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Abstract 
 
Riparian zones are exposed to increasing pressures because of disturbance from agricultural and 
urban expansion and overgrazing. Accurate and cost-effective mapping of riparian environments 
is important for managing their functions associated with water quality, biodiversity, and 
wildlife habitats. The objective of this research was to integrate Light Detection and Ranging 
(LiDAR) and high spatial resolution QuickBird-2 imagery to estimate riparian zone attributes. A 
digital terrain model (DTM), a tree canopy model (TCM) and a plant projective cover (PPC) 
map were first obtained from the LiDAR data. The LiDAR-derived products and the QuickBird 
bands were then combined in an object-oriented approach to map riparian vegetation, streambed, 
vegetation overhang, bare ground, woodlands and rangelands. These products were also used to 
assess the riparian zone width. The overall result was a combined method, taking advantage of 
both optical and airborne laser systems, for mapping riparian forest structural parameters and 
riparian zone dimensions. This work shows the accuracy able to be obtained by integrating 
LiDAR data with high spatial resolution optical imagery to provide more detailed information 
for riparian zone management. 
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1. Introduction 
 
Riparian zones are defined as the interface of terrestrial and aquatic ecosystems and constitute a 
rich ecosystem both in terms of biomass and biodiversity. Several riparian health indicators can 
be employed when assessing the riparian zone condition. The most commonly used are 
compositional and structural parameters, such as dominant vegetation community, PPC, riparian 
zone width, presence of vegetation overhang, tree crown size, large trees and bank stability.  
 
Optical remotely sensed data have been used to map these parameters (Congalton et al., 2002; 
Johansen and Phinn, 2006; Johansen et al., 2007a; Johansen et al., 2007b). These studies have 
been hampered by a missing third dimension in terms of structural information on the forest 
height and vertical distribution of foliage. Optical sensors often have difficulties distinguishing 
between canopy cover and ground cover (e.g. grass versus trees). Moreover, they cannot detect 
features underneath area of dense canopy cover. 
 
LiDAR introduces the possibility of three-dimensional analysis of vegetation and terrain 
features. The validity of airborne laser scanning to retrieve forest parameters has been widely 
tested (Lefsky et al., 2001; Persson et al., 2002; Zimble et al., 2003; Clark et al., 2004; Suarez 
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et al., 2005; Popescu and Zhao, 2008). LiDAR techniques provide useful information on forest 
structural attributes, encouraging the incorporation of LiDAR data to the riparian zone analysis.  
 
The aim of this paper was to integrate LiDAR and QuickBird data to estimate structural 
parameters of the riparian zone and its component vegetation. Object-oriented classification was 
used for the analysis, given its ability to integrate and process data with very different properties. 
Both data sets were employed in order to accurately map: PPC; the river’s streambed; the 
riparian zone width; a land-cover map; a DTM and a TCM. As a result, a combined 
methodology, taking advantage of the benefits of both optical and airborne laser systems, was 
developed.  
 
2.  Data and Methodology 
 
2.1 Study area 
 
The study area was located within the Fitzroy catchment in Queensland, Australia (Figure 1). It 
covered a 5 km stretch of Mimosa Creek and associated riparian vegetation situated upstream of 
the junction with the Dawson River (24º31’S; 149º46’E). The riparian vegetation was mainly 
surrounded by rangelands used for cattle and some agriculture, but also showed some remnant 
patches of woodland vegetation.  
 

 
 

Figure 1: Location of the riparian zone study area in the Fitzroy catchment, central Queensland, Australia. 
 
2.2. Data acquisition and processing 
 
A QuickBird image was captured of the study area on 11 August 2007 with an off-nadir angle of 
14.6º. The image was first radiometrically corrected to at sensor spectral radiance using the 
pre-launch calibration coefficients provided by DigitalGlobe Inc. The FLAASH module in 
ENVI 4.3 was then used to atmospherically correct the image to at-surface spectral reflectance. 
A total of 18 ground control points derived in the field were used to geometrically correct the 
image (root mean square error (RMSE) = 0.59 pixels for the multi-spectral bands). 
 
Data acquired by the Leica ALS50-II LiDAR sensor on 15 July 2007 were provided in 
American society for Photogrammetry and Remote Sensing (ASPRS) Lidar Exchange Format 
(LAS), specification 1.1. LiDAR returns were classified as ground or non-ground by the data 
provider using proprietary software. Four products were derived from this dataset according to 
the methods described below: DTM, TCM, PPC and a streambed map. 
A 0.5 m DTM was produced from the Leica ALS50-II data by inverse distance weighted 
interpolation of returns classified as ground with an exponent of two. Elevation of the ground at 
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the position of non-ground returns was also estimated using the same interpolation technique. 
The DTM and a slope image obtained from the DTM were employed for the location of the 
streambed within the study area. 
 
The height of all first returns above the ground was calculated by subtracting the ground 
elevation from the first return elevation. These estimates of first returns were then aggregated 
into 2.4 m x 2.4 m data bins to match the QuickBird multi-spectral spatial resolution and 
employed for the derivation of the TCM and the PPC. The TCM is a representation of the top of 
the canopy (Suarez et al., 2005) and it was calculated as the maximum height of first returns in 
each bin. PPC was estimated from the LiDAR cover fraction, defined as one minus the gap 
fraction probability, Pgap, at a zenith of zero. This was calculated from the proportion of counts 
in each data bin by 
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where CV(z) is the number of first return counts above z metres, CV(0) is the number of first 
returns above the ground and CG is the number of first return counts from the ground (Lovell et 
al., 2003). z was set to 2 m. The fraction of LiDAR pulses intercepted by the canopy above a 
height of z is determined by the PPC, but calibration is required to account for the sampling 
properties of the sensor (Goodwin et al., 2006). The calibration of LiDAR cover fraction to PPC 
was developed using independent LiDAR survey data from an Optech ALTM3025 with the 
same flying altitude and beam divergence settings used in this study. The minimum intensity 
required to register a return at the sensor was assumed to be the same. A total of 47 field 
measurements of PPC were acquired coincident with these LiDAR data. These LiDAR and field 
surveys were used to develop a calibration curve from LiDAR fractional cover to PPC and are 
described in detail by Armston et al. (2008). Using the same procedures as Armston et al.(2008) 
and Johansen et al. (2008), a simple power function was found to fit the scatter well (RMSE 
3.33) and had the property of being bounded 0–100 %, 
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Since there was excellent agreement between the field estimates of PPC and LiDAR derived 
fractional cover and the residuals were consistent with a binomial sampling distribution, the 
LiDAR cover fraction estimates were calibrated to estimates of PPC using equation (2). 
 
2.3. Land cover classification 
 
All the above information (four multi-spectral bands, DTM, PPC, TCM and streambed map) 
was incorporated into a Definiens project for object-oriented image processing. Two processing 
steps were applied. One is the segmentation of the data into homogenous segments (image 
objects); and the other is the assignment of these objects to discrete classes.  
 
Segmentation is controlled by scale, colour, and shape. A stepwise approach was chosen here 
due to the very different information content of the different data sets. An initial segmentation 
was carried out on the basis of the LiDAR-derived information (using PPC and TCM products). 
Those objects that showed low and similar TCM values (areas with no vegetation or low 
vegetation) were merged into bigger segments. Then, a second segmentation was performed 
using the optical information. The location of the streambed was also incorporated into the 
segmentation, to make sure that there were no objects covering areas from both the streambed 
and the riparian zone. 
 
After segmentation, objects can be classified on the basis of spectral values, spectral variability, 
size, shape or in relation to neighbouring objects. In this case, both multi-spectral and 
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LiDAR-derived information were used to define the following six classes: riparian vegetation, 
woodlands, rangelands, bare ground, streambed without vegetation overhang and streambed 
with vegetation overhang. Four types of features were used for the classification: mean, 
standard deviation, context information and the normalised difference vegetation index (NDVI). 
Mean refers to the mean value of all pixels within an object, e.g. mean RED is the mean spectral 
value of the red band of all pixels within an object. The standard deviation features were 
employed as an estimation of the level of variability within each object. For instance, rangeland 
areas, which characteristically showed smooth surfaces, displayed low values of standard 
deviation in the near infrared (NIR) band. Context information refers to features such as 
“existence of streambed”, used in the description of overhanging vegetation, or “distance to 
riparian vegetation”, used to discard isolated forested areas misclassified as riparian vegetation. 
The NDVI values were calculated for each object as a new arithmetical feature, using the mean 
spectral values of the red and NIR bands. Each class was described by one or more of these 
features. Table 1 shows an overview of the features used for each class. The classification was 
performed in a hierarchical manner, with objects of one level informing the classification of 
other-level objects.  
 

Table 1: Object and class related features used for the object-oriented classification. 
 

Class Features used 
Bare ground Mean RED; Mean TCM 
Riparian vegetation NDVI; Number of neighbour "Riparian vegetation" objects; 

Enclosed by class "Riparian vegetation"; Distance to “Streambed” 
Rangelands NDVI; Standard deviation NIR; Mean TCM 
Woodlands NDVI; Relative border to "Riparian vegetation" 
Streambed without veg. Mean RED; Presence of "Streambed" 
Vegetation overhang NDVI; Presence of "Streambed" 

 
2.4. Riparian zone and streambed widths estimation 
 
The riparian zone width was estimated as the perpendicular length from the toe of the stream 
bank to the external perimeter of the riparian vegetation zone, where abrupt change in 
vegetation height and density occurred (Johansen and Phinn, 2006). The land-cover 
classification was employed to establish this distance. All the riparian vegetation objects were 
first subdivided into objects consisting of one pixel and only those ones corresponding to the 
edge of the riparian vegetation were considered for the analysis. The riparian zone width was 
then extracted from the value of the feature “Distance to class”. Definiens’ “Distance to class” 
feature measures the distance from the centre of each object to the closest object of the specified 
class. In this case, the distance of every pixel from the edge of the riparian vegetation to the 
streambed was extracted. The same approach was employed for the streambed width. 
 
2.5 Validation 
 
Field sampling was conducted between 28 May and 5 June 2007. Coincident field 
measurements of vegetation structural properties for image calibration and validation were 
derived along 25 m wide and 70 – 100m long transects located perpendicular to the stream at 
each of five field sites. Each site had six transect lines each separated by 5 m starting at the edge 
of the streambed, going through the riparian zone and finishing 10-20 m beyond the external 
perimeter of the riparian zone. Quantitative field measurements of PPC were derived along each 
of the six transect lines from upward looking photos taken at 5 m intervals (figure 2). The 
photos were subsequently classified into canopy photosynthetic and non-photosynthetic 
elements and sky to calculate the plant projective cover within the field of view using the 
approach by van Gardingen et al. (1999). Riparian zone width and streambed width were 
directly measured to the nearest meter using a measuring tape. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 117

 

 

 
Figure 2: Example of the quantitative field measurements of PPC from upward looking photos. Photos 

(left) were classified (right) into canopy elements (black) and sky (white). PPC corresponds to the relative 
area of canopy elements in the classified photo (0.49 in this example) 

 
The LiDAR-derived PPC estimations were validated using the actual field PPC measurements. 
To allow this validation, each field site was subdivided into smaller plots of 225 m2. This plot 
size (15 x 15 m) is equivalent to the area covered by nine photos (3 x 3 photos) and represents a 
feasible compromise to allow geographic correspondence between both data sets. The average 
of the LiDAR-derived PPC values for each plot was then compared to the average of the 
corresponding nine field PPC measurements. A total number of 48 plots were used. 
 
An error matrix was constructed to estimate the land cover classification accuracy. Sixty 
randomly selected objects were visually classified using both the multi-spectral and the 
panchromatic bands from the QuickBird image and employed as reference sites. The overall 
accuracy of the classification and the Kappa statistic were calculated. 
 
Field measurements of streambed width were compared to those automatically obtained from 
the land cover classification. Since the streambed was frequently hidden underneath the canopy 
cover of the riparian vegetation, visual assessment of the streambed width from optical 
information was unreliable. Hence, only field measurements were employed for streambed 
validation. In the case of the riparian zone width measurements, a set of 34 visually assessed 
measurements of the riparian zone width was also produced from the multi-spectral and the 
panchromatic QuickBird bands. They corresponded to 17 sites located along the river where the 
riparian zone width was measured from both edges of the streambed (right and left hand side of 
the river) to the external perimeter of the riparian zone. Both in-situ and image-based riparian 
zone width measurements were compared to the automatically obtained riparian zone widths. 
 
3. Results and Discussion  
 
The 0.5 m DTM extracted from the LiDAR data revealed a fairly flat area, with a total height 
difference of only 25 m (Figure 3a). This information was employed for mapping the streambed 
of the river according to its geomorphology (Figure 3b). The high precision of this 
LiDAR-derived streambed map allowed very accurate estimation of the streambed width. Thus, 
the streambed width measurements obtained from the LiDAR-derived streambed map and the 
ones measured in the field showed a very high correlation, with a correlation coefficient (r) of 
0.98 (RMSE = 1.53). 
 
The PPC product showed the percentage of land covered by green foliage and 
non–photosynthetic vegetation (branches, trunks, dead leaves) (Figure 3c). This is an important 
riparian zone health indicator that is difficult to estimate by means of optical information. The 
comparison between the estimated PPC and the field measurements of PPC also showed a 
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strong correlation (Figure 4; r = 0.86). Previous studies based on optical information (QuickBird 
imagery) had revealed that the presence of dense grass cover heavily affects the accuracy of the 
optical-based PPC estimates (Johansen and Phinn, 2006). In this sense, the use of LiDAR data 
represents a benefit for the riparian zone analysis.  
 
A TCM estimating the heights of the top of the canopy was also derived from the LiDAR data 
(Figure 3d). The canopy height ranged from 0 to 41.35 m. This layer of information facilitated 
the image segmentation and land cover classification. The TCM was useful for tree crown 
identification and tree height estimation.  
 

 
 

Figure 3: LiDAR-derived products: (a) DTM; (b) streambed map (in blue); (c) PPC and (d) TCM. Bright 
areas correspond to high values for the terrain elevation (a, b), PPC (c) and tree heights (d). 
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Figure 4: Scatter plot of the PPC estimations from the LiDAR data vs the PPC measurements extracted 
from upward looking photos. 

 
Image segmentation was carried out using the LiDAR-derived information first (Figure 5a). 
This information on its own was useful for the tree identification, but it was insufficient for 
segmenting cover types with similar heights (such as bare ground and grasslands). The second 
level was created by incorporating the multi-spectral information (Figure 5b), and the result was 
a more suitable separation of tree crowns and other features. Here, the multi-spectral 
information allowed identification of features such as bare ground and grasslands. Finally, the 
incorporation of the streambed boundaries assisted the land cover classification and allowed the 
estimation of the riparian zone width.  
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Figure 5: Segmentation levels: (a) LiDAR-derived segmentation and (b) incorporating optical 
information. 

 
Classification was performed on the final segmentation level using the parameters defined in 
Table 1. The combined use of LiDAR, spectral and context information allowed accurate 
identification of the six land cover classes (Figure 6). Fifty-two out of sixty objects were 
correctly identified as one of the six land cover types, which provided an overall classification 
accuracy of 88% (Table 2). The Kappa value for the land cover classification was 85%. Riparian 
vegetation and woodland classes were predicted with the lowest accuracy (63 and 69% 
respectively), due to the high level of spectral and positional similarity between them in the 
transitional area between riparian and woodland vegetation.  
 
The LiDAR-derived streambed map was essential for correct identification of vegetation 
overhang and riparian zone width. A total area of 4.1 hectares of streambed (83.5% of the total 
streambed mapped for this study area) were located underneath vegetation overhang and would 
have been impossible to map by means of optical sensors alone. Accurate location of the 
streambed was also necessary for the riparian zone width estimation. At the same time, the 
spectral information improved the LiDAR-derived streambed map, which was underestimated 
in some areas. The original streambed map, derived only from LiDAR data, was missing 4.5% 
of the final streambed area, mapped after including the QuickBird multi-spectral bands. This 
confirms the feasibility of combining both sensors for the riparian zone analysis, rather than 
selecting one over the other.  
 

Figure 6: Land cover classification: (a) Subset of the study area (bands green, red and NIR) and (b) 
classification result for the same subset. 

 
Measurements of the riparian zone width and the streambed width were derived from the land 
cover classification map (Figure 7). By reducing the size of the objects to one single pixel, we 
ensured a reliable measurement of both the riparian zone width and the streambed width. The 
distance in Definiens is estimated from the centre of each object, being influenced by its shape 
and orientation. This bias was eliminated by working with individual pixels. The average 
riparian zone width and streambed width for the study area were 57.11 m and 13.23 m 
respectively.  
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Table 2: Error matrix of the land cover classification for bare ground (BG), riparian vegetation (RV), 
woodlands (WL), rangelands (RL), streambed without vegetation overhang (SC) and streambed with 

vegetation overhang (VO). 
  Reference Data User’s 

 BG RV WL RL SC VO Sum Accuracy
  BG 6 0 0 0 0 0 6 100% 
  RV 0 12 4 0 2 1 19 63.2% 
  WL 0 0 9 0 0 0 9 100% 
  RL 0 0 0 7 0 0 7 100% 
  SC 0 0 0 0 9 0 9 100% 
  VO 0 0 0 0 0 10 10 100% C

la
ss

ifi
ed

 D
at

a 

Sum 6 12 13 7 11 11 60  
Producer’s Acc. 100% 100% 69.2% 100% 81.8% 90.9%   
Overall Classification Accuracy =     88.3%           

 
Forty nine measurements of the riparian zone width (five measured in the field and 34 visually 
assessed from the optical information) were employed for the validation of the riparian zone 
width assessment. Comparison between the reference and estimated riparian zone widths 
showed a strong correlation (r = 0.82; RMSE = 13.9), with an overestimation of the automatic 
assessment in some areas (Figure 8). This overestimation was linked to the presence of 
woodland areas close to the riparian zone, which were in some cases misclassified as riparian 
vegetation, and therefore included in the riparian zone width estimation. Because the riparian 
zone width estimation was based on the land cover classification map, the results relied heavily 
on the image classification accuracy. Even though establishing the boundary between riparian 
vegetation and woodlands is challenging (even when it is performed in the field), the overall 
accuracy of the automatic estimation was high, with an average error of 3.9 m, equivalent to less 
than 2 pixels in the image.  
 

 
 

Figure 7: Riparian zone width estimation. Pixels representing the edge of the riparian zone are presented 
in different colours according to their distance to the streambed.  
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Figure 8: Scatter plot of the riparian zone width estimations vs the reference values (i.e. measured in the 
field and visually assessed from the optical information). The red ellipse shows examples of 

overestimation of the riparian zone width. 
 

Conclusions 
 
Several parameters of the riparian zone have been accurately mapped by combining LiDAR and 
high spatial resolution optical data. These include PPC, streambed with vegetation overhang, 
streambed without vegetation overhang, the riparian zone with, the streambed width and a land 
cover map.  
 
Combining LiDAR and high spatial resolution satellite imagery can significantly improve the 
mapping and assessment of vegetation structure and condition of the riparian zones in 
Australian tropical savannas. The integration of both sources of information produced an 
accurate land cover map, despite the high heterogeneity of the riparian landscape. This allowed 
accurate identification of riparian vegetation, vegetation overhang and the streambed, all of 
which are commonly used indicators of the riparian zone condition. Moreover, the analysis 
developed allowed an accurate estimation of the riparian zone width and improvement of the 
streambed map.  
 
The object-oriented image analysis was appropriate for this type of data integration. This 
approach also assisted the classification by allowing the incorporation of context information to 
the classes’ definition. Our results have implications for riparian management in tropical 
savannas as a tool for monitoring vegetation structure and composition remotely. Further 
research in this direction should be focused on the estimation and incorporation of other 
remotely-derived riparian health indicators, such as bank stability and weed mapping. 
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