

Streaky 3D structures in the Boundary Layer

Juan A. Martín ¹ and Carlos Martel¹

ETSI Aeronáuticos, Universidad Politécnica de Madrid Pza. Cardenal Cisneros 3, 28040 Madrid, Spain

Introduction

3D Streaky Laminar Boundary Layer Flow

Smoke visualization of streaky flow, [1] [2].

 $Y - Momentum \rightarrow \frac{\partial \hat{p}_{0}}{\partial \hat{y}} = 0$ $Z - Momentum \rightarrow \frac{\partial \hat{p}_{0}}{\partial \hat{z}} = 0$ $\Rightarrow \hat{p}_{0} = \hat{p}_{0}(\hat{x})$ **RNS equations (after dropping tildes)** $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$ $u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = -\frac{dp_{0}}{dx} + \left(\frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}}\right)$ $u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z} = -\frac{\partial p_{1}}{\partial y} + \left(\frac{\partial^{2}v}{\partial y^{2}} + \frac{\partial^{2}v}{\partial z^{2}}\right)$ $\frac{\partial w}{\partial w} \quad \partial w \quad \partial w$

Numerical Method

Parabolic evolution in x.

Solving RNS in the y - z plane for each station in x.

Discretization

• Simple one step Euler implicit in the stream-wise direction (x)

- Compact finite difference scheme in the wall-normal direction $(y) 2^{nd}$ order accuracy.
- Central difference scheme in the spanwise direction (z) -

Sketch of the different streak scales

Reduced Navier Stokes (RNS)

Steady Streak description for large Re $L_x \sim 1, \quad L_y, L_z \sim \frac{1}{\sqrt{Re}} << 1; \quad u \sim 1, \quad v, w \sim \frac{1}{\sqrt{Re}} << 1$ 3D Boundary layer scaling $x = \hat{x} \qquad u = \hat{u} + \dots$ $y = \hat{y}\sqrt{Re} \qquad v = \hat{v}\sqrt{Re} + \dots$

$$z = \hat{z}\sqrt{Re} \quad w = \hat{w}\sqrt{Re} + \dots$$
$$p = \hat{\mathbf{p}_0} + \frac{1}{Re}\hat{\mathbf{p}_1} + \dots$$

TWO TERMS for the pressure are required

 $u\frac{\partial x}{\partial x} + v\frac{\partial y}{\partial y} + w\frac{\partial z}{\partial z} = -\frac{1}{\partial z} + \left(\frac{\partial y^2}{\partial y^2} + \frac{\partial z^2}{\partial z^2}\right)$

The 2^{nd} order y and z momentum eqs. are required to compute v and w, and the pressure correction term p_1 is now coupled.

• RNS have been used for high Re microchannel and microtube flow computations (see, e.g. [3], [4] and [5]).

• Never used before, up to our knowledge, for external boundary layer flow computations.

Standard 2D BL equations

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial u} = -\frac{dp_0}{dx} + \left(\frac{\partial^2 u}{\partial u^2}\right)$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{up_0}{dx} + \left(\frac{\partial u}{\partial y^2}\right)$$
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{\partial p_1}{\partial y} + \left(\frac{\partial^2 v}{\partial y^2}\right)$$

The 2^{nd} order y momentum eq. is only required now to compute the pressure correction p_1 .

 2^{nd} order accuracy. Method

Decoupling (x) momentum eq. and (y - z) momentum eqs.
Sparse matrix solver for x marching.

• Speed improvement by constant matrix calculations.

Conclusions

• RNS are derived from the complete Navier-Stokes for the description of large flow structures in the high Re limit.

• RNS formulation allows us to perform 3D streaky BL computations with much less CPU cost than standard 3D DNS.

RESULTS: Natural Decay of an Initial Perturbation

ocity	Initial	Streamwise velocity contour plots	Streamwise vorticity contour plots
velc	4		

X=2

X = 6.5

X=1.5

X = 4.5

X = 0.5

X = 3.5

X=2.5

X = 8.5

CPU cost

Wall-normal and spanwise

velocity evolution.

Streamwise vorticity isosurfaces

Roforoncos					
	32 bits architecture	$(N_x \ge N_y \ge N_z)$	seconds		
	4Gb RAM 2.24 GHz	256x128x125	1700		
	Intel Xeon Core2 Duo	X = [0.5 - 12.5]			
	64 bits architecture	$(N_x \ge N_y \ge N_z)$	seconds		
	8 Gb RAM 3.0 GHz	512x256x125	4800		
	Intel Xeon Dual Core	X = [0.5 - 12.5]			

- Fransson, J.H.M., Talamelli, A., Brandt, L., Cossu, C. "Delaying Transition to Turbulence by a Passive Mechanism", Phys. Rev. Letters, 2006.
- [2] Choi, K.S. "The Rough with the Smooth", Nature, 2006.
 [3] Chen, C.S. "Reduced Navier-Stokes Simulation of Incompressible Microchannels Flows", Numerical Heat Transfer, 2008.
- [4] Chen, C.S. "Numerical Method for Predicting Three-Dimensional Steady Compressible Flow in Long Microchannels", J. Micromech. Microeng. 2004.
- [5] Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics, vol II" Springer-Verlag.

[6] Schlichting, H., "Boundary Layer Theory", McGraw-Hill.