz 
(AUC=0.92); and BW=3000 Hz (AUC=0.86).  
 

For the shake of comparison, the discriminative 
capability of several noise and perturbation parameters 
has also been evaluated and compared with the GNE 

calculated with a BW=1000 Hz and FShift=300 Hz. The 
discriminative capability evaluated in terms of the 
efficiency in the detection of voice disorders represents 
an estimation of the percentage of voices that have a 
deviation in the phenomenon represented by the acoustic 
parameter.  

Figure 4 shows the plots of the ROC curves for the 
GNE compared with other noise parameters existing in 
the related literature, such as: NNE, CHNR, HNR and 
VTI. Figure 4 depicts graphically the comparison of the 
different noise parameters showing that the GNE (under 
the proposed configuration: BW=1000 Hz and 
FShift=300Hz) provided similar results to the other noise 
features. In any case, each noise parameter measures 
different aspects of the phenomenon, so their 
measurements should be considered complementary. 
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Figure 4: ROC plot to show and compare the ability to 
discriminate among normal and pathological voices  
 
 

5. CONCLUSIONS 
 
To date, and among the noise parameters, there are not 
many studies that evaluate the diagnostic capabilities of 
the GNE. However, this parameter showed a significant 
potential for screening since the GNE represents an 
interesting approach to quantify the amount of voice 
excitation by vocal fold oscillations versus excitation by 
turbulent noise.  

It is acknowledged that the Hilbert envelopes provide 
accurate instantaneous values only for pure tones. The 
wider the BW, the more harmonics would be included in 
it deeming the envelope less accurate. In contrast, the 
narrower the BW, the bigger the chance that for higher 
fundamental frequencies some filter channels may not 
include harmonic energy, which would affect the GNE 
values with regard to the detection of pathology. Thus, 
the optimal BW should be the balance, which minimizes 
these two extreme effects. The results demonstrated that 
the performance starts to decline at BW≤500 Hz, because 
the method needs to warrant at least two or three 
harmonics in each filter bank; and, on the other hand, the 



performance declines at BW>1000 Hz, because -as 
commented above- the estimation of the Hibert envelope 
is less accurate. In order to decrease the computational 
requirements and to ensure at least three harmonics in 
each filter bank a good choice is to use BW=1000 Hz. On 
the other hand, there is no evidence that the FShift 
influences the discrimination capabilities of the 
parameter; furthermore, once again, in order to decrease 
the computational load of the algorithm a good trade-off 
is to use FShift=300 Hz. 

These findings appear to contradict the methodology 
proposed in [12], where the GNE is calculated using a 
BW=3000 Hz to evaluate voice quality by means of the 
“hoarseness diagram”. In [12] the authors demonstrated 
by means of correlation that the GNE with BW=3000 Hz 
correlates less with jitter and shimmer measurements, so 
they concluded that using this BW the parameter is less 
affected by frequency or amplitude perturbation. 
However, both results can be considered complementary, 
and the choice of the bandwidth depends on the use given 
to the parameter: whether the GNE is used to build the 
“hoarseness diagram” the best configuration is that 
reported in [12] reducing the correlation with the 
periodicity perturbation parameters; but if the GNE is 
used for screening purposes, the results demonstrate that 
a smaller bandwidth is preferred (BW=1000 Hz), 
although the correlation with the periodicity perturbation 
parameters increases (i.e. the GNE is integrating noise 
and aperiodicity information).  

On the other hand, a complete analysis of voice 
requires a multidimensional analysis. However the single 
features with a clear physical interpretation still remain 
appropriate for the evaluation and screening of voice 
disorders in the clinical environment. In this sense, the 
set of noise and periodicity perturbation parameters 
calculated has a clear utility for the discrimination 
between normal and pathological voices, with 
classification rates over 73% for each parameter alone. 
Regarding the GNE, the efficiency for screening reached 
90% (with BW=1000 Hz and FShift=300), comparable to 
other noise measurements such as CHNR and NNE but 
with the advantage of not requiring a previous estimation 
of the fundamental frequency. In general terms, the 
results suggest that the noise features (and the GNE 
among them) are good indicators of the presence or 
absence of pathology, whereas the efficiency of the 
periodicity perturbation parameters for screening 
purposes is lower. This fact does not mean that the 
periodicity perturbation parameters perform better or 
worse than the noise parameters; it simply means that 
these results have to be understood on the basis that the 
noise perturbations are more frequent in the presence of 
disorders than the periodicity perturbations.  
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