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1. Introduction

Bipeds are complex hybrid dynamical systems, in the sense that they mix both continuous
and discrete-event phenomena (Hurmuzlu et al.,, 2004). The main characteristic of biped
walkers is the abrupt kinematics change between the aerial phase and the support phase
accompanied of dynamical impacts. The main problem is how to achieve a rhythmical or
periodical walk. One of the main problems of these robots is their high power and energy
consumption, which limits mainly their autonomy. It could be attributed to, for example, the
high number of actuated joints (about 20), and also because the study of energy
consumption is not often considered during the planning of movements.

The construction of a locomotion controller for completely actuated legged robots is
performed in many forms. Firstly by obtaining predetermined trajectories, using techniques
based on kinematical models or Artificial Intelligence methods like the evolution of
locomotion based on fuzzy controllers (Magdalena & Monasterio, 1995) or spline controllers
(Boeing & Braunl, 2004) for example. These studies are oriented to solve trajectory
generation problems for the active control centred approach. In (Loffler et al., 2004) there is
an example of this two-part methodology showing that an impedance control is better than
the computed torque method. Despite this better performance, the second algorithm needs
both a position sensor and a velocity sensor, and the impedance controller needs also force-
torque sensors.

The conventional approach has been questioned by researchers inspired by biomechanical
models (McMahon, 1985 and Kuo, 2007). The discovery by McGeer (McGeer, 1990) of
passive dynamic walking by building a biped without any motors or sensors opens the
doors to a new design concept based on morphological considerations. The interaction or
trade-off between morphology and control is in the centre of the more recent research and
debates in robotics (Matsushita et al., 2006 and Pfeifer & Bongard, 2007). Exploiting the
intrinsic passive dynamics has many advantages against the classical two-part methodology
(trajectory generation plus active controller). Two of them are the energy consumption
reduction (the only energetic cost occurs in step-to-step transitions) and the control
simplicity (low computational cost).
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Nevertheless, some theoretical and practical studies (Collins & Ruina, 2005) show that it is
difficult to achieve the complex dynamic exhibited by the human and animal locomotion
taking into account only the properties of the simple passive-dynamic walking, but might
help to design walker robots. How to exploit the above-mentioned passive properties of
biped robots with the incorporation of sensors is studied in (Ilida & Pfeifer, 2006). Other
studies make use of passive trajectories to design active controls under the classical
methodology. Some researches are based on kinematics (Asano et al., 2004) and other on
energy constraints (Asano et al., 2005).

Conventional models of bipedal walking generally assume rigid body structures, while
elastic material properties seem to play an essential role in nature (Alexander, 2008). Spring-
damper elements have been proposed to advance one solution under the compliant leg
concept (lida et al, 2008, Geyer & Seyfarth, 2006 and Iida et al, 2007) or through an
adaptable compliance (inverse of stiffness) mechanism (Van Ham et al. 2007).

Passive biped robots have stable limit cycles when they go down a small slope (3°-5°). In
(Siqueira & Terra, 2006) a torso was added to a passive biped robot. Due to this fact a stable
limit cycle cannot be found. Then the authors add two PD controllers to keep the torso in a
fixed position to achieve the walk. In (Berenguer & Monasterio-Huelin, 2006, 2007a, 2007b,
2007c and 2008) an actuated tail is added to produce the walk. In both cases a spring is
added to the ankle to transform the stored potential energy into kinematics one.

In this work we use the last model to study the problem of going up a small slope (0°-10°).
To achieve this objective it is necessary to solve a trajectory planning and a control problem.
As has been said, classical methods solve both problems separately adding to the robot one
actuator (motor) for each degree of freedom. This technical solution could be avoided taking
into account a different philosophy. Instead of generating an explicit desired path defined
as a function of kinematics variables (positions and velocities) or even dynamic variables
(forces and torques) we can design the robot having the ability to solve the task by changing
in real-time some mechanical parameters in function of the environment variations (in our
case the slope of the ground). The path will then be generated implicitly by exploiting its
intrinsic dynamic. Following this philosophy we can say that modifying some local
characteristics of the robot it is possible to achieve a global desired behaviour adapted to the
environment.

In this work we investigate the use of dynamical recurrent neural networks to vary in real-
time the parameters of the springs of the ankles, and also the frequency of oscillation of the
tail, without calculating the exact trajectory the robot must follow. This class of neural
networks (Beer & Gallagher, 1992), consists on a coupled set of first order non-linear
differential equations whose parameters must be tuned. To do so we use an off-line
optimization method through genetic algorithms (Holland, 1975 and Goldberg, 1989). This
so-called evolutionary methodology (Nolfi & Floreano, 2000) will be described in Section 4.

In the rest of this chapter, we present the details of our solution and analyse its performance.
Robot description is shown in Section 2. Section 3 relates the objective of the framework and
the study on the dynamic variation of the robot’s parameter. In Section 4, the evolutionary
algorithm proposed is explained. Robot implementation on the simulator is shown in
Section 5. Results are shown in Section 6. Finally the conclusions can be found in Section 7.



Evolution of Neuro-Controllers for Trajectory Planning Applied to a Bipedal Walking 123
Robot with a Tail

2. Robot Description
2.1 Kinematical description

The system studied in this chapter is a mechanism with the morphology of a biped with a
tail (with ankles and without knees) which is able to walk using just one actuator. Each leg
and foot forms a four link parallel kinematics chain with only one passive degree of freedom
when the flat rectangular foot is attached to the ground. The ankle has a spring which will
be described later as it is the main element of the present study. The mechanical structure of
the system is shown in Figure 1. Both legs are joined by a body/torso through two revolute
joints. The torso mechanism is a new parallel kinematics chain included into the system to
maintain both legs parallel to the frontal view (see Figure 2). The tail is attached to the torso
through the only actuated joint.
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Due to the characteristics of the mechanism the model has thirteen joints with only four
degrees of freedom, three passive and one actuated. When both feet are on the ground the
parallel mechanism of the torso is redundant. The feet contact point with the ground adds
two new passive joints. Nevertheless the dimensions of the feet and the model selected for
the eight point contact forces with the ground allows us not to consider them from a static
point of view. The mechanism remains standing if the springs of the ankles are properly

selected.

Some of the important characteristics that this mechanism provides are the following ones:

The springs in the ankle joints provides the needed force to keep the robot in a
stable position, in the case it is not actuated (e.g. switched off). In this state the
robot does not need energy consumption.

When the tail is designed following the condition presented in (Berenguer &
Monasterio-Huelin, 2007b), it acts as a counterbalance where the length of a single
support phase is no limited in time. It allows the system to remain with a foot
raised during an indefinite time. Then, the turn of the mechanism can be reached
during a single support phase by adding new joints in the feet or in the hip of the
mechanism.

When all the kinematics parameters have been defined, the behaviour depends
only on the tail trajectory and the ankle parameters (friction, stiffness and
equilibrium position). We suppose the friction negligible for the rest of joints. In
this study we consider the ankle friction (b), the stiffness (K) and the equilibrium
position (8) variable parameters. In a real robot we can modify these parameters
using a system like MACEPPA (Van Ham et al. 2007) for example.

If 0y is zero, the biped also walks thanks to the force exerted by the tail over the
body when the tail is in a lateral position (Berenguer & Monasterio-Huelin, 2007c).
Normally the system walks by a combination of this force and the gravity effect.
Finally, as we showed in (Berenguer & Monasterio-Huelin, 2007b), the robot
parameters can be adjusted to obtain a smooth ground contact at the end of each
single support phase. This is an interesting characteristic if we try to reduce the
dissipated energy during its walk.

The main parameters of the mechanism used on simulations are presented in Table 1.
Simulations have been made using MATLAB™ and the SimMechanics toolbox.

Model parameters for simulations
Name Value Name Value Name Value
Mbpody 50.0gr Laav 0.0mm Hparal 50.0mm
Miop 50.0gr Lpar 400.0mm hiop 30.0mm
Mpar 200.0gr Loot 10.0mm hpar 200.0mm
Moot 150.0gr Ltail 150.0mm hioot 5.0mm
Mieg 450.0gr dbody 50.0mm htail 15.0mm
Miail 700.0gr dieg 20.0mm
Mparal 5.0gr Hr 510.0mm
Mr 1955.0gr

Table 1. Parameters for simulations.
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2.2 Gait description

The tail of the robot moves in an almost horizontal plane. When the tail is in a lateral
position of the mechanism, its mass acts as a counterbalance and produces the rise of one of
the feet, where a step movement begins. We will define and describe here seven phases
during a stride. Figure 3 shows these phases starting at an equilibrium position of the
system with the tail in its central position.

Fig. 3.

Phase 5 Phase 6 Phase 7

Phase during a stride

Phase 1: Displacement of the tail to a lateral of the mechanism: Both springs hold the
weight of the mechanism, and this one stays almost vertical. We use linear springs
in Figure 3 for a better understanding of their effect and because they have been
used in the construction of our first real prototype Zappa.

Phase 2: Rise of one foot and single support phase: When a foot rises, only one spring
holds the body, so the stance leg falls forward to a new equilibrium position. In this
phase, kinetic and potential energies are transformed into elastic energy and stored
in the ankle springs. The swing leg moves forward as a pendulum.

Phase 3: Contact of the swing leg with the ground: At this moment the greater kinetic
energy losses are due to the collision. The designer must calibrate the mechanism
trying to reduce the velocities at this moment and provide a smooth contact
between the foot and the ground.

Phase 4: Movement of the tail to the other side: In this double support phase, the
projection of the centre of mass of the mechanism moves from one foot to the other.
The body moves backwards to a position in which both springs generate opposite
torques.

Phase 5: Rise of the second foot: In this phase, the spring of the foot that is in the
ground produces enough torque to take the body forward again.

Phase 6: New contact of a swing leg with the ground: Same as phase 3.

Phase 7: New displacement of the tail during a double support phase: If a new stride is
desired, this phase represents returning to phase 1. If the tail stops in the middle
position, the system will stay in a steady configuration with no energy cost.
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3. The objective framework

This paper is centred on the study of the dynamic variation of the parameters of the
torsional spring situated at the ankles and the frequency of the tail oscillation. Previous
investigations show that these parameters allow the robot to change the step length and the
velocity of the walking (Berenguer & Monasterio-Huelin, 2008). To get this dynamic
variation, a torque is applied to each ankle following a function given by equation 1.

Tonkle = _K(q - 80) - bq @

The three time varying parameters (K, 8, and b) are the same for both ankles. Bellow we
explain this time variation. The spring-actuator is compressed and stores some part of the
dynamic energy. At the stand situation this torque does not move the robot but changes the
initial angle between the legs and the foot.

The tail is actuated trough a PD controller that follows a sine reference signal,

Qs =5 Sin(27) ®

The frequency (f) is also a time-varying parameter of the model.

The objective of this paper is to make the robot to go up flat surfaces of different slopes. The
hypothesis we envisaged is that the initial inclination or body posture is crucial to get this
objective. This hypothesis is bio-inspired because the adaptation of postural orientation to
changes in surface inclination is a known reflex behaviour of many animals including
humans (Prentice et al., 2004, Kluzik et al., 2007b and Edwards, 2007). It is also known that
there exist postural after-effects of stepping on an inclined surface. This effect could be due
not to a local adaptive mechanism (i.e. changes in ankle angles) but to a central adaptive
mechanism that affects the postural geometry more globally (Kluzik et al., 2007a). In this
work we do not consider completely this phenomenon, but because we change local
parameters in function of an environment variable (the ground slope) we are not
contradicting these discoveries.

Some simulations studies described later show that the hypothesis is true when the robot
begin to walk on a constant slope flat surface. But, how to select the parameters when the
slope of the ground varies while the robot is in movement? We have decided to add to the
robot a simple continuous time recurrent neural network to obtain the time variation of the
three parameters of the torque applied to the ankles and the frequency of the tail oscillation
(K, 09, b, /).

This approach is different from others explained previously in the sense that the postural
phenomenon is here implemented by adjusting mechanical parameters in function of the
ground slope. On the contrary, in (Maurer & Peterka, 2005), a two degrees of freedom PID
controller (Astrom & Hagglund, 1995) is tuned to follow a constant reference signal based
on the ground slope. The output of the controller is the torque applied to the ankle.

We have simplified the input to the neural network to only one variable, the ground's slope.
To move these ideas into a real robot it is necessary not only to add a mechanism that would
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be able to change dynamically the parameters of the ankle, but a sensor that can measure the
slope of the ground (a perceptual sensor). In real studies with the robot Zappa (Berenguer
and Monasterio-Huelin, 2008) this measurement has been made with accelerometers sensors
showing that it is possible to estimate the inclination of the legs on a flat surface with a null
slope. Figure 4 shows the accelerometers location and their sensing directions over the
model in a sagittal view. (The accelerometers measure a-g, where a is the translational
acceleration vector of the body and g the gravity vector.)

Due to the kinematical design of the mechanism the reference coordinate system attached to
the torso always has the X axis (the direction of the robot advance) parallel to the ground.
As a consequence it is possible to get a realistic measure of the ground slope putting an
accelerometer on the torso

4. Evolutionary Robotics

Evolutionary Robotics is a methodological tool to automate the design of robots” controllers
based on the use of artificial evolution to find sets of parameters for artificial neural
networks that guide the robots to the accomplishment of their task (Nolfi & Floreano, 2000).
In most cases, the control systems of evolutionary robots are artificial neural networks
evolved through genetic algorithms, explained in the next sections.

4.1 Genetic Algorithms

Genetic algorithms are a general-purpose search algorithms inspired by natural population
genetics to evolve solutions to problems (Holland, 1975). A genetic algorithm operates on a
population of artificial chromosomes by selectively reproducing the chromosomes of
individuals with higher performance and applying random changes. Each structure in the
population represents a candidate solution to the problem and is ranked according to a
fitness function. This ordered list is used to create new individuals and repeat the process
until the optimization problem is satisfied.

Lbax

Fig. 4. Accelerometers location and their sensing directions over the model in saggital view
(Tail and frontal parallel link mechanism are not shown).




128 New Developments in Robotics, Automation and Control

A genetic algorithm starts with a fix size population of randomly generated individuals and
advance towards better solutions by applying genetic operators. Each individual is coded in
a chromosome which might implied several variables such as the connection weights of a
neural network, gains to apply to a specific input or a time-delay constant for an output. A
fitness function must be devised for each problem to be solved.

Given a particular chromosome, the fitness function returns a single numerical fitness which
is supposed to be proportional to the adaptation of the individual that the chromosome
represents. Once a generation of individuals has been evaluated, selective reproduction
starts to create new copies of the best chromosomes in the population. Individuals with
higher fitness values tend to leave a higher number of copies for the next generation. Given
an individual x; and its fitness f;, chromosome reproduction probability p; is denoted by
Equation 3.

p &

Commonly, each generation has the same number of individuals. The process which
determines how the new generation is created depends on many factors. Firstly, the
selection algorithm must be chosen. The new generation can be obtained from the last
generation whole population, or choosing a given number of best individuals which will
create copies of themselves. Some of the best individuals (Elites) could also be inherited
directly by the next generation.

After selection has been carried out, the construction of the new generation is completed by
recombination and mutation. Recombination is achieved by the crossover operator, which
combines the chromosomes of two parents. Parents are chosen randomly from the new
generation and a random point is selected around which the genome is swapped between
the two individuals (Figure 4a). The mutation operator arbitrarily alters one or more genes of
a selected chromosome (Figure 4b).

R

m—»m

(b)
Fig. 5 (a) Crossover: Given two selected genotypes, genetic material is swapped around a
random selected point. (b) Mutation: Given one genotype, a random selected gene is
mutated. Once the new generation has been created a new evaluation of all individuals



Evolution of Neuro-Controllers for Trajectory Planning Applied to a Bipedal Walking 129
Robot with a Tail

occurs, and the process is repeated for several generations during which the average and
fitness values are monitored.

The basics of this simple genetic algorithm and several variations are well described in
many previous books (Goldberg, 1989)

4.2 Neural Network

The scientific study of the nervous system led to the need to obtain mathematical models of
the neurons. The first model (McCulloch & Pitts, 1943) used a two-state threshold system
that followed a stochastic algorithm involving sudden changes of its state at random times.
Later (Hopfield, 1984) a deterministic continuous-time mathematical model was proposed
for better approaching to the functioning of the real neurons.

Neural networks are interconnected neurons that have many interesting properties (Amit,
1989 and Rumelhart & McClelland, 1986).

In this work we use the continuous-time recurrent neural network (CTRNN) (Beer &
Gallagher, 1992) that obeys the following set of non-linear first-order differential equations:

y=—y+Wo(y+0)+1 4

where y, I, 0 and 0 are [n x 1] vectors and W is an [n x n] matrix, where y; is the state
variable of the ith neuron (the mean membrane potential); w;, j # i represent synaptic
connections from neuron j to neuron i; the self-interaction w; represents a simple active
conductance; 0 is a constant threshold or bias; 7; is a time constant (resistance x capacitance);
I; the external input, and o is a sigmoid function (the mean firing rate of the neuron):

o (x) = —— )

1+ e

CTRNN's are a special case of the general class of additive neural network models
(Grossberg, 1988) which have a complex dynamical behaviour. In (Beer, 2006) the parameter
space structure of the CTRNN is systematically studied.

From a mathematical point of view the input to the system is (I; + 0;) since equation 4 can
be rewritten in the form

zZ=—z+Wo(z)+1+0 6)

using the transformation z; = y; + 0.
With the transformation y = Wx+I (and supposing W is not a singular matrix) we obtain
another useful general representation for analytical studies (Vidyasagar, 1993):

w=—x+oc(Wx+1+0) @)
These networks are perfectly suitable for evolutionary robotics tasks due to many
characteristics:
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=  The network is composed of a large number of highly interconnected processing
neurons working in parallel to solve a specific problem.

= Neural networks have the ability to learn from experience (that is, from historical
data collected in some problem domain).

=  Sensors and actuators can be mapped directly into the inputs and outputs neurons.

*= Smooth changes on the parameters will correspond to gradual changes of its
behaviour.

=  After a neural network has been tunned, it can be deployed within an application
and used to make decisions or perform actions when new data is presented.

= The network is robust to noise. Due to the weighted sum of input signals,
oscillations in individual values do not severely concern the behaviour of the
network.

4.3 Implementation

Our robot is composed of a CTRNN of 2 inter-neurons and an arrangement of 1 input
neuron and 4 output neurons. Continuously the network receives as input the ground slope.
The inter-neuron network is fully connected. Additionally, each inter-neuron receives one
incoming synapse from the input neuron. Each output neuron receives one incoming
synapse from each inter-neuron (see Figure 6). There are no direct connections between
input and output neurons. The states of the output neurons are used to set the frequency of
the robot’s tail (f) , and the three parameters (K, 0y and b).

The neural network obeys the state equations 8, 9 and 11, and the output equation 12.

x(t)=y()g ®)

where g is the gain factor, and y is the ground slope.

2
T, y,(t) = _yi(t) + Z wh,hio-(yj(t) + ‘9;) +1,(0),i =12, )

where
L) =w,o(x(@®)+6,),i=12 (10)
ol.(t)zzzthola(yi(t)+49h/),i=1...4 (11)

Jj=1

out,(t)=o(o,(t)+06,),i=1..4 (12)
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Fig. 6. Neural network architecture implemented. All the feedforward and recurrent
connections are drawn (See the text for meaning of the labels).

A simple generational genetic algorithm is employed to set the parameters of the
networks(Goldberg, 1989). The population contains 20 genotypes. Genotypes of the first
generation are generated randomly. Generations following the first one are produced by a
combination of selection with elitism, recombination and mutation. For each new
generation, the five highest scoring individuals (“the elite”) from the previous generation
are retained unchanged. The remainder of the new population is generated by fitness-
proportional selection (also known as roulette wheel selection) from the individuals of the
old population. Each genotype is a vector comprising 24 real values (i.e., 14 connection
weights, 2 decay constants, 7 bias terms, and 1 gain factor). Initially, random genotypes are
generated by initializing each of their components to values chosen at random by using a
continuous uniform distribution in the [0,1] interval. New genotypes, except “the elite”, are
produced by applying recombination with a probability of 0.5, or if there has been no
recombination, a mutation rule is applied with probability 1.

During evolution, all vector component values are constrained to remain within the range
[0,1]. Genotype parameters are linearly mapped to produce network parameters with the
following ranges: biases 0; € [-4, 4] , weights w;j € [-6, 6] , gain factor g € [-5, 5] and decay
constants t; € [0.1 100].

During evolution each genotype is cloned into the simulated robot and evaluated for a trial.
Within a trial, the robot life-span is 25 simulated seconds. In each trial the robot is rewarded
by an evaluation function F (see equation 15 below) which seeks to asses the ability of the
robot to perform the task.

Once each population has been evaluated the different chromosomes are ranked according
to the value obtained from the fitness function, and all the genetic operators are performed
according to the rules described above.

5. Simulator

Robot is simulated thanks to the SimMechanics toolbox included in the Matlab software.
Previous studies have depicted the simulation schema and only modifications on the
previous structure are shown in this chapter. For further details see (Berenguer &
Monasterio-Huelin, 2007b).
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First modification is the mechanisms included for the on-line slope modification. In
principle modifying the ground was a hard task due to the simulator architecture. The
problem’s solution was the inclusion of a mechanism to alter the gravity shown in Figure 7.

®
ma - . ¥
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Fig. 7. Online gravity modification.

The gravity acts as a function of the real slope, where its 3 components (g,gy8.) are defined
in equation 13.

g, =-9.81sin(y)
g, =-9.81cos(y) (13)

g.=0

Another enhancement implemented is the change of the previous static springs by the
variable ones. As shown in Figure 8, this modification allows the robot to control its spring
force. This spring is implemented following the Equation 1 explained in previous sections,
where parameters g and dq/dt come from the ankle sensor and K, b and 0 are outputs from

the neural network.
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Fig. 8. (a) Spring implementation on previous works where the spring has constant
parameters. (b) Variable spring implementation. The spring has time varying parameters.
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Final modification is the inclusion of the neural network controller explained in Section 4.3.
This CTRNN is in charge of getting the environment input (ground slope) and give the
actuating parameters to the tail and variable springs. We observe that equation 9 can be
rewritten as shown in Equation 14 and the block diagram is shown in Figure 9.

Tiyi(y)=_yi(t)+Ahi’i:1’2 (14)

The task performs in the simulator for 25 simulated seconds. During this time the slope of
the ground (translated into gravity changes) is increased each 5 seconds in 2°, starting in 0°
and finishing in 8°. And external program is in charge of providing the genotype to the
network and collecting the necessary output data. Once the trial has finished, the program
stops the simulation, scores the individual and run next individual genotype. The individual
is evaluated according to Equation 15, which measures the distance travelled by the robot
during the experiment.

F=(x, -x,) +(z, -z,)’ (15)
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Fig. 9. CTRNN implemented on the simulator.
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When a generation has been evaluated, the system rearranges the genotypes creating a new
generation based on the elitism, mutation and crossover. This cycle is repeated for several
evaluations until the robot reaches its travelled distance limits.

6. Results

Through a collection of patient simulation tests we have discovered that the robot can go up
different constant slopes in the ranges shown in Table 2. This study has been made to
accelerate the evolution process, but it has the handicap that must be applied to
unnormalize the output of the neural network. This empirical study might be avoided in the
future because it could not be necessary that the parameters change suddenly with the

slope.

f K b 0o slope (y)
0.05-0.07 0°-6°

0.5-0.7| 9-10 | 0.4-0.6
0.07-0.12 6°-8°

Table 2. Output neural network parameters range.

We run simulations for 70 generations. As shown in Figure 10, the fitness reached a plateau
around the value of 3.0 after generation 59.

3.0
|

Fitness

20
|

0 10 20 30 40 50 80 70
Generations

Fig. 10. Fitness of the robot at each generation.

The best performing genotype resulting from the evolutionary process was decoded again
into the simulated robot to make measurements about the behaviour of the robot. We first
studied the behaviour of the neural network, observing the performance of the hidden
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neurons. Figure 11 shows the state values and delta values of both hidden neurons.
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Fig. 11. Delta and State values for both hidden neurons in the best performing genotype.

As shown in the previous figures, hidden neuron delta values change abruptly with input

changes (each 5 seconds) while the state values do it smoothly.

Output values for the neural network are shown in Figure 12. These values change over the
time due to the environment changes. We observe that frequency is changing its value
slowly following a transient state towards a final steady-state which is not able to reach.
Stiffness (K) (figure 12b) is also following an effortlessly change, but adjusts on its
inclination are found on the ground slope changes. Finally 6y (figure 12c) and b (figure 12d)
modify their values abruptly, just one change for ) matching one ground slope change

(t=15s.) due to the output value range forced by design.
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Fig. 12. (a) Tail frequency oscillation (f) (b) Spring stiffness (K) (c) Equilibrium position (6p)
(d) Damping constant (b) values for the best genotype in a complete trial.

The spring values coming from the network go to the variable spring which sensing the
ankles” angular position and velocity (Figure 13a) impinge a torque on both ankles (Figure
13b). We observe periodic oscillations on all the signals, due to the movement of the robot.
While one foot is on the ground the other is moving forwards with some small oscillations
backwards. Once the previous foot has touched the ground the other one starts its
movement. We can also notice small modifications on the position and velocity of the ankle
joint depending on the different ground slopes. During each stable ground inclination the
ankle keeps the oscillatory movement as a periodic signal and changes is strength when the
inclination varies. These modifications will alter the body velocity and step’s length as
shown in Figure 14.
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Fig. 13. (a) q, dq/dt and (b) torque values of the variable spring.
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Fig. 14. (a) Body velocity and (b) distance between robot’s feet during a trial.

Figure 14a shows that the robot’s average speed on a flat terrain is 0.17m/s but it is reduced
to 0.08m/s on an 8 degrees ground slope. This variation can also be appreciated in Figure
14b where we observe a starting step size of 0.12m and is reduced to 0.08m at the end of the
trial. The maximum distance walked, average speed and average acceleration are shown in
Figure 15, related to the instantaneous ground slope.
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One of the important characteristics on the robots is its quasi-passiveness which allows the
robot to have a reduced consumption as can be appreciated in Figure 16. The instantaneous

power consumed by the actuator of the tail has been calculated using equation 15, and the
energy by equation 16.
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Time(s)

Fig. 16. Tail joint mechanical instantaneous power and energy consumption during a trial.
Finishing with the results evaluation we show the limit cycle of the robot during the trial for
the different ground inclinations on Figure 17.
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Fig. 17. Limit cycle on different inclinations during a trial.

Once the evaluation of the best genotype has been finished, we tried to evaluate it in
different situations. Firstly we tried to test the robot on different slopes. Tests show that the
robot is able to go up slopes up to 12° and goes down slopes of -2°, but no more.

Later we tried to test initial conditions problems, about seeing if the robot was able to start
in different slope conditions. Results show that robots can start in positive slopes up to 10
degrees but no 12 degrees even if it is able to walk over them. The robot can satisfactorily
start in -2° slopes.

Finally Figure 18 shows two different trials for these configurations: In (a) robot start over a
10° slope which reduces 2° each 5 seconds. (b) shows a robot starting at a -2° ground slope
and finishing in a 12° positive inclination.
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Robot with a Tail
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Fig. 18. (a) Post-evaluation for a 35 seconds simulation, starting on a 10 degrees slope and
going down to -2 degrees. (b) Post-evaluation for a 40 seconds simulation, starting on a -2

degrees slope and going up to 12degrees.

7. Conclusions

It is shown through computer simulations that it is possible for a biped robot with a tail to

go up a small slope.
We have followed an evolutionary methodology to tune a continuous-time recurrent neural

network. The evolution is made inside an environment that changes suddenly from one
slope to another without stopping the robot.
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The neural network changes in real-time the parameters of the ankle springs and the
oscillation frequency of the tail, without giving an explicit path in the configuration space of
the robot. It is also shown that the robot performs well for new conditions of the
environment not considered in the evolution phase: for higher slopes and for different initial
conditions.

This work almost ends the first necessaries investigations to build a new real Zappa robot.
New mechanisms for the ankles and modifications on the electronics of the robot are
needed. Some studies on the sensors of the robots must be carried out. These studies could
offer a better performance on the task and give some perceptions to the robot about its
position (inclination) related to the ground on its postural state.

Nevertheless some theoretical studies, both kinematical and dynamical are still needed.
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