Chebyshev expansion for the component functions of the almost-Mathieu operator

Jesús C. Abderramán Marrero

Applied Math Dpt. - Faculty of Computer Science - U.P.M.(Technological University of Madrid) Campus Montegancedo 28660 - Boadilla Madrid. Spain.

The component functions $\{\Psi_n(\epsilon)\}$ $(n \in \mathbb{Z}^+)$ from difference Schrödinger operators, can be formulated in a second order linear difference equation. Then the Harper equation, associated to almost-Mathieu operator, is a prototypical example. Its spectral behavior is amazing. Here, due the cosine coefficient in Harper equation, the component functions are expanded in a Chebyshev series of first kind, $T_n(\cos 2\pi\theta)$. It permits us a particular method for the θ variable separation. Thus, component functions can be expressed as an inner product, $\Psi_n(\epsilon, \lambda, \theta) = \vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}(\cos 2\pi\theta) \cdot \vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}(\epsilon, \lambda)$. A matrix block transference method is applied for the calculation of the vector $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}(\epsilon, \lambda)$. When θ is integer, $\Psi_n(\epsilon)$ is the sum of component from $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}$. The complete family of Chebyshev Polynomials can be generated, with fit initial conditions. The continuous spectrum is one band with Lebesgue measure equal to 4. When θ is not integer the inner product Ψ_n can be seen as a perturbation of vector $\vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}$ on the sum of components from the vector $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}$. When $\theta = \frac{p}{q}$, with p and q coprime, periodic perturbation appears, the connected band from the integer case degenerates in q sub-bands. When θ is irrational, ergodic perturbation produces that one band spectrum from integer case degenerates to a Cantor set. Lebesgue measure is $L_{\sigma} = 4(1 - |\lambda|), 0 < |\lambda| \leq 1$. In this situation, the series solution becomes critical.

1 Chebyshev expansion of the component functions.

The Almost-Mathieu operator appears in some approximated quantum models of energy spectra, This operator can be formulated via a second order linear difference equation, known as Harper equation:

$$\Psi_{n+1}(\epsilon) = (\epsilon - 2\lambda \cos(n2\pi\theta + \nu))\Psi_n(\epsilon) - \Psi_{n-1}(\epsilon).$$
(1)

The family of component functions $\{\Psi_n(\epsilon, \lambda, \theta, \nu)\}$, depends of ϵ , the energy, as primary parameter, and the other parameters related with the particular characteristics of the system in study. When θ is irrational, ergodic case, many work has been generated, focussed on spectrum analysis.

The form of (1) suggests a solution in series of Chebyshev polynomials of first kind. Also, when $n \to \infty$, this series type converges in \mathcal{L}_2 , Product properties of Chebyshev polynomials of first kind $T_n(\omega)$ are used. Here, without loss of generality, $\nu = 0$. Indeed, when θ is irrational the spectrum does not depend on ν . In other situations, variations on ν only produces shifts in all spectrum bands. This series must agree with Eq. (1). Thus, for *n* finite, the series is truncated.

$$\Psi_n(\epsilon) = \sum_{k=0}^{\left[\frac{n(n-1)}{2}\right]} a_k^{(n)}(\epsilon, \lambda) T_k(\omega).$$
(2)

With [x] the integer component of x, and $\omega = 2\pi\theta$. Eq. (2) is introduced in (1) and coefficients from $T_n(\omega)$ with equal n are matched. A recurrent expression for the coefficients $a_k^{(n)}(\epsilon, \lambda)$ are obtained. The compact form is:

$$a_{k}^{(n+1)} = -\lambda a_{k-n}^{(n)} \sigma(n-1) + \epsilon a_{k}^{(n)} (1 - \sigma(\frac{(n)(n-1)}{2})) - \lambda a_{n-k}^{(n)} (1 - \sigma(n)) - \lambda a_{k+n}^{(n)} (1 - \delta_{k,0} - \sigma(\frac{(n)(n-3)}{2})) - a_{k}^{(n-1)} (1 - \sigma(\frac{(n-1)(n-2)}{2})).$$
(3)

With $\sigma(k)$ the Heaviside step function and $\delta_{k,0}$ the Kronecker delta function, $0 \le k \le \frac{(n+1)(n)}{2}$.

1.1 Variable separation and inner product.

The parameters are separated. The coefficients of the series depend from ϵ and λ , the Chebyshev Polynomials $T_n(\omega)$ depend from θ . Eq. (2) can be seen as an inner product, $\Psi_n(\epsilon, \lambda, \theta) = \vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}^T(\omega) \cdot \vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}(\epsilon, \lambda)$. The vector $\vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}$, with components $t_i = \cos(2i\pi\theta), i = 0, 1, \dots \lfloor \frac{n(n-1)}{2} \rfloor$, the vector $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}$ is generated via the recursion from (3).

1.2 Transference Block Matrix for the vector $\vec{A}_{\lceil \frac{n(n-1)}{2} \rceil}$.

Matrix transference method can be used to find a suitable linear recursion map This recursion permits us the achievement of $\vec{A}_{[n(n-1)]}$. The simplest recursion is the linear first order recursion one. With this purpose, it is necessary to work with a double vector \vec{A} , which contains both vectors, $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}$ and $\vec{A}_{\lfloor \frac{(n-1)(n-2)}{2} \rfloor}$. $\vec{A}_{n}^{T} = (\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}^{T}, \vec{A}_{\lfloor \frac{(n-1)(n-2)}{2} \rfloor}^{T})$. The vector recursion, for $n \ge 2$, with initial vector $\vec{A}_{1} = \begin{pmatrix} \Psi_{1} \\ \Psi_{0} \end{pmatrix}$, is $\vec{A}_{n} = \mathbf{M}_{n,n-1} \vec{A}_{n-1}$, with the block matrix:

$$\mathbf{M}_{n,n-1} = \begin{pmatrix} \frac{\epsilon \mathbf{I}_{n-1} - \lambda \mathbf{L}_{n-1} & -\lambda \mathbf{I}_{[\frac{(n-1)(n-4)}{2}]+1} & -\mathbf{I}_{[\frac{(n-2)(n-3)}{2}]+1} \\ -\lambda (\mathbf{I}_{1} + \mathbf{I}_{n-1}) & \epsilon \mathbf{I}_{[\frac{(n-1)(n-4)}{2}]+1} & \mathbf{0} \\ \hline \mathbf{0} & -\lambda (\mathbf{I}_{[\frac{(n-1)(n-4)}{2}]+1} & \mathbf{0} \\ \hline \mathbf{I}_{[\frac{(n-1)(n-2)}{2}]+1} & \mathbf{0} & \mathbf{0} \end{pmatrix}.$$
(4)

Rows and columns are labelled from 0 to n-1. The I_n matrix is the identity matrix of order n. L_n is the matrix with component $l_{i,j} = \delta_{n,i+j}$, Kronecker delta, with $0 \le i, j \le n-1$. The \mathbf{L}_n matrix mixes coefficients and it complicates the recursion. For example, the block matrix $M_{3,2}$ is:

(ϵ	0	-1	
	0	$\epsilon - \lambda$	0	
	-2λ	0	0	-
	0	$-\lambda$	0	
	1	0	0	-
	0	1	0)

When θ is integer, $\vec{T}_{\left[\frac{n(n-1)}{2}\right]} = \vec{I}_{\left[\frac{n(n-1)}{2}\right]}$, with $\frac{n(n-1)}{2} + 1$ vector components $t_i = 1$. The Ψ_n function is equal to the sum of component from the vector $\vec{A}_{\lceil \frac{n(n-1)}{2}\rceil}$. The complete family of Chebyshev Polynomials can be generated, with fit initial conditions. For example, if $\Psi_0 = 1$, and $\Psi_1 = 2(\frac{\epsilon}{2} - \lambda cos(\nu))$, then, $\Psi_n = U_n(\frac{\epsilon}{2} - \lambda cos(\nu))$, Chebyshev Polynomials of second kind, in ϵ variable. Observe that, in this problem, this is the unique family of monic polynomials, [3], that converges in \mathcal{L}_2 -morm.

Continuous spectrum and the vector $\vec{T}_{[\frac{n(n-1)}{2}]}$. 2

When θ is integer, Eq. (1) is trivial. The continuous spectrum appears in the band $[-2 + 2\lambda cos(\nu), 2 + 2\lambda cos(\nu)]$, located into the compact [-4, 4], with Lebesgue measure equal to 4.

When θ is not integer, the inner product Ψ_n can be seen as a perturbation of vector $\vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}$ on the sum of components from vector $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}$. For $\theta = \frac{p}{q}$, with p and q coprime, $\vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}$ has q-periodic components, and one periodic perturbation appears. Now, the connected spectrum band, from the θ integer case, degenerates in q sub-bands.

If θ is irrational, the component from the $\vec{T}_{\left[\frac{n(n-1)}{2}\right]}$ are quasi-periodic. The perturbation on the sum becomes ergodic. This produces that the continuous spectrum, of integer $\tilde{\theta}$ case, degenerates to a Cantor set, with Lebesgue measure $L_{\sigma} = 4(1 - |\lambda|)$, $0 < |\lambda| \leq 1$, The solutions from Eq.(2) in these Cantor sets are critical. A rigorous argument for this situation is an open line.

References

D.F. Hofstadter, Energy levels and waves functions of Bloch electrons in rational and irrational magnetic fields. Physical Review B, 14(6), 455-460 (1976).

J. Puig, Cantor Spectrum for the Almost Mathieu Operator, Comm. Math. Phys., 244(2), 297-309 (2004).

J. Mason, H. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC Press, 2003.

J. C. Abderramán, S. Sastre, E. Torrano Chebyshev Series in a 1-D Schrödinger Ergodic Operator. Proceedings of XX CEDYA - X CMA. Applied Math Spanish Congress. Sevilla, 2007.