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ABSTRACT

This paper presents the application of a feature selection
technique such as LDA to a language identification (LID)
system. The baseline system consists of a PPRLM mod-
ule followed by a multiple-Gaussian classifier. This clas-
sifier makes use of acoustic scores and duration features
of each input utterance. We applied a dimension reduc-
tion of the feature space in order to achieve a faster and
easier-trainable system. We imputed missing values of
our vectors before projecting them on the new space. Our
experiments show a very low performance reduction due
to the dimension reduction approach. Using a single di-
mension projection the error rates we have obtained are
about 8.73% taking into account the 22 most significant
features.

1. INTRODUCTION

Automatic language identification (LID) has become a
cornerstone task in multilingual environments. For an au-
tomatic customer care system which could be used for
users that speak in different languages, a language-speci-
fic speech recognition module has to be used. So, deter-
mining the language in what the user speaks is a need in
order to adapt further steps of a dialogue system.

The most widespread LID approach consists of using
several phoneme recognizers in parallel. At the output
of those recognizers, a phoneme language model is ap-
plied for each language to be identified. This technique is
known as Parallel Phone Recognition followed by Lan-
guage Modeling (PPRLM). Examples of this approach
can be seen on [1] or [2].

Each of the phonemes of a given language can be es-
timated by using Gaussian Mixture Models (GMM, [3])
or Hidden Markov Models (HMM). A GMM-based LID
system can be improved with a clustering algorithm that
groups the feature vectors on an unsupervised approach,
according to a distance criterion ([4]).

As an alternative to these probabilistic approaches,
[5] or [6] develop neural network-based LID systems that
lead to identification rates comparables to the obtained
with PPRLM-based systems.

This work continues the presented in [1], [7] and [8],
which present a LID system based on PPRLM. The per-
formance of the baseline system is improved with the im-
plementation of a multiple-Gaussian classifier. This sub-
system takes its decisions using as input vectors the acous-
tic score of each phoneme within the input utterance, or
the duration of those phonemes.

The number of features of each input vector is high,
so the training and the evaluation of the Gaussian mod-
els takes an large fraction of processing time. In order to
tackle this drawback, a feature selection algorithm such
as LDA is proposed.

Since a given phoneme can or cannot appear on an ut-
terance, several features may be missing on an input vec-
tor. This fact can cause a reduction of the system perfor-
mance. To avoid this weakness we have analyzed several
missing data imputation algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 presents a brief description of the dimensionality
reduction approach that has been employed. The differ-
ent imputation methods we have implemented are shown
in Section 3. Our baseline LID system is then presented
in section 4. Section 5 summarizes the different exper-
iments we have carried out. Finally, Section 6 presents
several conclusions of our work.

2. FEATURE SELECTION

The Gaussian classifiers we use as a second classification
stage make use of 68-dimensional feature vectors. These
68 features are the acoustic scores of the phonemes of
each target language (English and Spanish, 34 features
each).

We propose a feature selection technique to reduce
processing time and resources. Our system can choose
the most representative features according to the follow-
ing criterion:
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being µ1 and µ2 the arithmetic means of a given feature
considering each language, and σ2
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2 , their corre-

sponding variances. Higher values of 1 for a given feature
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imply a better separation between the classes.
Despite the goodness of this approach, which can lead

to better results using just 22 features instead of the whole
feature vector, we want to analyze the behaviour of our
system when a more restrictive reduction is applied. The
chosen approach is Linear Discriminant Analysis (LDA),
which is explained in [9].

We have chosen LDA because it is oriented to labeled
samples, that is, the algorithm makes use of the language
of each training utterance. Furthermore LDA tries to in-
crease the separability between different class data, so it
can be efficiently used for class discrimination.

LDA consists of applying a linear transform over a
data set of d dimensions which project on a d’-dimension-
al subspace (d’ < d), with d’ equal to the number of lan-
guages minus 1 (in our case, d’ = 1). The transformation
is made in such a way that the between-class variance is
maximized, while the within-class variance is minimized.
This can lead to an improvement of the separability be-
tween the classes.

3. MISSING DATA TREATMENT

Our feature vectors consist of the acoustic score for each
phoneme that has been observed on each input utterance.
This fact implies that a given feature may not appear in
a given vector. This could happen if the speaker has not
used that phoneme or the system has not recognized it.

This lack of information is a drawback when dimen-
sion reduction is applied, because those missing values
usually lead to a biased estimation of the optimal trans-
formation vector. So the implementation of an imputa-
tion technique ([10]) that can fill those missing features is
a must.

We have chosen two different imputation techniques:
a substitution based on the arithmetic mean of the non-
missing features, and a modification of the imputation ap-
proach proposed in [11].

The mean imputation procedure consists of evaluating
the arithmetic mean of each feature using the non-missing
values on the training data. Let x1, · · · , xn be a set of n
d-dimensional feature vectors, which could have several
missing values. The arithmetic mean of each feature j can
be obtained as

Xj =
1
nj

n∑
i=1

xij (2)

where nj < n is the number of vectors for which the fea-
ture j is not missing.

This method is very simple and is accurate for clas-
sification purposes if a supervised training is carried out.
However, mean substitution does not take into account
the variance of each feature, so it can cause a bias in the
estimation.

The imputation procedure proposed in [11] (hence-
forth referred to as Bingham imputation) computes the
cross-case mean among the different non-missing features

of a given vector i,

Ii =
1
k

∑
j non−missing

(
xij −Xj

)
(3)

where k is the number of non-missing features in vector i
and xij is the value of the non-missing feature j of vector
i.

The imputed value Ẽij of the missed feature j of vec-
tor i is computed as follows:

Ẽij = Xj + Ii (4)

So, the objective of this imputation is to include an
offset in the imputation value that reflects the tendency
that acoustic scores exhibit for the non-missing features
in the vector.

This imputation method is especially effective when
the different features are very correlated, because it weights
each feature mean with the rest of the features in the vec-
tor. Nevertheless, this method does not take into account
the feature variance. To tackle this lack we have modi-
fied the former definitions of cross-case mean and final
imputation value:

Ĩi =
1
k

∑
jnon−missing

(
xij −Xj

)
σj

(5)

Ẽij = Xj + σj Ĩi (6)

where σj is the variance of feature j.
The inclusion of the variance provides a normalization

of this imputed value, so that the values are more stable,
avoiding the presence of outliers.

4. BASELINE SYSTEM

4.1. Database

Our database consists of a set of continuously spoken sen-
tences extracted from conversations between airplane pi-
lots and air traffic controllers. All speakers were native
Spanish.

We have used 2929 Spanish sentences and 1053 En-
glish sentences. By applying a leave-one-out technique
we have used each sentence for both training and evaluat-
ing the system, but obviously in separate sets. This way
we expand the size of the test set. We have not considered
those sentences whose duration is less than 0.5 seconds.

Each phoneme recognizer makes use of context-inde-
pendent continuous hidden Markov models (HMM). We
have considered 49 different phonemes for Spanish and
61 for English. However, we have grouped the less rep-
resentative phonetic variations and built phoneme vectors
of 68 features, 34 for each language.



4.2. PPRLM-based LID system

The PPRLM identification system makes use of a pho-
neme recognizer for each target language. A language
model module scores the probability that the sequence of
phonemes corresponds to a given language.

We have used smoothed n-gram language models to
approximate the n-gram distribution as the weighted sum
of the probabilities of the n-grams considered.

We improved the PPRLM approach by taking into
account silence models, defining and using a smoothing
function in the evaluation of the n-gram score, and re-
moving bias in the classifier. The baseline error rate is
about 3.7% using only PPRLM.

4.3. Gaussian classifier

We have used a second identification system that includes
acoustic information of each phoneme. We built a fea-
ture vector with the phonemes that the PPRLM system
has recognized. We computed an average score for each
phoneme appearing in the sentence. Instead of using ab-
solute scores for each phoneme, our previous work ([1])
demonstrated that we can achieve better identification rates
by using differential scores obtained by the LM. We then
applied equation (1) to get the most representative fea-
tures. The best results that we have achieved showed an
error rate of 7.9% when we use the acoustic score of each
phoneme and keep 30 features in the reduced space. If
we use the phoneme duration instead, error rate takes a
value of 24.7%. This implies that phoneme duration is a
much less discriminative feature, at least the way we have
implemented it. These results will be our baseline.

5. EXPERIMENTS

5.1. LDA with mean substitution

The first imputation procedure we have implemented con-
sists of substituting each missing value with the arithmetic
mean of the corresponding feature and applying LDA. As
the original feature space, we have used the 68-dimen-
sional feature vectors as well as the selection of the most
representative features, according to equation (1). The er-
ror rates are shown in Table 1 together with the relative
improvement over the system without LDA (7.9% error
rate) and the average percentage of missing values on the
original feature space.

No of Error Improve Miss
features rate (%) (%) feat (%)

68 12.48 -58.0 31.63
30 9.46 -19.7 30.64
22 8.76 -10.9 26.41
20 8.94 -13.2 26.08

Table 1. Error rates with LDA and mean substitution.

The former average is similar for all setups with dif-
ferent number of features (close to 30%). This means that
the most discriminant features also present a high number
of missing values. So, the imputation of those missing
values is still crucial.

We can also see how a pre-selection of the most rep-
resentative features leads to a more accurate LDA pro-
jection. Nevertheless, the use of a low space dimension
implies an information loss.

5.2. LDA with original Bingham imputation

Our second test makes use of the imputation algorithm
presented in [11]. The following table summarizes the
results we have obtained as well as the improvement in
relation to the previous experiment.

No of features Error rate (%) Improve (%)
68 11.00 11.9
30 9.36 1.1
22 8.82 -0.7
20 9.03 -1.0

Table 2. Error rates with LDA and Bingham substitution.

If we compare these results with the previous ones we
can see that Bingham imputation yields lower error rates
when considering 68 and 30 features.

5.3. LDA with weighted Bingham imputation

We next weighted the cross-case mean of Bingham impu-
tation by the variance of the corresponding feature, fol-
lowing equation (5). The different error rates for each
input feature space are shown in Table 3, together with the
relative improvement over the mean substitution-based ex-
periments.

No of features Error rate (%) Improve (%)
68 12.24 1.9
30 9.21 2.6
22 8.73 0.3
20 9.02 -0.9

Table 3. Error rates with LDA and weighted Bingham imputa-
tion.

This results are slightly better than those obtained with
mean substitution, except for the case of 20 features.

All the previous results are shown in Figure 1.

5.4. LDA applied to phoneme duration

If we consider the duration of each phoneme and apply
both missing value imputation approaches we obtain the
following results.

We can obtain a relevant improvement over the origi-
nal error rate (24.7%). Despite the error rates are clearly
higher than those obtained with acoustic scores, when we



Figure 1. Error rate comparison for acoustic scores.

Mean Basic Bingham
substitution imputation

No of Error Relative Error Relative
param rate (%) diff (%) rate (%) diff (%)

68 22.77 7.70 23.90 3.12
30 22.79 7.62 24.31 1.46

Table 4. Error rates for LDA applied to phoneme dura-
tion.

use both score and duration features we can improve the
overall performance (8.6% error rate with 22 features and
mean substitution).

6. CONCLUSIONS

In this work, we present a feature selection approach that
makes use of several missing data imputation techniques
in order to complete the input vectors with a low distor-
tion. The increase in error rate due to the dimensional-
ity reduction for the acoustic scores is relatively small,
and the identification task becomes easier and faster for a
multiple-language task.

The different imputation approaches allows us to ac-
curately predict the values of the most representative fea-
tures, so the results are very similar to those obtained
with the original feature space, but using 1 dimension in-
stead of 22. The best of the applied techniques has been
variance-weighted Bingham imputation with 22 original
features, with a slight improvement regarding the other
techniques. Performance is even similar to the baseline
system using 22 features.
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