Chebyshev expansion for the component functions of the almost-Mathieu operator

Jesús C. Abderramán Marrero

Applied Math Dpt. - Faculty of Computer Science - U.P.M.(Technological University of Madrid) Campus Montegancedo 28660 - Boadilla Madrid. Spain.

The component functions $\{\Psi_n(\epsilon)\}\$ ($n \in \mathcal{Z}^+$) from difference Schrödinger operators, can be formulated in a second order linear difference equation. Then the Harper equation, associated to almost-Mathieu operator, is a prototypical example. Its spectral behavior is amazing. Here, due the cosine coefficient in Harper equation, the component functions are expanded in a Chebyshev series of first kind, $T_n(cos 2\pi\theta)$. It permits us a particular method for the θ variable separation. Thus, component functions can be expressed as an inner product, $\Psi_n(\epsilon, \lambda, \theta) = T_{\left[\frac{n(n-1)}{2}\right]}(cos 2\pi\theta) \cdot A_{\left[\frac{n(n-1)}{2}\right]}(\epsilon, \lambda)$. A matrix block transference method is applied for the calculation of the vector $A_{\lfloor \frac{n(n-1)}{2}\rfloor}(\epsilon, \lambda)$. When θ is integer, $\Psi_n(\epsilon)$ is the sum of component from $\vec{A}_{\lfloor n(n-1)\rfloor}$. The complete family of Chebyshev Polynomials can be generated, with fit initial conditions. The continuous spectrum is one band with Lebesgue measure equal to 4. When θ is not integer the inner product Ψ_n can be seen as a perturbation of vector $\vec{T}_{\lceil n(n-1) \rceil}$ on the sum of components from the vector $\vec{A}_{\lceil n(n-1) \rceil}$. When $\theta = \frac{p}{q}$, with p and q coprime, periodic perturbation appears, the connected band from the integer case degenerates in q sub-bands. When θ is irrational, ergodic perturbation produces that one band spectrum from integer case degenerates to a Cantor set. Lebesgue is irrational, ergodic perturbation produces that one band spectrum from integer case degenerates to a Cantor set. Lessegue measure is $L_0 = \frac{1}{1 - |A|}$, $\frac{1}{2} \times |A| \ge 1$. In this situation, the series solution becomes critical.

1 Chebyshev expansion of the component functions.

The Almost-Mathieu operator appears in some approximated quantum models of energy spectra, This operator can be formulated via a second order linear difference equation, known as Harper equation:

$$
\Psi_{n+1}(\epsilon) = (\epsilon - 2\lambda \cos(n2\pi\theta + \nu))\Psi_n(\epsilon) - \Psi_{n-1}(\epsilon). \tag{1}
$$

The family of component functions $\{\Psi_n(\epsilon, \lambda, \theta, \nu)\}\)$, depends of ϵ , the energy, as primary parameter, and the other parameters related with the particular characteristics of the system in study. When θ is irrational, ergodic case, many work has been generated, focussed on spectrum analysis.

The form of (1) suggests a solution in series of Chebyshev polynomials of first kind. Also, when $n \to \infty$, this series type converges in \mathcal{L}_2 , Product properties of Chebyshev polynomials of first kind $T_n(\omega)$ are used. Here, without loss of generality, $\nu = 0$. Indeed, when θ is irrational the spectrum does not depend on ν . In other situations, variations on ν only produces shifts in all spectrum bands. This series must agree with Eq. (1). Thus, for *n* finite, the series is truncated.

$$
\Psi_n(\epsilon) = \sum_{k=0}^{\lfloor \frac{n(n-1)}{2} \rfloor} a_k^{(n)}(\epsilon, \lambda) T_k(\omega).
$$
 (2)

With [x] the integer component of x, and $\omega = 2\pi\theta$. Eq. (2) is introduced in (1) and coefficients from $T_n(\omega)$ with equal n are matched. A recurrent expression for the coefficients $a_k^{(n)}(\epsilon, \lambda)$ are obtained. The compact form is:

$$
a_k^{(n+1)} = -\lambda a_{k-n}^{(n)} \sigma(n-1) + \epsilon a_k^{(n)} (1 - \sigma(\frac{(n)(n-1)}{2})) - \lambda a_{n-k}^{(n)} (1 - \sigma(n))
$$

$$
- \lambda a_{k+n}^{(n)} (1 - \delta_{k,0} - \sigma(\frac{(n)(n-3)}{2})) - a_k^{(n-1)} (1 - \sigma(\frac{(n-1)(n-2)}{2})).
$$
 (3)

With $\sigma(k)$ the Heaviside step function and $\delta_{k,0}$ the Kronecker delta function, $0 \le k \le \frac{(n+1)(n)}{2}$.

1.1 Variable separation and inner product.

The parameters are separated. The coefficients of the series depend from ϵ and λ , the Chebyshev Polynomials $T_n(\omega)$ depend from θ . Eq. (2) can be seen as an inner product, $\Psi_n(\epsilon, \lambda, \theta) = \vec{T}^T_{\left[\frac{n(n-1)}{2}\right]}(\omega) \cdot \vec{A}_{\left[\frac{n(n-1)}{2}\right]}(\epsilon, \lambda)$. The vector $\vec{T}_{\left[\frac{n(n-1)}{2}\right]}$, with components $t_i = \cos(2i\pi\theta), i = 0, 1, ...$ $\left[\frac{n(n-1)}{2}\right]$, the vector $\vec{A}_{\left[\frac{n(n-1)}{2}\right]}$ is generated via the recursion from (3).

1.2 Transference Block Matrix for the vector $\vec{A}_{\lfloor n(n-1)\rfloor}$.

Matrix transference method can be used to find a suitable linear recursion map This recursion permits us the achievement of $\vec{A}_{\lfloor n(n-1)\rfloor}$. The simplest recursion is the linear first order recursion one. With this purpose, it is necessary to work with a 2 *1* $(A^T_{\lceil n(n-1) \rceil},A^T_{\lceil (n-1) \rceil})$ double vector *A*, which contains both vectors, $A_{\left[\frac{n(n-1)}{2}\right]}$ and $A_{\left[\frac{(n-1)(n-2)}{2}\right]}$. A_n^T

*** 0 ,** The vector recursion, for $n \ge 2$, with initial vector $A_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, is $A_n = \mathbf{M}_{n,n-1}A_{n-1}$, with the block matrix:

$$
\mathbf{M}_{n,n-1} = \begin{pmatrix} \frac{\epsilon \mathbf{I}_{n-1} - \lambda \mathbf{L}_{n-1} | -\lambda \mathbf{I}_{\lfloor (n-1)(n-4) \rfloor + 1} | -\mathbf{I}_{\lfloor (n-2)(n-3) \rfloor + 1}}{-\lambda(\mathbf{I}_1 + \mathbf{I}_{n-1}) | -\epsilon \mathbf{I}_{\lfloor (n-1)(n-4) \rfloor + 1} | 0} \\ \frac{\mathbf{I}_{\lfloor (n-1)(n-2) \rfloor + 1} | -\lambda(\mathbf{I}_{\lfloor (n-1)(n-4) \rfloor + 1} | 0)}{-\lambda(\mathbf{I}_{\lfloor (n-1)(n-4) \rfloor + 1} | 0} 0) \end{pmatrix} . \tag{4}
$$

Rows and columns are labelled from 0 to $n-1$. The I_n matrix is the identity matrix of order n. I_n is the matrix with component $l_{i,j} = \delta_{n,i+j}$, Kronecker delta, with $0 \le i, j \le n - 1$. The L_n matrix mixes coefficients and it complicates the recursion. For example, the block matrix $M_{3,2}$ is:

When θ is integer, $\overline{T}_{\left[\frac{n(n-1)}{2}\right]} = \overline{T}_{\left[\frac{n(n-1)}{2}\right]}$, with $\frac{n(n-1)}{2} + 1$ vector components $t_i = 1$. The Ψ_n function is equal to the sum of component from the vector $A_{\lfloor \frac{n(n-1)}{2} \rfloor}$. The complete family of Chebyshev Polynomials can be generated, with fit initial conditions. For example, if $\Psi_0 = 1$, and $\Psi_1 = 2(\frac{\epsilon}{2} - \lambda cos(\nu))$, then, $\Psi_n = U_n(\frac{\epsilon}{2} - \lambda cos(\nu))$, Chebyshev Polynomials of second kind, in ϵ variable. Observe that, in this problem, this is the unique family of monic polynomials, [3], that converges in \mathcal{L}_2 -morm.

2 Continuous spectrum and the vector $\vec{T}_{\lceil \frac{n(n-1)}{2} \rceil}$.

When θ is integer, Eq. (1) is trivial. The continuous spectrum appears in the band $[-2 + 2\lambda cos(\nu), 2 + 2\lambda cos(\nu)]$, located into the compact $[-4, 4]$, with Lebesgue measure equal to 4.

When θ is not integer, the inner product Ψ_n can be seen as a perturbation of vector $\vec{T}_{\lceil \frac{n(n-1)}{2}\rceil}$ on the sum of components from vector $\vec{A}_{\lfloor \frac{n(n-1)}{2} \rfloor}$. For $\theta = \frac{p}{q}$, with p and q coprime, $\vec{T}_{\lfloor \frac{n(n-1)}{2} \rfloor}$ has q-periodic components, and one periodic perturbation appears. Now, the connected spectrum band, from the θ integer case, degenerates in q sub-bands.

If θ is irrational, the component from the $T_{\lfloor n(n-1)\rfloor}$ are quasi-periodic. The perturbation on the sum becomes ergodic. This produces that the continuous spectrum, of integer θ case, degenerates to a Cantor set, with Lebesgue measure $L_{\sigma} = 4(1 - |\lambda|)$, $0 < |\lambda| \leq 1$, The solutions from Eq.(2) in these Cantor sets are critical. A rigorous argument for this situation is an open line.

References

D.F. Hofstadter, *Energy levels and waves functions of Block electrons in rational and irrational magnetic fields.* Physical Review B, 14(6), 455-460 (1976).

J. Puig, *Cantor Spectrum for the Almost Mathieu Operator,* Comm. Math. Phys., 244(2), 297-309 (2004).

J. Mason, H. Handscomb, *Chebyshev Polynomials,* Chapman and Hall/CRC Press, 2003.

J. C. Abderraman, S. Sastre, E. Torrano *Chebyshev Series in a 1-D Schrodinger Ergodic Operator.* Proceedings of XX CEDYA - X CMA. Applied Math Spanish Congress. Sevilla, 2007.