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fhe component functions { ^ ( e ) } (n G Z+) from difference Schrodinger operators, can be formulated in a second order 
linear difference equation, f hen the Harper equation, associated to almost-Mathieu operator, is a prototypical example. Its 
spectral behavior is amazing. Here, due the cosine coefficient in Harper equation, the component functions are expanded 
in a Chebyshev series of first kind, T„(COS2TT0). It permits us a particular method for the 0 variable separation, fhus, 
component functions can be expressed as an inner product, 9„(e, A, 0) = Trrl(rl_i)1 (COS2TT0) • Ain(n-i)i (e, A). A matrix 

1 2 ' 1 2 ' 

block transference method is applied for the calculation of the vector Ain(n-i)i (e, A). When 0 is integer, ^/n(e) is the sum 
I 2 ' 

of component from Ain(-n.-i)i- fhe complete family of Chebyshev Polynomials can be generated, with fit initial conditions. 
I 2 1 

fhe continuous spectrum is one band with Lebesgue measure equal to 4. When 0 is not integer the inner product ^n can 
be seen as a perturbation of vector Trrl(rl_i)1 on the sum of components from the vector Ain(-n.-i)i- When 0 = -, with p 

[ 2 ' 1 2 ' q 

and q coprime, periodic perturbation appears, the connected band from the integer case degenerates in q sub-bands. When 6 
is irrational, ergodic perturbation produces that one band spectrum from integer case degenerates to a Cantor set. Lebesgue 
measure is La = 4(1 — | A|), 0 < |A| < 1. In this situation, the series solution becomes critical. 

1 Chebyshev expansion of the component functions. 

The Almost-Mathieu operator appears in some approximated quantum models of energy spectra, This operator can be 
formulated via a second order linear difference equation, known as Harper equation: 

*„+i(e) = (e - 2Acos(n27T0 + i/))*„(e) - * n _ i (e ) . (1) 

The family of component functions {*„(£, A, 6, v)}, depends of e, the energy, as primary parameter, and the other param
eters related with the particular characteristics of the system in study. When 0 is irrational, ergodic case, many work has been 
generated, focussed on spectrum analysis. 

The form of (1) suggests a solution in series of Chebyshev polynomials of first kind. Also, when n —> oo, this series 
type converges in £2 , Product properties of Chebyshev polynomials of first kind Tn(uj) are used. Here, without loss of 
generality, v = 0. Indeed, when 0 is irrational the spectrum does not depend on v. In other situations, variations on v only 
produces shifts in all spectrum bands. This series must agree with Eq. (1). Thus, for n finite, the series is truncated. 

» * n ( e ) = J2 €\e,X)Tk(cv). (2) 
fc=0 

With [x] the integer component of x, and UJ = 2TT6. Eq. (2) is introduced in (1) and coefficients from Tn{uj) with equal n 

are matched. A recurrent expression for the coefficients a^' (e, A) are obtained. The compact form is: 

a\ ' = - \a\^na(n - 1) + ea\ '{I - a( )) - Aa^ f c( l - a(n)) 

\ (") a x / ( n ) ( n ~ 3 ) ^ ( n - i ) n , ( « - l ) ( « - 2 ) ^ ,o^ 
-Xak+Jl ~Sk,0 -cr( ^ ))~ak V--VK 2 ''' ^ 

With a (A;) the Heaviside step function and Sk,o the Kronecker delta function, 0 < k < ("+
2

)(-"). 

1.1 Variable separation and inner product. 

The parameters are separated. The coefficients of the series depend from e and A, the Chebyshev Polynomials Tn{uj) depend 
from 0. Eq. (2) can be seen as an inner product, * n ( e , A, 6) = TT„,„_U (UJ) • i r ( „ - i ) , ( e , A). The vector r ^ ^ - i ) , , with 

[ — 2 — J y 2 \ y 2 J 

components tj = cos(2«7r#), i = 0,1, ,..["(-"2~ '], the vector A, n(n-i)] is generated via the recursion from (3). 



1.2 Transference Block Matrix for the vector A, ±i=ll-

Matrix transference method can be used to find a suitable linear recursion map This recursion permits us the achievement 
of A,n(n-i)i. The simplest recursion is the linear first order recursion one. With this purpose, it is necessary to work with a 

2 1 

(Atn(n_lh,At(n_1)(n_2h). 

* 0 , 

double vector A, which contains both vectors, A,n(n-i)1 and Ar(n-i)(n-2)1. Al 
[ 2 J 1 2 J 

The vector recursion, for n > 2, with initial vector Ai = T , is An = M n n _ iA n _ i , with the block matrix: 

/ e l n _ i — AL n _i 

M . 
-A(Ii+I„_i) 

0 

V Li ( n - l ) ( n - 2 ) -

-AIr ( n - l ) ( n - 4 ) -
2 i 

( r t - l ) ( r t - 4 ) -

-A(I, ( r t - l ) ( r t - 4 ) -

[(-2»"-3)] 

(4) 

/ 

Rows and columns are labelled from 0 to n - 1. The I n matrix is the identity matrix of order n. Ln is the matrix with 
component /, <L Kronecker delta, with 0 < i, j < n - 1. The Ln matrix mixes coefficients and it complicates the 
recursion. For example, the block matrix M32 is: 

/ e 
0 

-2A 
0 
1 

I 0 

0 
e - A 

0 
-A 
0 
1 

- 1 
0 
0 
0 
0 
0 

When 6 is integer, TJ, 
• ( " - ! ) = 1, i ( n - l ) - with n(ri— 1) 1 vector components U = 1. The * n function is equal to the sum 

of component from the vector A, 

conditions. For example, if *o = 

,(n-i)T The complete family of Chebyshev Polynomials can be generated, with fit initial 
2 1 

1, and * i = 2 ( | - \cos{v)), then, * n = C/n(| - \cos{v)), Chebyshev Polynomials of 
second kind, in e variable. Observe that, in this problem, this is the unique family of monic polynomials, [3], that converges 
in£2-morm. 

2 Continuous spectrum and the vector T, n ( n —1) -j 

When 9 is integer, Eq. (1) is trivial. The continuous spectrum appears in the band [-2 + 2\cos{v), 2 + 2\cos{v)}, located 
into the compact [-4,4], with Lebesgue measure equal to 4. 

When 9 is not integer, the inner product * n can be seen as a perturbation of vector T^n- i ) , on the sum of components 

from vector A, i£n=il- For 9 = -, withp and q coprime, T,,_ ("-!) has q-periodic components, and one periodic perturbation 

appears. Now, the connected spectrum band, from the 9 integer case, degenerates in q sub-bands. 
If 9 is irrational, the component from the T,n(n-i)} are quasi-periodic. The perturbation on the sum becomes ergodic. This 

1 2 1 

produces that the continuous spectrum, of integer 9 case, degenerates to a Cantor set, with Lebesgue measure La = 4 (1 - | A |), 
0 < |A| < 1, The solutions from Eq.(2) in these Cantor sets are critical. A rigorous argument for this situation is an open 
line. 
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