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Erosion potential and the effects of tillage can be evaluated from quantitative descriptions of soil surface 
roughness. The present study therefore aimed to fill the need for a reliable, low-cost and convenient method 
to measure that parameter. Based on the interpretation of micro-topographic shadows, this new procedure is 
primarily designed for use in the field after tillage. The principle underlying shadow analysis is the direct 
relationship between soil surface roughness and the shadows cast by soil structures under fixed sunlight 
conditions. The results obtained with this method were compared to the statistical indexes used to interpret 
field readings recorded by a pin meter. The tests were conducted on 4-m2 sandy loam and sandy clay loam 
plots divided into 1-m2 subplots tilled with three different tools: chisel, tiller and roller. The highly significant 
correlation between the statistical indexes and shadow analysis results obtained in the laboratory as well as 
in the field for all the soil-tool combinations proved that both variability (CV) and dispersion (SD) are 
accommodated by the new method. This procedure simplifies the interpretation of soil surface roughness 
and shortens the time involved in field operations by a factor ranging from 12 to 20. 

© 2008 Elsevier B.V. All rights reserved. 

1. Introduction 

Soil surface roughness (SSR) is defined as the standard deviation of 
elevation readings. After tillage, soil micro-topography exhibits 
randomly oriented tillage marks of different depths/heights, as well 
as clods (Allmaras et al., 1966; Zobeck and Onstad, 1987; Huang, 1998). 
Each type of tillage tool generates a characteristic oriented roughness 
pattern which is relatively easy to quantify using a simple geometric 
model. By contrast, quantifying the spatial distribution of randomly 
oriented soil surface roughness represents a challenge (Huang, 1998). 

Quantitative descriptions of soil surface roughness furnish relevant 
information on erosion processes and the effects of anthropogenic 
activity, primarily tillage, on soil properties. Nonetheless, this 
parameter is not easy to quantify because of the scale of the 
measurements involved, ranging from centimetres to millimetres, 
and because they must be taken in the field with extremely sensitive 
instruments. 

Huang (1998) defines the two steps involved in quantifying soil 
surface roughness to be the collection of surface data and the analysis 
of the respective dataset. While amply acknowledged, the effects of 
different processes on soil surface roughness have seldom been 
measured because the complexity and randomness involved are not 
readily expressed in mathematical terms (Rbmkens and Wang, 1987). 
Moreover, Huang (1998) states that field techniques are laborious and 

produce digitized soil topography data of low resolution limiting the 
results of analytical procedures. 

At this time, the most common techniques for collecting soil 
surface data include: pin and profile meters (Burkwell et al., 1963; 
Podmore and Huggins, 1981; Rbmkens et al., 1986); stereophotogra-
phy (Wagner, 1995; Zribi et al., 2000); laser scanners (Huang et al., 
1988; Huang, 1998; Darboux and Huang, 2003) and the recently 
developed chain (Saleh, 1993; Merrill et al., 2001) and acoustic 
backscattering (Oelze et al., 2003) methods. 

Pin meters are the devices most widely used for their simplicity. 
They consist in a single probe or a row of probes spaced at pre-
established intervals and designed to slide up or down until the tip 
just touches the soil surface. Pin positions are recorded either 
electronically or photographically and subsequently digitized (Burk­
well et al., 1963; Rbmkens et al., 1986; Wagner and Yiming, 1991). The 
chief disadvantage to this technique is its destructive impact on the 
soil surface. 

Laser techniques, which are non-destructive (Huang et al., 1988), 
analyze the data by fractal interpretation. Laser technology generates 
very good laboratory results, but its field use is limited because 
sunlight and hidden forms or shadows interfere with the readings, 
while high temperatures affect the performance of the sensitive 
measuring devices involved (Pardini and Gallart, 1998; Pardini, 2003; 
Darboux and Huang, 2003). 

The indexes and theories required to analyze data depend on the 
methodology used as well as the scale and magnitude of the database. 
The most widely used soil surface roughness measure is a statistical 
index known as random roughness (RR), defined as the standard error 



of soil heights estimated after adjusting for oriented roughness such 
as tillage marks or terrain grade (Allmaras et al., 1966; Currence and 
Lovely, 1970). Because RR assumes that soil surface is randomly rough 
and lacking in any spatial correlation, alternative statistical and geo-
statistical roughness indexes have been proposed to deal with the 
spatial component (Kamphorst et al., 2000; Vivas Miranda and Paz 
Gonzalez, 2002; Vidal Vazquez et al., 2005). Nonetheless, RR is still the 
most widely used index for analyzing soil surface roughness; while 
most of the existing single micro-relief indexes are based on variance 
either in height or in length as a spatial component, they fail to 
consider the two together (Hansen et al., 1999; Kamphorst et al., 
2000). 

A unified conceptual framework based on fractal parameters has 
recently been introduced to tackle the geometric complexity of soil 
surface roughness. Nonetheless, the variety of non-equivalent meth­
ods proposed for calculating fractal indices has curbed their use in 
describing soil micro-topography (Vidal Vazquez et al., 2005). Two 
types of fractal techniques can be defined: non-variational methods 
such as tortuosity (Bertuzzi et al., 1990) and the Richardson number 
(Gallart and Pardini, 1996; Pardini and Gallart, 1998), and variational 
methods, including the semi-variogram (Armstrong, 1986; Vivas 
Miranda, 2000; Vivas Miranda and Paz Gonzalez, 2002), spectral 
analysis (Burg, 1967) and root mean square (RMS) or roughness length 
(Malinverno, 1990; Moreira and Da Silva, 1994; Vivas Miranda, 2000). 

In light of the foregoing, the primary objective of the research 
reported in this paper was to develop new shadow analysis-based 
field methodology, drawing from prior studies, to obtain soil surface 
roughness data. Shadow analysis proved to meet field testing 
requirements, being simpler, more convenient and quicker than the 
techniques presently in use. Moreover, when this procedure was 
calibrated under different roughness conditions the data collected 
were found to be more readily analyzed and interpreted than the data 
gathered with existing techniques. 

Shadow analysis was designed primarily for soils typical of central 
Spain, characterized by light, evenly distributed colours, a very low 
moisture content and a likewise low percentage of organic matter. The 

origin of most of the organic matter, in fact, is plant waste, essentially 
straw. In the summertime, moreover, very bright, sunny days prevail. 

Inasmuch as the aim was to improve field techniques to measure 
soil surface roughness, the experimental design prioritized outdoor 
testing, but included a few laboratory trials to ascertain the feasibility 
of the method. Such trials were intended to relate the percentage of 
shadows to the statistical indexes used in the pin meter technique, 
comparing the two procedures under controlled conditions, i.e., 
height distribution and length. 

2. Materials and methods 

2.1. Laboratory validation of shadow analysis 

Shadow analysis was developed for use in the field to compare and 
contrast the soil surface roughness (SSR) indexes developed for pin 
meters, as well as to lower the cost and inconvenience of field work. 

Consequently, the method was first validated in the laboratory by 
correlating the percentage of shadows to the standard deviation (SD) 
and coefficient of variation (CV) values found for a series of controlled 
heights and SSR distributions. 

The laboratory test consisted in measuring the shadows cast when 
artificial light was projected on a set of prisms with a 2*2-cm2 base 
and variable heights (0.5,1,1.5 or 2 cm, Fig. 1). Sets of three, six and 
nine prisms were positioned on an 18xl8-cm2 panel to cast different 
shadow patterns. The surface roughness generated by such arrange­
ments was compared to the shadows cast by a lamp simulating the 
daylight angle and conditions that prevail in the field. Photographs 
were taken with a Kodak DC 4800 digital camera from a position 
parallel to and at a distance of 1 m from the prisms; these conditions 
were kept constant throughout. The angle of the incident light was 
45°, chosen to ensure the same resolution as in the field. 

Since the relationship in a controlled situation between CV and SD 
on the one hand and the percentage of shadows on the other would be 
similar regardless of the geometric shape used, prisms - the simplest -
were chosen for this purpose. 

n = 3 

n = 6 

n = 9 

Fig. 1. Photographs showing prism heights and spatial patterns. 



Fig. 2. Shadow analysis, field image (sandy clay loam soil tilled with a tiller). 

The shadows projected by prisms of different heights and arranged 
in variable spatial patterns were analyzed on byte map histograms 
using Corel Draw Photo Paint (© 1992-1996 Corel Corporation) 
software. The points representing shadows on the histogram were 
identified and converted into a black surface against a white 
background. The shadow index was then computed as the percentage 
of black pixels over the total number of pixels. 

The percentage of shadows was compared to statistical indexes SD 
and CV (see Section 2.5 for further explanation) for 12 different spatial 
patterns, varying prism height (h) and number (n) as shown in Fig. 1. 

The relationship between the statistical indexes and the percen­
tage of shadows was subsequently obtained for each pattern, as 
discussed in the results. 

After the laboratory findings were analyzed, the method was used 
in the field and the results of shadow analysis were compared to the 
SSR values recorded with a pin meter. 

2.2. Field shadow analysis 

In the field, the newly developed shadow analysis technique was 
used to measure the soil surface roughness index in an area of 4.0 m2, 
the same plot size as used for pin meter trials. Due to the soil surface 

Fig. 4. Shadow analysis, black and white photograph of a sandy clay loam tilled with a 
tiller, Spanish National Research Council site at La Higueruela. 

disturbance caused by pin meters, the shadow readings were taken 
first, for both shadow analysis and pin meter trials were conducted on 
the same plots. The datasets obtained with the two techniques were 
compared to determine the suitability of shadow analysis, based on 
the laboratory data. 

Shadow analysis was developed on the assumption that shadows cast 
at a given angle in bright daylight are proportional to soil micro-relief. The 
images captured with the Kodak DC 4800 digital camera covered the same 
area as measured with the pin meter. All the photos were taken at a solar 
angle of 45° to preclude any possibility of sunlight-induced differences. The 
test fields were all within a close enough distance to ensure that the angle 
of incident light was the same, and the photos were taken after tilling both 
types of soils with the three tillage tools. In addition, the angle was 
measured in each field before taking the pictures (Fig. 2). 

The 4.0-m2 plots used for each soil and tillage treatment were 
divided into four 1.0-m2 subplots for the digitized photographs, which 
were subsequently reassembled. Duplicate images were taken to 
generate sufficient data to apply statistical analysis to detect the 
differences amongst soil type-tillage tool combinations. 
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Fig. 3. Shadow analysis showing bimodal histogram of soil micro-relief in a sandy clay loam tilled with a tiller. 



The camera was set on a Silk tripod to photograph the entire 1.0-m2 

area in a single frame. This type of tripod was chosen because it 
provided the required distance. The camera lens was placed parallel to 
the soil surface at a height of 1.65 m. The shadows cast by the soil 
micro-relief were analyzed with byte map histograms using Corel 
Draw Photo Paint (© 1992-1996 Corel Corporation) software. After 
identification on the histogram the shaded points were converted into 
a black surface against a white background. The shadow index was 
then computed as the percentage of black over the total numbers of 
pixels (Figs. 3 and 4). 

The focal angle and the distance from the lens to the ground were 
constant throughout to ensure that the resolution would be the same 
in all the pictures. 
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Fig. 5. Experimental sandy clay loam at the Spanish National Research Council's La 
Higueruela site, after tilling with a chisel, top, roller (middle) and tiller (bottom). 

Fig. 6. Experimental sandy loam at the Spanish National Research Council's La 
Higueruela site, after tilling with a chisel, (top), roller (middle) and tiller (bottom). 

2.3. Experimental plots 

Each soil was tilled with the three tools most commonly used by 
farmers in central Spain, the chisel, tiller and roller. The soil surface 
roughness generated by each tillage operation was analyzed and the 
results compared. 



Table 1 
Soil properties 

Site Conductivity Organic pH Textural analysis USDA 
(dS/m) matter (USDA calculator, %) texture 

{%) class 
Sand Silt Clay 

LaHigueruelal 0.21(0.05) 2.6(0.1) 6.2(0.2) 53(2) 23(3) 24(1) Sandy 
clay loam 

LaHigueruela2 0.68(0.55) 1.5(0.2) 5.7(0.1) 63(2) 19(2) 18(1) Sandy 
loam 

In parentheses: standard deviation for 12 samples. 

The field data were gathered in 2005, one of the driest seasons in 
Spain in the last 100 years, with no rainfall recorded in either the 
spring or the summer. While the average yearly rainfall in the region 
studied is 411 mm, precipitation between 1 September 2004 and 31 
August 2005 tumbled to 125 mm (Institute Nacional de Meteorologia, 
2005). 

The field experiments were conducted on two different soils in 
Spain's semi-arid central region, and more specifically at La 
Higueruela (Santa Olalla, province of Toledo), in the Spanish National 
Research Council's Experimental Station for Environmental Science. 
The plots were sufficiently close to ensure that the photos were 
taken after each tillage operation. The photographs in Figs. 5 and 6 
show the experimental fields at La Higueruela after tilling with the 
three tools. The main soil characteristics, tested to Soil Science 
Society of America (1996) methodology, are given in Table 1. 

With this methodology neither the possible effects of organic 
matter and moisture nor the impact of differences in soil colour were 
taken into consideration, for the soil in central Spain is characterized 
by a light, uniform colour, an organic matter content deriving mainly 
from straw cover, and a moisture content too low to affect soil colour, 
as can be seen in the pictures of the two soils in Figs. 5 and 6. In 
addition, under the very bright sunlight that characterizes the region 
studied, the rough surface profile of the soil, including any lumps or 
clods, casts shadows which are clearly darker and readily distinguish­
able from the much lighter coloured soil. 

2.4. Experimental pin meter 

The pin meter method was selected as a reference to for the field 
shadow analysis measurements in light of the reliability of this 
technique compared to laser technology where the results may be 
distorted by other sources of light (Garcia Moreno, 2006). A pin 
meter was specifically designed for the present study on the basis of 
a review of the literature (Burkwell et al., 1963; Podmore and 
Huggins, 1981; Wagner and Yiming, 1991) and in keeping with the 
plot size (1 m2) (Fig. 7). The prototype consisted in a row of 35-cm 
high pins, placed in a frame in which they could slide up or down to 
conform to surface irregularities. The pin heads were marked with a 
blue band to better visualize their respective positions when in 
contact with the soil. The device was designed to be moved 
horizontally without disturbing pin patterns. The total height of 
the instrument, which was made of aluminium, was 85 cm. The pins 
were set against a white backing to ensure the visibility of the blue 
bands. With rows containing 50 pins spaced at 2-cm intervals, each 
x-axis reading covered one full metre of ground. They-axis readings 
were taken by sliding the instrument across the 1-m2 plots. As the 
cells on the resulting grid measured 20x20 mm, a total of 2,500 
readings were taken per square metre. An earlier study (Garcia 
Moreno, 2006) showed this spacing to be sufficient to measure the 
surface roughness of the three types of soil. 

Each corner of the instrument was marked with a red dot and 
software was developed that would detect these marks as the vertical 
and horizontal references for changes in row position (Fig. 7). 

A Kodak DC 4800 digital camera set on a tripod was used to record 
pin positions as micro-topographic readings. The lens was focused on 
a point at the centre of the pin meter, i.e., at the average height of the 
red marks, to ensure the image would not be distorted. After 
comparing several models, a Silk tripod was found to be best suited 
to the 40-cm camera height required. The 3.1-megapixel camera was 
fitted with a *3 (28-84-mm) optical zoom lens. 

Since each plot, randomly chosen over a tilled area measuring 
5 x 10 m2, was divided into four 1-m2 subplots, the same area used for 
the shadow method, the effects of each soil type and tillage tool were 
measured on four subplots. The data gathered were statistically 
analyzed to compare the effects of the different tool and soil types 
studied. 

Readings were distinguished by the red marks at the corners of the 
instrument, which served as horizontal and vertical references, while 
the changes in the position of the blue bands on the pins reflected soil 
surface roughness. 

The field procedure consisted in placing the pin meter on the 
surface of a 1.0-m2 patch of soil and capturing the initial pin positions 
and all subsequent positions after each 20-mm shift along the y-axis. 
The camera was initially placed at a distance of 2 m from the pin 
meter. The x-axis measurements were the positions of the 50 pins. The 
instrument was moved along the y-axis over two rails perforated at 
20-mm intervals, where the readings were taken. It was fitted with a 
hand brake to halt the process when soil was suspected to be on a 
slight grade. 

Consequently, the area measured for each soil type was 2x2 m2, 
with a resolution of 20x20 mm2 along both the x- and y-axes. Since 
the experimental area comprised at least 40,000 cm2, a total of 10,000 
point elevation measurements were taken on each field surface, with 
each point representing an area of 400 mm2. This arrangement 
generated sufficient data to calculate the soil surface roughness index 
and conduct Multi Fractal Analysis, MFA (Merel and Farres, 1998; 
Tarquis et al., 2003). All measurements were taken immediately after 
tillage with the different tools, to preclude interference from other 
factors. 

2.5. Statistical indexes 

A very relevant study by Kamphorst et al. (2000) was found in a 
review of the literature on indexes used to express soil surface 
roughness measured with pin meters. 

Initially, random roughness (RR) (Allmaras et al., 1966; Currence 
and Lovely, 1970) was chosen, for it is the index most commonly used 
in all SSR studies. Since this index is defined to be the standard 
deviation for a line parallel to the direction of tillage, however, and the 
aim of the present study was to evaluate soil surface roughness for the 

Fig. 7. Pin meter prototype, in the held. 



Table 2 
Percentage of shadows and soil surface roughness indexes obtained for different prism 
heights and spatial patterns 

H 

0.5 
0.5 
0.5 
1 
1 
1 
1.5 
1.5 
1.5 
2 
2 
2 

c 

3 
6 
9 
3 
6 
9 
3 
6 
9 
3 
6 
9 

Cuta 

50 
55 
60 
60 
60 
60 
60 
60 
65 
60 
60 
60 

pix-nb 

19,511 
25,299 
32,615 
22,403 
46,749 
64,433 
38,608 
81,402 
111,149 
58,306 

114,670 
149,397 

pix-totalc 

1,160,964 
991,440 
928,896 
919,656 
973,880 
910,016 
978,870 

1,094,035 
1,032,112 
1,051,620 
1,130,330 
1,028,096 

% shadows 

1.7 
2.6 
3.5 
2.4 
4.8 
7.1 
3.9 
7.4 

10.8 
5.5 

10.1 
14.5 

SD (mm) 

0.1 
0.1 
0.2 
0.2 
0.3 
0.3 
0.3 
0.4 
0.5 
0.4 
0.5 
0.6 

CV(%) 

5.2 
3.6 
2.9 
5.2 
3.6 
2.9 
5.2 
3.6 
2.9 
5.2 
3.6 
2.9 

a Histogram cut-off for shadow images. 
b Shadow pixels. 
c Total image pixels. 

entire area, it is termed SD (standard deviation) hereunder. The SD 
index, which reflects random and oriented soil roughness both, is 
calculated as: 

SD: A ! [zw- •zl2 
(1) 

where x, is point elevation measurement i, Z(x) is the elevation at 
location x, Z is the average value of set {Z(x,)} and JV is the number of 
data points (10,000 in this study). 

A second index, the coefficient of variation (CV), was used in 
addition to standard deviation: 

SD 
CV = ^ * 1 0 0 . 

Z 

(2) 

While the SD field results were expressed in cm, CV was expressed 
in percentage. 

2.6. Statistical design 

ANOVA was used to compare the effects of the various soil-tillage 
tool combinations. Since duplicate images were taken of each 1-m2 

subplot, the statistical design included 8 samples per combination. 
When ANOVA indicated that a soil type-tillage tool combination 

had significant effects, the data were contrasted with Duncan's new 
multiple range test (Steel and Torrie, 1980). 

Furthermore, a correlation between pairs of results was estab­
lished to compare the statistical index findings to the percentage of 
shadows. 

3. Results and discussion 

3.1. Relationship between laboratory index and shadow analysis findings 

The laboratory results for SD, CV and the percentage of shadows 
are summarized in Table 2 and their inter-relationships are shown in 
Fig. 8. 

In the figure, the solid lines with squares plot percentage of shadows 
versus SD, while the dashes with diamonds show CV versus SD. 

Geometric forms other than prisms may be used, for in any event the 
same relationships would be found for any given spatial pattern. The aim 
of the laboratory trial was to establish the relationship between indexes 
CV and SD on the one hand and the percentage of shadows on the other, 
in an environment in which height and spatial pattern were controlled, 
as opposed to the completely random conditions prevailing in the field. 

The experiment showed that the proportion of shadows was 
independent of geometry, and that the only differences were generated 

by the angle of incident light and spatial pattern. The angle of incident 
light was consequently controlled to ensure that the conditions were 
the same as prevailing in the field. 

In all the cases studied, SD was observed to increase with the 
number and height of the prisms. The CV values were constant for the 
various spatial arrangements, regardless of prism height. This is 
logical, inasmuch as in CV, which is the standard deviation divided by 
mean height, the effect of height is precluded. CV was likewise found 
to decline with the number of prisms, for while the value of the mean 
remained unchanged, relative variability declined. 

Hence, the relationship between SD and CV depended on the 
respective proportions of variability and dispersion in the sample. In 
the present case, the correlation between SD and CV was a non­
significant 0.4, with SD tending to rise as CV declined. 

While the percentage of shadows was not constant for all the 
patterns with the same number of prisms, the value grew with the 
number and height of prisms. Consequently, it was positively related 
to both CV and SD. 

Prismatic specimens were used because the shape is readily 
reproducible and the SD/CV versus percentage of shadows curve 
generated would have been the same with any other geometrically 
controlled form. 

In addition to this analysis, each variable pair was correlated and 
the significance of the relationship found in each case. Specifically, the 
correlation coefficient for the percentage of shadows and SD was 0.96 
at a significance level of 99.9%, while it was 0.59 at a significance level 
of 95% for the percentage of shadows and CV. Multiple correlation, in 
turn, with a regression coefficient of 0.99, explained 97% of the 
variance in the percentage of shadows in terms of SD and CV. 

Further to these results, CV expresses soil surface roughness 
variability irrespective of height, whereas SD expresses total disper­
sion of the height values. 

Since the percentage of shadows incorporates variability or CV and 
dispersion or SD both, and since in the laboratory results the 
percentage of shadows is more closely correlated to SD than CV, the 
dispersion component seems to predominate when the angle of 
incident light is kept at a constant 45°, the distance between the 
camera lens and the object is constant and the height and spatial 
pattern of the geometric forms is uniform. 

3.2. Comparison of field results 

The SD and CV indexes found for the pin meter field measurements 
constituted the standard used to evaluate the effectiveness of the 
newly developed shadow analysis method for determining soil surface 
roughness. The results are given in Table 3. 

h=2 
CV-SD n=9 

Fig. 8. Prism model. Relationships between SD (standard deviation), CV (coefficient of 
variation) and the percentage of shadows. 



Table 3 
Percentage of shadows and surface roughness indexes for tilled soils 

Soil type 

Sandy loam 

Clay sandy loam 

Tilling tool 

Chisel 
Roller 
Tiller 
Chisel 
Roller 
Tiller 

Statistical 
indexes 

CV 

14.9 
8.5 
7.8 

18.8a 
24.7a 
13.8a 

SD 

3.3 
2.7 
1.8 
3.5 
5.9 
3.0 

Percentage of 
shadows 

24.6 (1.6) 
19.8 (0.7) 
18.0 (1.6) 
37.3 (8.4) 
38.5(5.1) 
32.9 (2.2) 

In parentheses: standard deviation. 
The differences between soil type-tillage tool combinations were found to be significant 
(less than 95% confidence level). 
Where no significant difference was found, the values concerned are labelled with an 
"a" (P<0.05). 

The indexes represent average soil roughness as evaluated for each 
soil and tillage tool combination studied. 

Further to the results obtained for the soil type-tillage tool 
combinations, sandy clay loam exhibited greater soil surface rough­
ness than sandy loam in the soil-weather system typical of central 
Spain. In these soils, which have a very low moisture content, the 
water retention capacity did not appear to be impacted by soil colour 
(Figs. 5 and 6). The pictures also show that the origin of the organic 
matter in the soil was plant waste, primarily straw, left on the surface. 
Since the colour of this waste was lighter than the colour of the soil, it 
did not alter the percentage of shadows, although it did contribute to 
soil surface roughness, generating the respective bimodal distribution. 

The chisel, followed by the roller and tiller in that order, generated 
the most variable micro-relief in both soils. The chisel generated no 
specific pattern in sandy clay loam because the soil was too dry to be 
properly tilled. The results obtained using the two indexes were 
similar in all cases. As noted above and illustrated in Figs. 5 and 6, in 
the soils studied in conjunction with weather conditions, moisture 
content was found to have no impact on colour or therefore on the 
percentage of shadows pattern. 

The analysis of variance performed to statistically compare the 
percentage of shadows results (Fig. 3) for the soil-tillage tool 
combinations showed that the mean values for the six groups differed 
significantly. A comparison of the results for tillage type only, 
however, showed that in sandy soil the chisel generated significantly 
greater surface roughness than the roller and tiller, while no 
significant differences were observed in the SSR occasioned by the 
three tillage tools in clay soil. 

Moreover, tool by tool, the soil surface roughness value obtained 
for sandy clay loam was significantly higher than for sandy soil. 

Generally speaking, the soil surface roughness findings for the 
different indexes were as expected for each soil type-tillage tool 
system, except for chisel-induced soil surface roughness in sandy clay 
loam soil. 

An added advantage found for shadow analysis was the time 
needed to collect field data, which was from 12 to 20 times shorter 
than with the pin meter method, depending on whether pin meter 
positioning problems were encountered. More specifically, data 
collection with the pin meter technique took from 120 to 200 min, 
compared to the 10 min needed to obtain the shadow analysis 
photographs. 

3.3. Relationship between field index and field shadow analysis findings 

The soil surface roughness values for the soil-tool combinations, 
expressed as percentage of shadows and CVand SD indexes, are given 
in Table 3. The percentage of shadows results shown are the mean of 
the eight digital images analyzed per soil-tool combination; the 
figures in parentheses are the respective standard deviations. 

A statistical analysis comparing the soil surface roughness index 
and percentage of shadows values yielded a correlation between SD 
and CV that was 99.9% significant and a correlation coefficient of 0.91 
for CV and the percentage of shadows at 98.8% significance. In other 
words, the shadow analysis results seem to be very closely correlated 
to the CV surface roughness index. 

Moreover, while the correlation between the SD index and the 
percentage of shadows was 0.80 at 94% significance, the correlation 
between the field values for these two indexes was not statistically 
significant. 

Unlike the laboratory findings, the field results for the percentage 
of shadows seemed to correlate more closely to CV than SD. 

Given, as discussed above, that the percentage of shadows 
incorporates both variability (CV) and dispersion (SD), an analysis of 
the field results shows that: 

1. The relationship between field CV and SD is an increasing function 
(by contrast to the decreasing function found for the laboratory 
prism model). This relationship would explain why, for the soils 
and tools used in the present study, soil surface roughness is the 
result of many low-relief structures of different heights as well as 
high relief structures with a much narrower range of heights. 
Contrary to the roughness identified in the laboratory, based on a 
study of pure geometric forms in orderly patterns, the surface 
roughness observed in the field after tilling is the result of both a 
large number of low-relief structures associated with the dis­
turbance generated by the tilling tool and a few larger scale 
structures such as lumps or clods. 

2. The percentage of shadows is more closely related to CV in the field 
and to SD in the laboratory prism model. Consequently, variability 
appears to prevail over dispersion in the field data analyzed. 
Conversely, in the geometric, neatly patterned laboratory struc­
tures, dispersion predominates in all the structures analyzed. 

On the whole, the method proved to be valid for the semi-arid soils 
studied, whose moisture and organic matter content do not impact 
soil colour or the shadows associated with soil surface roughness. The 
combination of light coloured soils and bright midday sunlight 
guaranteed that the resulting histogram would be bimodal. 

Image resolution, in turn, was consistent throughout, for both the 
angle of incident light and the distance between the camera lens and 
the soil were kept constant. 

Histograms for irregularly coloured soils with a high moisture 
content photographed under dimmer light (on a cloudy day, for 
instance) would not be bimodal. Under such conditions, the method 
would have to be validated in keeping with soil colour and its 
relationship to the percentage of shadows generated by soil surface 
roughness for each soil type-tillage system. 

4. Conclusions 

The present study was conducted to develop a new method for 
measuring soil surface roughness that would be more reliable, 
reproducible and convenient to use in the field than existing procedures. 
Other features sought were low development and maintenance costs and 
adaptability to the climate and soil conditions prevailing in the arid and 
semi-arid regions of Spain, where moisture, organic content, soil colour 
and weather conditions ensure the generation of a bimodal histogram. 

The data obtained with this new method, christened shadow 
analysis, was compared to the soil surface roughness results found 
with a pin meter, expressed as coefficient of variability, CV, and 
standard deviation, SD. The field and laboratory results showed that 
shadow analysis yielded results significantly correlated to the pin 
meter findings, but with the advantage that the time invested in 
gathering field data was 12 to 20 times shorter. Image interpretation is 
likewise less time-consuming and the instruments needed are easier 
to use and more portable. 



A comparison of the laboratory and field values for CV and SD, the 
two soil surface roughness indexes, to the shadow analysis results 
revealed the existence of a variability component associated with the 
coefficient of variation and a dispersion component associated with 
standard deviation. 

The percentage of shadows proved to be more closely correlated to 
CV in the field and to SD in the laboratory prism model. Consequently, 
variability appeared to prevail over dispersion in the field data 
analyzed. This relationship would explain why, at least for the soils 
and tools used in the present study, soil surface roughness is the result 
of many low-relief structures of different heights as well as of high 
relief structures with a much narrower range of heights. 

The difference between the laboratory and field findings can be 
explained by the lack of geometric forms and orderly spatial patterns 
in the latter. Further comparisons should be conducted with more 
random laboratory structures and more orderly and repetitive field 
patterns, for the laboratory conditions take no account of the effect of 
the lumps and clods found in the field. 

The general conclusion to be drawn is that shadow analysis affords 
a very good measure of surface roughness in soils having properties 
that generate a bimodal histogram, namely uniform colour with 
respect to shadows, as a result of both intrinsic soil properties and 
weather conditions. 

The method is applicable to light, uniformly coloured soils with a 
low, evenly distributed moisture and organic matter content, exposed 
to bright sunlight. These are the conditions that prevail in the semi-
arid regions of Spain. 

The method would have to be validated prior to measuring surface 
roughness in soils with irregularly distributed moisture and dark and 
uneven organic matter and located in places characterized by dim 
daylight. Only dark or vivid and unevenly distributed colours interfere 
with roughness-induced shadows, generating a non-bimodal colour 
distribution. In light of the foregoing, the method described in this 
paper must be verified ad hoc under the conditions prevailing in each 
case. In short, the present study constitutes a first approach to the 
technique, which must be further researched under other field 
conditions. 
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