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Abstract: In this paper we study the problem of (plane strain) azimuthal shear of acircular cylindrical tube of
incompressible transversely isotropic elastic material subject to finite deformation. The preferred direction
associated with the transverse isotropy lies in the planes normal to the tube axis and is at an angle with the
radial direction that depends only on the radius. For a general form of strain-energy function the considered
deformation yields simple expressions for the azimuthal shear stress and the associated strong ellipticity
condition in terms of the azimuthal shear strain. These apply for a sense of shear that is either "with" or
"against" the preferred direction (anticlockwise and clockwise, respectively), so that material line elements
locdlly in the preferred direction either extend or (at least initially) contract, respectively. For some specific
strain-energy functions we then examine local loss of uniqueness of the shear stress-strain relationship and
failure of dlipticity for the case of contraction and the dependence on the geometry of the preferred direction.
In particular, for a reinforced neo-Hookean material, we obtain closed-form solutions that determine the
domain of strong dllipticity in terms of the relationship between the shear strain and the angle (in general, a
function of the radius) between the tangent to the preferred direction and the undeformed radial direction. It
is shown, in particular, that as the magnitude of the applied shear stress increases then, after loss of elipticity,
there are two admissible values for the shear strain at certain radial locations. Absolutely stable deformations
involve the lower magnitude vaue outside a certain radius and the higher magnitude value within this radius.
The radius that separates the two values increases with increasing magnitude of the shear stress. The results
are illustrated graphically for two specific forms of energy function.
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1. INTRODUCTION

The problem of azimuthal shear of a circular cylindrica tube composed of dastic material
has been discussed in many publications since the pioneering work of Rivlin ~, primar-
ily for isotropic eastic solids, compressible or incompressible. A review of the literature is
provided by Jang and Ogden , to which reference can be made for detailed citations. To
the best of our knowledge, relatively little has been done for anisotropic bodies undergo-
ing azimutha shear deformation, athough Jang and Bestty =~ examined the helical shear
problem (of which the azimutha shear problem is a special case) for transversely elastic ma-
terials whose direction of transverse isotropy is either axial, circumferentia or helical; also,
for transversely isotropic materials, Tsa and Fan  analyzed the anti-plane shear problem.
In both cases the attention of these authors was focussed mainly on constructing classes of
srain-energy functions capable of undergoing the considered deformations. See also the
recent contribution by Merodio concerned with the rectilinear shear of a dab of
fiber-reinforced elastic material.

In the work of Abeyaratne  the azimuthal shear problem has been studied in detail
for incompressible, isotropic elastic materials from the point of view of loss of dlipticity.
Specificdly, loss of dlipticity, a intermediate ranges of loading applied at the boundaries
of the tube heralds the emergence of certain non-smooth solutions. The existence of such
solutions requires that the strain energy be non-convex as a function of the shear dtrain. In
the present paper we examine the problem of azimuthal shear for a circular cylindrica tube
of transversely isotropic elastic material in terms of loss of dlipticity, which requires loss
of gtrict convexity of the strain energy as a function of the shear strain. The direction of
transverse isotropy (the preferred direction) is taken to lie in planes normal to the axis of the
tube so that the problem has a plane strain character. Moreover, this direction depends (in
genera) only on the radius through the material so that circular symmetry is maintained.

In Section 2, the geometry of the problem and the kinematics associated with the az-
imuthal shear deformation are introduced, while the form of the strain-energy function for a
transversely isotropic material with the restriction to plane strain is given together with the
(in-plane) Cauchy stress tensor and its polar components in Section 3. The components of
the equilibrium equation are then summarized in Section 4. In Section 5 the form of the
strong dlipticity condition appropriate for the considered specialization is stated. We con-
sder aspecid class of material models consisting of an isotropic base material augmented by
areinforcement dependent on the preferred direction. As is known from the isotropic prob-
lem [6], loss of dlipticity requires loss of monotonicity of the shear stress versus shear strain
relationship; in other words, a strain energy that is a non-convex function of the amount of
shear. Thisis dso the case here athough the chosen energy function is non-convex only for
negative shear drain.

The well-known neo-Hookean model augmented with the so-called standard reinforc-
ing model is then the focus of attention in Section 6. The notion of strong
elipticity is studied in terms of the magnitude and direction of the applied (azimuthal shear)
loading and the resulting shear strain in the material. Closed-form solutions are derived
that determine the domain of strong dlipticity, on the boundaries of which dlipticity is lost.
Analysis of the azimuthal governing equation yields conclusions relating loss of drict con-
vexity of the considered strain-energy function to the existence of multiple solutions. In par-



ticular, there are in some circumstances three choices for the shear strain, only two of which
are admissible. The degree of anisotropy and the geometry of the preferred direction at each
point of the body serve to characterize the nature of the surfaces of discontinuity (strong
or weak) emerging from the failure of strong dlipticity, which may only happen when the
preferred direction undergoes contraction. The surfaces of discontinuity are circular cylin-
ders concentric with the tube. In the specia case in which the preferred direction is taken
to be radia the azimuthal shear causes extension of the preferred direction for either sense
of the shear (and no loss of dlipticity). More generally, we consider a preferred direction
that depends on the radius in such afashion that it extends for positive (anticlockwise) shesr,
but for which in negative (clockwise) shear it may either extend or contract. In the case of
negative shear, the distinction between extension and contraction is dependent on the radia
position, the precise disposition of the fibers, the degree of anisotropy and the magnitude of
the applied shear stress.

For the same reinforcement, the Varga mode is then, in Section 7, chosen to represent
the isotropic base material. In this case closed-form solutions are not readily obtainable, and
we therefore present numerical results that are parallel to those for the neo-Hookean material.
In particular, we again determine arelationship between loss of dlipticity and the existence
of non-smooth and multiple solutions that turns out to be very similar to that obtained for the
reinforced neo-Hookean model. Unlike the previous case, however, negative shear dways
leads to dlipticity failure regardiess the degree of anisotropy of the considered materid.

Finally, several numerica examples are used in Section 8 to illustrate some of the as-
pects discussed in the foregoing paragraphs, and the overall response of a body undergoing
such a deformation is also highlighted. As in the isotropic material case, a unique energy
minimizing deformation can be associated with each vaue of applied shear stress (or twist
angle), and deformations containing a surface of discontinuity are confined to a particular
interval of this shear stress. However, in contrast to the case of loss of dlipticity inisotropic
tubes , certain radia variations of the preferred direction give loss of dlipticity that is
aways confined to a small region of the tube. This includes cases in which dlipticity can
be logt at only a single internal radius and cases in which loss of dlipticity occurs over an
interval of interna radii. In the latter case, a surface of discontinuity emerges in the interior
of the tube, increases its radius under increasing twist, and then disappears while ill strictly
interior to the tube.

2. THE AZIMUTHAL SHEAR DEFORMATION
Consider a circular cylindrical tube with reference geometry defined by

A<R<B, 0<O<2r, 0<Z<IL, (1)
where (R, ©, Z) are cylindrical polar coordinates in the reference configuration (assumed

free of stress) relative to a cylindrical polar basis {E;}, [ € {R, ©, Z).
The deformation of pure azimurhal shear is defined by



r=R, 6=04+g(R), =2, (2)

where (r, &, z} are cylindrical polar coordinates in the deformed configuration associated
with the cylindrical polar basis {e;},i € {r,8,z}, and g(R} = g{(r) is a function to be
determined. We suppose that

glay=0, g =w, (3)

where w, which may be positive or negative, is the angle of rotation of the outer boundary
r=5b=RBrelativetor =a = A.
The deformation gradient tensor, denoted F, has the form

F=R+ye; ®Eg, 4)

where R = ¢, @ Ep ¢y @ Eg + €. ® Ez, while the corresponding left Cauchy—{reen tensor,
denoted B, is

B=FF =1+y(e Rest+esRe)+7yes ey, (5)

where 1 is the identity tensor, y = rg'(r)} is the amount of shear (locally a simple shear in
the planes normal to e}, the prime on g indicates differentiation with respecttor = R and T
indicates the transpose (of a second-order tensor).

Let M be a unit vector, defined in the reference configuration, that identifies locally a
preferred direction. In particular, we suppose that M lies in (R, ©}-planes, so that we may
write

M = MzEg + MoEs, Mi+ Mg =1 (6)

The geometrical nature of the preferred direction may be characterized in terms of the sealar
bijection mapping G : [A, B] — [}, ©; — 6] via the equation

where & € [0, 2x] and B, — B¢ > 0 is fixed independently of B,
Then,

_ ! _ RG(R)

My (8)
and G'(R) = dG(R)}/dR. We assume here that G'(R) > 0. A schematic of a possible
geometrical arrangement of the preferred direction is depicted in Figure 1. Note that Mz
and M, are functions of the radius R only. It will sometimes be convenient to identify the
preferred direction in terms of the angle @ = a{R), with a & [0, z /2] defined by



Figure 1. lllustration of a possible arrangement of the preferred direction in the reference configuration
according to Equation (7). The angle « is identified by noting that Mz = cos &,

tana = MO/MR = RG’(R) (9)
Under the considered deformation M becomes m, say, which is given by
m=FM = Mge, + (M[-) + ¥ Mg)eg. (I'U')

The kinematic invariants of interest for the considered deformation are denoted by f; and I,
and defined by

L=tB=3+y% L=m-m=1+2yMMg+ y?M;. (11)

We note that, in general, for an incompressible material (in three dimensions) there are four
independent invariants associated with the deformation and the direction M when no distinc-
tion is made between M and —M. The other two invariants are usually denoted I» and Is.
However, in plane strain I, = f, and Is = (Bm) -m = (I} — 131, — 1 [10] and it is not neces-
sary to consider these separately from I, and Iy. Note that (11)> reduces to I; = 1 +y> when
M =Egz(a =, while Iy = 1 it M = Eg (¢ = 7 /2). In the latter case the deformation
corresponds to simple shear in the preferred direction.

Since Mg > 0 (with equality for G'(R) — o0) and Mg > 0 then for positive shear
(y > 0)we have I, > 1 for R € (4, B]. On the other hand, for negative shear (y < 0} and
a#0, 7/2,

Iy % 1 accordingas y(y + 2tana) % 0. (12)

Now, for y < 0, with ¢ # 0, it follows from (12) that Iy < 1 for y > —2tana
and [; > 1 fory < —2tan«. Note that ¢ may be a constant, a monotonic increasing or
decreasing function of R or none of these, If « is a constant then RG'(R} is a constant and
the resulting curve is a logarithmic spiral, with (G{R} given by



G{(R) = (01 — Oo}log(R/A)/log(B/A). (13}

Suppose, for illustration, that « is either a constant or an increasing function of r = R
and that |y | is a decreasing function of r. In fact, it is shown in Section 5 that if « is constant
then the latter condition holds whenever the strong ellipticity condition holds (but otherwise
it may or may not hold depending on the material properties and the dependence of @ on r).
Then, at the inner boundary r = q, as y decreases from zero, I, steadily decreases from 1
until it reaches its minimum value at y = — tan « and then starts to increase. Therefore, due
to monotonicity of |y |, we have [, < 1 fora < r < b but when y = —2tan« at the inner
boundary, I, retums to the value 1, but remains less than 1 for ¢ < r < b, Thereafter, I, is
greater than 1 at the inner boundary and there is a value of r € (a, b), denoted r,, at which
y = —=2tana,sothat I, > 1 fora <r <r,and I; < 1forr, <r < b. The radial location
r. increases with |y |. At sufficiently large |y |, r, reaches the value b and thereafter I, is
greaterthan 1 fora <r < b,

3. CONSTITUTIVE LAW: TRANSYERSE ISOTROPY

For a transversely isotropic incompressible elastic solid, when restricted to the plane strain
specialization, the strain-energy function W may be treated in general as a function of I) and
I, alone (see, e.g., Merodio and Ogden ) and we write

W =W, L). (14)

The associated in-plane Cauchy stress tensor o then has the form
6=—pl+2WB+2W,mQ@m, (15)
where now I and B are the in-plane identity and left Cauchy—Green tensors, respectively, p is
the corresponding Lagrange multiplier associated with the incompressibility constraint and

W, =aWyal, W, = aW/al,.
The (in-plane) cylindrical polar components of ¢ are read off as

Tpp = —p—l—ZWI +2W4M§, (16)
sop = —p+2Wi(1+y7)+2WalMe + y Mg)’, (17)
6,6 = 2Wiy + 2W.Mg(Me + v My), (18)

from which it is easy to show that
Gop — G = 7 0rp + 2Wily MeMe + M — M3). (19)

In view of (11) and (9} we may now introduce a new function, denoted W, such that



Wy, a) = W(L, L), 20

and differentiation of (20) yields the simple formula
o,y = @1

for the shear stress, We note in passing that for any elastic material for which the strain
energy can be regarded as a function of the single deformation variable y for the considered
deformation the formula (21) applies. In (20) we should remark that « is a material parame-
ter, not a deformation variable, and its inclusion reflects the fact that the material properties
are inhomogeneous if o depends on R, With this in mind we note that the connection (19)
¢an be rewritten in the form

oW A .
=y 0,4 + ¥ (Grr - 0-89)' (22)
lele]

4, EQUILIBRIUM EQUATIONS

For the deformation and constitutive law discussed in the foregoing sections the equilibrium
equation dive = 0 (in the absence of body forces) has just two non-trivial components,
namely the radial equation

do,.. 1 .
il + _(_J [ '—76‘9) ={ (23)
dr r
and the azimuthal equation
4 (r’c,s) =0 (24)
are T

The azimuthal equation (24) integrates to give, in conjunction with (21},

OW . Tgbz

dy r?

g = (25)

k4

which, for any given form of W, serves to determine ¢ as a function of r, and hence, viay =
rg’(r}, the deformation function g(r}, subject to the boundary conditions (3). We emphasize
that the form of the function g(r) depends on the form of the strain-energy function. The
parameter 7, in (25} is a constant, representing the value of the azimuthal stress component
on the boundary r = b, In addition, the quantity 2z 7,b° represents the resultant torque
(twisting moment). Either 74 or y in (3): (but not both) can be regarded as providing the
houndary condition on r = b.



For the isotropic theory, as discussed by Jiang and Ogden |, positive v {i.e. positive
) is associated with 4 > O while < Oisrelated to 4 < (. This assertion, in conjunction
with (25}, clearly suggests that

w
Grg = —— 20 according as vy % 0. (26)

We adopt these restrictions in what follows, and more detailed commentary on them is pro-
vided after equation (41).

Once y 15 determined, the role of the radial equation (23} is to determine o, or equiva-
lently p. Integration of equation (23), on use of (22) and (25), yields

. ” s WY dR
O'_.._..(F') == Grr(_a) +/ (g’fab“ - (8!)_16—) (2?)

a | RY

in which R is used as the integration variable. Because of the incompressibility constraint
the value of ¢,.(a) is at our disposal. If required, the normal component 644 can now be
obtained from (23).

At this point, it is worth mentioning that, for a transversely isotropic material, unlike the
situation in the isotropic theory, Equation (25} might have an alternative role. Specifically, if
a certain shear-stress—strain response and distribution is required, then Equation (25} can be
used to identify the preferred directions, in other words the components (8} or G{R} itself,
for which such a deformation is sustainable. We do not pursue this design idea in the present
analysis, however.

5. STRONG ELLIPTICITY AND A CLASS OF REINFORCING MODELS

We now discuss the strong ellipticity condition for the considered azimuthal shear defor-
mation and constitutive law, For this purpose we draw on the general plane strain strong
ellipticity condition for transversely isotropic materials given by Merodio and Ogden

for a strain-energy function of the form W(_I 1, 14). This may be written

2Wyi[n - (Ba))® +4Wun - (Ba)(n- m)(n x m);

+ 2Win-m¥n x m)} + Win- (Bn) + Wyn-m)* > 0 (28)

for all in-plane unit vectors n and a satisfying a - n = (), where (n x m); = n,m2 — namy,
(ny, na} and (11, m») being the components of n and m, respectively,

Where ellipticity fails n defines the normal to the associated (weak or strong) surface of
discontinuity. While the inequality (28) is local, for the present problem we have to consider
the global implications of the constraints imposed by the geometry. If the circular geometry
is to be maintained then any surface of discontinuity is necessarily constrained to be circular
cylindrical and concentric with the tube, Thus, we may take n = e, and a = e,. Then,



n-(Bn) =1, (nxmh = (Mg + Mg}, n-(Ba) = y,n-m = Mg, and (28) therefore
reduces to

2Wyyp? + AWy Me(Mo + 7 Me) + 2W44M§-(_Me + 7 Mg + Wy + W4M§ = W}'}' > 0,

|
2
where a subscript y signifies the partial derivative &/8y. Thus, for the considered prob-
lem, strong ellipticity is equivalent to the simple inequality WW > 0, and loss of ellipticity
therefore occurs, if at all, at a value of r for which Wﬂ, =0

Expressed otherwise, strong ellipticity is equivalent to the strain-energy function being
a strictly locally convex function of y . Thus,

W _ ao’ré‘

o ay

> (29)

This is easily confirmed in the case of an isotropic material, for which we write (14) as
W = E(I). Then, necessary and sufficient conditions for (28) are (140, 12]

200 = E(IN+HE L)y >0, E(L)>0. (30

But, since /; = 3 + y 2, we introduce the notation E(y) defined by E(y) = E(I;). The
inequalities (30) then become

E'y)>0, E()Z0 for y 20, (31)

AllY

Note, however, that the latter is equivalent to the adopted condition (26), and hence, for
isotropic materials, the remaining strong ellipticity condition is simply E7{y ) > 0.

It should be emphasized that for the deformation under examination, and as for the
isotropic theory [2], the ellipticity requirement (29}, if it holds for all y, ensures, for any
given tg, uniqueness of the solution of (25) for y provided the growth condition W}, - 00
as y — oo holds. Loss of ellipticity is therefore closely related to loss of uniqueness of the
solution for y .

Finally in this section, we note that

. d - d b
W }’+WM_G:_21'9

Fr 5 dr r3 + (32)

and recall that by (25} and (26) r, has the same sign as y. This shows that if (29) holds
and if « is independent of r then dy /dr % 0 according as tg4 % (. Thus, |y | is a decreasing
function of r whenever strong ellipticity holds. If « depends on r then, in general, whether or
not |v | is monotonic depends both on the nature of this dependence and on how W depends
on a. An example of non-monotonicity is illustrated in Section 8.2.

In order to examine loss of ellipticity in detail we focus attention on two particular strain-
energy functions within the general class characterized by the separable form

W, L) = E(h) + F(L), (33)



in which the first term E (1) represents the isotropic base material and the additional term
F(1,) represents the reinforcement associated with the transversely isotropic nature of the
considered materials, the invariant I, being associated with the preferred direction M. Sev-
eral authors (see, for example, Merodio and Ogden and references therein} have con-
sidered a decomposition of the form (33), or specializations thereof, where, in each case, the
reinforcing contribution F (1) has been taken to satisfy

FI)>0(<0 for L>1(<1, F{H=0 34)

These conditions ensure that the contribution of F(1,} to the component of the Cauchy stress
tensor (15) in the deformed preferred direction is positive (negative) under extension (con-
traction) of the preferred direction,

It is useful in what follows to examine certain properties of the energy function Wl 1)
specified in (33) in respect of its dependence on y and to write

Wyy=E@)+ Fy), (35)

dropping the explicit dependence on «. It is similarly convenient to use the notation 6.4 =
5(r) so as to emphasize the dependence of the shear stress on r, whence, from (25),

Tob?
2

=s(r) = E'(y)+ F'(y). (36)

We emphasme that for a strain-energy function of the form (33) satlsfylno (34), the
properties of E{y) have to be consistent with (26), where in general E(y) need not be a
convex function. However, we restrict attention henceforth to conventional isotropic base
material functions. Much more detail on the possibilities for loss of ellipticity due to the
properties of E{(y)and F(y) can be gleaned from the work of Merodio and Ogden

6. THE REINFORCED NEO-HOOKEAN MODEL

In this section we examine in detail the ellipticity status of the neo-Hookean isotropic ma-
terial augmented with the so-called standard reinforcing model under the pure azimuthal
shear deformation, In particular, the breakdown of strong ellipticity and loss of strict local
convexity of W = W are associated here with the existence of non-unique solutions of the
houndary-value problem.

Equation (33) is now specialized to

. 1 _ ,
W(Il,b,)zi,u [h =3+ p(L—1Y], (37)

0 that



| 1 . 5 .
E(L} = 5#(11 =3, Flli= 5#9(14 -1, (38}

where the constant ¢ (> () represents the shear modulus of the isotropic base material and
p (> 0) is a material constant that characterizes the degree of anisotropy associated with the
presence of the preferred direction. For the considered deformation we have

0 —3=}-2, I, —1=ycosa(Z2sina + y cosa). (39)
It follows that
W, = uy (2pcostay® +6pcos’asinay +4pcos” a sin a + 1), (4
and it is then easy to show that the inequalities (26) hold if and only if
psin’ 2 < 8. 41}

Although the inequalities (26) could be relaxed to provide an alternative route to loss of
ellipticity, here we assume that they hold and that loss of ellipticity is associated solely with
the condition Wﬁ, = (). The restriction (41) on the parameter p and the angle a reflects the
very special choice of strain-energy function.

More specifically, as discussed in [8] (see Figure 12 therein), g > 8 offers the possibility
that shearing with respect to a particular range of reinforcing orientations gives a resolved
shear stress with opposite sign to that of the amount of shear. Similar phenomena are noted

and would likely render the considered radially symmetric solutions unstable with
respect to more general deformations that are beyond the scope of this article. Here attention
is restricted to (41}, and more generally (26), so as to justify exclusive focus on the pure
azimuthal shear deformations (2).

We remark that to the extent that the transverse isotropy studied here is associated with
fiber reinforcement, constancy of the reinforcing parameter p might be regarded as associ-
ated with a constant fiber density (independent of r). More generally, however, one could
consider p to depend on r and the subsequent analysis given in the present paper for constant
£ could provide a point of entry for the consideration of any such generalization.

6.1. Multiple Solutions

Here we investigate the existence of multiple solutions of the azimuthal equilibrium equation
(25) for y for given values of the applied shear loading z,. For this purpose it is convenient
to use the notations defined by

c(yy =Wy /i, ) =s0)/p=r1eb>/pr. (42)
In respect of (37), equation {25) yields the cubic

o(y) =2pMpy® + 6pMyMoy® + dpMiML + 1)y = (1) (43)



for . An immediate useful observation is that both y = —tana and y = —2tana cause
the reinforcing term in (43) to vanish, thus vielding 6 = 1 = y for these two special values

of v. For y = —2tana, in which case Iy = 1, this correspondence is a consequence of
F'(1} = 0in(34). For y = —tana itis a consequence of 81,/0y = 0, which in turn renders
F'(y)=0.

In the special case My = 0, equation (43) yields ¥ = () and the solution is exactly
that arising in the isotropic theory, i.e. the anisotropy has no influence, either for positive or
negative z(r). Henceforth, we assume Mz £ 0 (a # 7 /2).

If t4 > Othen 7{r} > O and, according to (26), we must have y > 0, in which case the
left-hand side of (43) is a monotonic increasing function of ¥, W is a locally strictly convex
function of y and the strong ellipticity condition holds. Hence, (43} yields a unique value
for y . We shall not pursue discussion of this case.

The situation of particular interest is when 1t < 0 so that r{(r} < (0 and, by (26), y < 0.
First, it is easy to show that if p sin” 2@ < 2 then the left-hand side of equation (43) is again
a monotonic increasing function of y. Hence (43) has a unique negative solution, v = v,
say, defined for all Mz € (0, 1] (and all r € [a, b]). This solution is given explicitly by

6720 Q% — 6713 p MA(1 — 2p MAM2)
pMR0O ’

¥y, =—tina+ (44)

forall @ < r < b with My € (0, 1] and for any value of ¢ = z{r} < Q0 with real @ = Q(r)
being given by

Q' = 9p'Mp(t Mg + Mo)

+ 312G \/2?,0M§(_TMR + Mo)? 4+ 2(1 — 2pMEMZ). (45)

Note that when p = 2 and a = 7 /4 equation (43) simplifies to (y +1)* = ¢ + 1, and hence
y = v, = =14 {z + I}'*, This is negative for t < 0 and yields the same result as the
specialization of (44) with (45).

For a < r < b, the (unique) deformation function, g,{r} say, is determined by integra-
tion of the equation rg|(r) = y, with the boundary conditions (3).

Second, for T < 0, loss of uniqueness of solution of (43) may occur when p sin’ 2«
exceeds the value 2, Then, independently of the magnitude of ¢ < 0, y is again given by
(44), but only for values of r for which

either O < Mp < M; or M, < My <1, (40)

where

M1=\/(p—m)/2p, M2=\/(p+ﬁ)/2p. (@7)

The formulafor y, is dso vdid when Mg = Mi or Mg = M,, including the specid case
r = —tan a, for whichy, =—tan aisatriple root.



Figure 2. Plot of the cubic a(y) — z(r) from (43) against y for different values of z(r): from bottom to top,
z(r) > z3, z(r) = %i (lower dashed curve), r, < z(r) < zj, z(r) = z, (upper dashed curve), z(r) < r,.
The values y,, v3, Yo, Y7 are identified by the ¢ symbol, while y.,y.ys are ordered according to
75<73,73<74<77,77<7i <0. Note that Wyy <Ofory; <y <ys;.

Non-uniqueness of therootsy for r < Oispossbleonly if/? > 2 and only for values of
r such that p sin? 2a > 2, or equivaently

M] < MR < Mzs (48)

whichis, in fact, anticipated on the basis of equation (4.16)

We now consider the effect of increasing the magnitude of the shear dress ™ on the
boundary r = b, or equivaently of r(b) = r¢/fi. In Figure 2 we plot, for a series of given
values of r(r), the function <r(y) — r(r) aganst y, where <r(y) is defined in (43). Since
a(0) = 0 the intercept on the vertical axisis — (r).

For small values of |r(r)| the equation <r(y) — r(r) =0 clearly has a single solution,
whichisthevaduey ; identified in (44). As|r (r) | increases a second solution of (43) emerges
when the curve (the lower dashed curve in Figure 2) just touches the horizontal axis. At this
point thetwo rootsfor y , denoted y, and y 3, are given by

V6 2pMiMZ — 1

V6 2pMiMZ — 1

The value y; is the specialization of y 1. while y3 is the double root associated with the
maximum point on the curve.



The corresponding value of z(r) at this point is denoted zi and is given by

V60 (2oMiME 1)’

. 51
T 1)

T = —tana +

Note that, in general, & depends on r and so, therefore, does the value 7.

As |t{r}| increases further then three distinct real roots for ¢ are obtained, However,
in (45) is now complex and some manipulations are required to rewrite (44) in the simplified
form

-2/

My

(Q+ 0, (52)

¥, = —tan« +

where Q is the complex conjugate of Q. The other two (real) roots, denoted y 4 and y 5, are
given similarly by

=23

re = —na- o [0+0-ivi0-0). (3)
—2/3 I B
rs = —tna -0+ 0 +VAQ - 0] (54)

It is convenient to label these two roots so that y5 < y, (< 0), noting that they are both
equal to v, when 1(r} = ;. Then, with reference to Figure 2, it is easy to show that for
72 < t{r} < 11, the following orderings hold: y; < y4 < —tana (< 0}, y5 < p,{< 0}
These imply that y5 + tana < { (and hence @ + O > 0), while y, + tan may be either
positive or negative,

The roots v, and v, merge when 7 (r) reaches the value 7, given by

V6p2pMEME — 1)}

¥ k) 55
1L (55)

T; = —tana —

which corresponds to the upper dashed curve in Figure 2 and depends on r if o does. The
two roots in this case, denoted y 4, y 5, are given by

6/ 2pMiME — 1 o
\/_ Pip MG (56)

4 = —tana — o R
e : 3/PM3
V6. 2pMIME — 1
= —tan . 57
7 T MG eD

The (double) root y , is the specialization of y, (and v ;) for this case and y . is the most
negative root. Note that for - < r{r) < 1y wehave y, < y; < 3, (< 0), 7, < v, and
y,+ tana > 0, while for r(r} < r» there is again only one real root for y, which we label
as ¥ 5 (< y4). We note in passing that y , and y . correspond to the same value of I, which
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Figure 3. (a) Plots of the critical values x\ (upper curve) and r, (lower curve) against Mg in (Mg, 2)
space for p = 4; (b) plots of the critical values y,, y¢ (dotted curves) and ys,y7 (continuous curves) in
{MRg, y) space forp =4. The dashed curves and the symbols z*, y*,y" are identified in Section 6.3.

may be written 1 — v,y cos? a. Similarly, for y 5 and v, we have I = 1 — y 37, ¢08°«,
Moreover, I, is less for v, than for y ,. Note that y . > —2tana provided (41) holds.

Since t and (in general) @ depend on r the above results are purely local, i.e. they apply
for fixed values of r, While |z], as defined in (42), is a decreasing function of r, neither 7,
nor 7 is in general a monotonic function of a. Thus, the disposition of possible shear straing
for r € {a, b} can be quite complex. To illustrate to possibilities we show, in Figure 3(a),
the nature of the values r; and z, defined by (51) and (55), respectively, as functions of
Mpg. In Figure 3(b) the corresponding values y ., 75 and y,, y; are shown, in each case
for p = 4. If « 15 2 monotonic increasing (decreasing) function of r, and therefore My
monotonic decreasing (increasing), the curves in Figure 3 can be interpreted as illustrating
qualitatively the dependence of these values on the radius r.

Clearly, the values r, and 7 are critical for determining the existence of multiple values
for » and hence non-unique continuous deformation fields g(r) in (2}, For t{r} between
71 and 7., non-uniqueness is possible, Subject to the restriction p gin° 2a < 8, an increase
in the parameter p > 2 corresponds to expansion of the domain where non-uniqueness of
y is possible since r; is a monotonic increasing function and r; a monotonic decreasing
function of p. In comparison with Figure 3, Figure 4 shows corresponding results for p = 9.
For this value of p we have to ensure that the inequality (41) is satisfied. It is provided
Mr < +/3/3 = 0577 or Mg > +/6/3 & 0.817. In Figure 4(a) the 7, curve cuts the
axis ¢ = ( at the values My = \/§/3,J3/3 and the interval My [\/5/3,\/5/3] is
therefore excluded from consideration. This applies equally in Figure 4(b), which, for the
same interval, reveals inadmissible values for y , denoted y 3 and y 3, that are obtained from
the formulas (53) and (54} for y , and y 5 with (45) for ¢ = 0. Note that 7, is not here a
monotonic function of Mp.

We remark that, for a certain range of values of p > 2, r; is monotonically increasing
in the component Mg, as is evident in the example in Figure 3. This means that loss of
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Figure 4. (a) Plots of the critical values x\ (upper curve) and r, (lower curve) against Mg in (Mg, 2)
space for p = 9; ) plots of the critical values y,, ys (dotted curves) and ys,y; (continuous curves)
in (Mg, y) space for p = 9. The interval Mg e [V3/3, V6/3] is excluded since the inequality (41) is
violated. The inadmissible shear strains y\ and y\ are within this interval. The dashed curves and the
symbols z*, y *, y ** are identified in Section 6.3.

uniqueness is initiated for points with My close to M, since the latter is associated with
the minimum possible value of |r,|. More specifically, when p exceeds the approximate
value 5.39, 1, loses its monotonic character; however, the least value of |z for which loss
of uniqueness first occurs is still close to Mp = M, until p reaches the approximate value
6.19. Thereafter, multiplicity of choices for ¥ first occurs away from M5, and, in particular,
for Mg = 0.764 < M; = (1.956, while any further increase in p results in a decrease in the
value of Mg for which |r,| is minimized.

The dashed curves in Figures 3 and 4 have a special significance, which will be discussed
in Section 6.3,

In order to simplify the discussion of multiplicity, we now focus on the case in which
a is independent of r. Then, 7, and r; are also independent of r, and, with reference to
Figure 2, we may determine the effect of increasing |(r}| as follows,

We note that |7 (r)| has its largest value atr = a, For 0} > z{a) > 1 there is a unique
value v = y, that applies for @ < r < b, For t{a} = 1, this value (= »,) again applies for
a < r < b, but a second value y, becomes possible atr = a. For t(5) > 11 > t(a) > 73,
three values are possible, corresponding to the intercepts of the central curve in Figure 2 with
the horizontal axis. These are v | in(52) and y , and y ¢ in (53) and (54), respectively, labelled
so that y5 < y, < y,. There is then a value of r € (a,b), r* say, such that z(r*)y = 7.
For r > r* the value y, is the only one possible, but for r < r* three values, namely y ,,
y 4 and y 5, are possible. As we shall discuss further in Section 6.3, any use of the choice v,
in the construction of the function g(r) gives rise to an energetically unstable deformation
by all conventional stability criteria. Hence the choice y 4 will not be admitted. Thus, for
r < r* only the two values y, and y 5 are admissible. Even so, the possibility of y having
a jump from y, to y 5 arises, whereupon the determination of the point or points at which



such a jump occurs requires further discussion. This will also be provided in Section 6.3 in
relation to the stability status of the different values of y . Such jumps are called elastosraric
shocks and, in the context of fiber reinforced materials, are referred to as kink surfaces
. With further increase in [z4], the possibility of two admissible values of ¢ 1s
retained provided 7 (P} reaches the value 7, before 7 (a) reaches the value 7., If, however,
r{a) reaches 1, before (b} reaches r; a further increase in 74 will generate two circles, of
radii #* and v** < r*, say, such that there is only a single value (y ;) fora < r < r**, two
admissible values (y, and y5) for r** < r < r* and only one (y}forr* < r < b.

The situation described above mirrors that studied by Abevaratne  in the context of
the isotropic problem with a non-monotone shear stress response function, As shown for
the isotropic material problem , it will generally be the case that smooth solutions will
not exist for certain values of y, which in turn motivates the explicit need for deformations
involving such a discontinuity surface. Once such elastostatic shock solutions are admitted,
one then typically obtains a multiplicity of solutions for certain values of  whereupon the
issue of selecting solutions of physical significance becomes central to further progress. As
elaborated in Section 6.3 we shall here follow by invoking an absolute stability selection
criterion that essentially selects global energy minimizers within the class of azimuthal shear
deformations (2). As discussed further in what follows, such solutions have an equivalent in-
terpretation of dissipation free shock motion when the problem is viewed quasi-statically for
a time varying . , an immediate consequence is that a unique solution g(r},
which may or may not involve an elastostatic shock, follows for each value y and the same
solution is obtained for the quasi-static interpretation of the problem irrespective of whether
w is increasing or decreasing. Indeed, Abeyaratne provides full details for associating any
houndary value y to such a solution for the isotropic problem. In the present paper we do
not provide the same focus on mapping the boundary value y onto solutions and instead
refer the reader to [6] for more detail on how to treat this aspect of the problem. This allows
us to retain our focus on the new issues pertaining to the effect of the fiber reinforcement
associated with transverse isotropy.

The possibilities just described are reflected in Figure 3, for example. For values of Mg
between M, = (V2 —+/2)/2 &~ 0383 and My = (V2 + +/2)/2 =~ 0924 (for p = 4),
we see that as t decreases from zero there is initially one value for y, namely y, > 7..
Two values, ¥, and » 5, become possible when ¢ reaches ;. As ¢ decreases further, three
values of ¥ become possible: one (v} is found between v, and ¥ 5, a second (y ;) between
y, and y, and a third (y ;) between y, and y . The value y ,, as mentioned already, is not
admissible. After r reaches r; (and y reaches y,) there is again uniqueness. Thus, with
reference to Figure 3(b), we see that outside the closed curve defined by y , and v . the value
of ¥ 15 uniquely determined, while inside this curve two admissible choices (y | and y 5) are
possible.

In constructing any such discontinuity surface across which the shear strain y jumps
between y | and y 5 it is to be remarked that there is no associated change in the value of
even though 14 appeared originally as an integration constant in (25). Continuity of 74 is
necessary for contimiity of 6,». Continuity of o, follows from (27), which in turn ensures
traction continuity across the discontinuity surface.



Thecasea = 0. Finaly in this section, we consider the exceptiona case for which the
preferred direction is taken to beradia for r e [a, b], i.e. a = 0. Then'y may be computed
from (44) for any r (poditive or negative) and p > 0O, whilst (45) reduces to

Q* =9p%t + /8lp*t? 4 6p. (58)

After some manipulation it can be shown that y = y, has the form

6'3p1
y1=378 2/;;). 2ya
g4+ +4- + 065

where g; = 1/81p%t? + 6p* £9p°r. The antisymmetry of y ; with respect to the change of
sign of r is then apparent. The equation rg;(r} = y, is solved to give

g1(r) = L(r} — L{a) (60
fora <r < b, where
|
V2o L) = —?(x —x ™Y+ tan”! (x \/%‘ ) , 61)

x (> 0)is defined by x = Q/(6p°)/%, Q > 0, and we recall that t = 1,07/ ur?,

6.2, Loss of Ellipticity
The loss of uniqueness discussed in the foregoing section is closely related to loss of ellip-
ticity, and the connection will be elaborated in the present section, Strict local convexity of

W = W as a function of y is equivalent to the strong ellipticity condition W},}, > 0, and for
the considered reinforced neo-Hookean model (37) this yields

6pMyy> +12pM Moy +4pMEMg + 1> 0. (62)
This holds for ¥y > (), while for it to hold for all ¥ it is necessary and sufficient that
p sin® 2a < 2. (63)
Thus, bearing in mind the restriction (41), failure of ellipticity requires
2 < psin®2a < 8. (64)
Note, in particular, that the left-hand inequality in (64) cannot hold unless p > 2, For p = 2
only equality can hold and it requires that e = 7z /4.

Failure of the inequality (62} can occur for those ryfor which M; < My < M- and
only when y is such that y, < ¢ < y,. Inparticular, W,, = O0fory = yyandy =y,
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Figure 5. Plot of the invariant I, against y showing the relative positions of y,, y3, Ye, Y1. The value
I, = 1 is shown as the dashed line, which cuts the 1, curve at y = —2tana. The minimum of I, occurs
aty = —tana. The values — tana and —2tan a are indicated by the symbol * on the y axis.

which correspond to r = X, and r = r,, respectively. Thus, the emergence of a second
valuefor y whenr = X\ coincides with loss of dlipticity. For the case of constant a, as |r |
increases dlipticity fals first on r = a and theresfter on a circle of radius r = r*, which
increases until r = b isreached. The (unique) value y appliesfor r* < r < b, while for
a < r < r* andternative vaueis possible, i.e. y; canjumptoys. Foreachofy; andys

srong dlipticity holds (i.e. the dope of the central curve in Figure 2 is postive for each of
these values). The middle value y, is not admissible since at this point Wi, < O, i.e. itis
unstable. Indeed, W, < O for y3 <y <Yy, as can be seen in Figure 2. For the model under
examination, loss of uniqueness of the solution of (43) for y < O implies failure of strong
dlipticity, but the converse is not true in general since, for p sin®2a = 2, theroots for y all
coincide a ahorizontal point of inflection (y = — tana). Such a Situation corresponds to a
wesak discontinuity, with y continuous but dy /dr discontinuous at the value of r in question.
This can happen only for Mg = Mi or Mg = My withy; =y, = —tana(=r! =r;).

We now examine the dlipticity status in terms of the invariant U since it is clear that
breakdown of dlipticity is dways associated with I, < 1. The relaive placements of the
vaues Ye,Y 3, Y7, Y2 ae shown in Figure 5 together with a plot of the invariant U as a
function of y . For the considered material model and deformation, Wy, < Ofory; <y <
y7, and 7, < 1 for dl r for which y*,<y < y; holds. Onthe other hand, U < 1 does naot,
in general, imply W, < 0. Indeed, Wy, > O for either — 2tana<y <yzory;<y<0,
for whichintervals U < 1.

Thus, it is generdly the case that if loss of dlipticity takes place it will first occur before
I, reaches its minimum value. The exception is for the non-generic situation in whichy 7 =
yA = 73 = —tana, corresponding to Mg = Mi = M,. In such a Situation, any subsequent
change in the boundary condition generally causes 1, to cease to be at its minimum value,
whereupon dlipticity is regained. An example of this transient loss of dlipticity is presented
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Figure 6. Plots of the invariant 1, against r < 0 for Mg = 0.5, 0.65 with p = 5 showing the locations of
the different y values. Note that y, is located in the region of non-convex W.

in Section 8.2, In Figure 6, for p = 5 and My = 0.5, 0.65, the dependence of I, < 1 on
7 < {(}is plotted, with the locations of the different values for v identified.

6.3. Energy Minimal Selutions

Consider a programme of loading such that ¢ and correspondingly v decreases from zero.
For —o < —ty, as we have seen, there is only one solution of (43) for y, namely the root
y 1. We focus on the values of ¢ such that —7; < —¢ < —r2, when there are two roots, y |
and y 5 < y . With reference to Figure 7, let ¢* be the value of ¢ for which the horizontal
ling 6 = 1~ cuts the ¢ curve to form two closed regions with equal areas. This is, of course,
the well-known Maxwell line. Let »* and y** < ¥ * be the comesponding values of ¥, and
ys. The Maxwell line is therefore defined by the equality (namely Equations (3.2}-(3.4)
)

Wiy =Wy -t (y =y =0. (65)

The dashed curves in Figures 3(a) and 4(a) are plots of the relevant values of T* for the
examples therein against Mg, and in Figures 3(b) and 4(b) the associated curves of y * and
y** areshown.

For solutions containing a discontinuity surface involving transition betweeny; and ys,
the Maxwell stress T* provides the only value of a at which such a surface can be located if
the solution is to be stable in an absolute sense. In the event that T* is independent of r, it
then follows from (42) and (43) that there is at most one radial location at whicha = r*, and
this location varies with the applied external shear stress T (b) or, equivalently, the twist y/ in
(3). This is the case for homogeneous, isotropic materials, as discussed in Abeyaratne
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Figure 7. Representative plot of —a(y), as given by (43), against y (< 0). As —a increases from zero
the continuous curve is followed until —a reaches the value —r* > —z\, at which point this path loses
stability and the solution jumps to the left-hand continuous part of the curve, which is stable as — a
increases further. The stable path is indicated by the arrows. The horizontal dashed line at a = z* is the
Maxwell line, for which the two closed regions cut off the curve have equal areas. The dashed part of the
curve and the continuous parts for y; < yx < y * and y**<ys<y; correspond to unstable solutions.

and dso for the materials considered here provided that al congtitutive parameters (including
a) are independent of r. More general possibilities apply if a depends on'r.

The sense in which such solutions are absolutely stable , hamely,
for the same boundary conditions, such a solution minimizes the overal energy with respect
to dl other deformations, either smooth solutions or those containing one or more disconti-
nuity surfaces. This diminates consideration of the branch of solutions associated with any
descending branch in Figure 2, i.e. y,, and dso diminates y; ify; < y; < y* and ys if
y** < ys5 < ys Itisworth observing here that such unstable y; and ys can be regarded
as metastable in the sense that solutions involving these values are minimizers with respect
to continuoudy differentiable variations in the twist function g(r) in (2). Since, however,
such continuoudly differentiable variations permit neither the formation of new discontinuity
surfaces nor the alternative placement of existing discontinuity surfaces, they do not address
the absolutely stable solutions that we consider here. Hence the condition for the stability of
the shear Srainy ; (and ingtability of ys) is

W(}’ sh— W(}’ p—olys—yy) >0, (66)

where ¢ = o(y ;) = ¢(y5). In the context of isotropic elasticity the stability analysis has
been discussed in detail by Abeyaratne and the present situation follows closely that
analysis.

We remark here that Equation (65) is the specialization of the admissibility condition
[WI—FTST]IN = 0 for equilibrium shocks , where [ ] indicates the jump in the enclosed
quantity across the surface with unit normal N in the reference configuration, I is the identity
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Figure 8. Plot of the angle /?*(> 0) against Mg for p =3,5,1.

tensor and S = F-'c is the nominal stress tensor. This guarantees that quasi-static motion of
an equilibrium shock (i.e. the surface of gtrain discontinuity) is dissipation-free.

It is easily shown from (43) that a(—y — 2tana) + 2tana = —a{y), which means
that a (y) is antisymmetric about the point y = — tan a, a = — tan a. It follows that (65)

provides the explicit Maxwell vaues r* = — tana and
V2o MaMZ — 1 V2pMiME —1
M= —tana 4+ ——————, = —tang — Y—E———. 6
¥ o r—szl% } « "_ZpM‘% (67)

Note that y* is negative by virtue of (64).
Now, from (2),, (7)i, (9) and (10), wefind that

rdﬁ; =rG'(ry+rg'(ry=tana +y =tanp, (68)
where tan/? = me/m, i.e. /? is the angle (measured counterclockwise) between the de-
formed fiber direction and the radia direction e,. Let /?* and /?** be the vaues of /? cor-
responding to the vaues y* and y ** in (67). It follows that tan/T > O, tan/T* < 0 and
P** +p* = 0. This means that the deformed fiber directions on the two sides of the circle of
discontinuity are symmetrically disposed relative to the e direction. Note that € is normal
to the direction of shear. A Smilar symmetry arises in the rectilinear shear problem exam-
ined by Merodio . Notethat /?* (and hence /?*) is non-monotonic as afunction of
Mgr = cosa and has a maximum (minimum) at Mg = l/«/p(p > 2). Figure 8 shows the
behavior of /?* as afunction of Mg for three different values of p > 2.

We close this section with aremark regarding the issue of selecting solutions sinceit is
worth mentioning that other means for selecting solutions involving an elastostatic shock are
aso possible . Such alternative selection criteria have received a great dedl of atten-
tion in the recent literature, especialy as it relates to the continuum mechanical modeling of



solid-solid phase transformations. In these aternative resolutions, it is necessary to ensure
that the selection criterion is consistent with the second law of thermodynamics . Fur-
thermore, unlike the absolutely stable solutions considered here, such dternative resolutions
would typically provide some hysteresis in the solution dependence on /.

7. THE REINFORCED VARGA MODEL

An altemative representation for the strain-energy function is examined at this point, Instead
of I, we use the principal invariant i; (= tr'V) of the stretch tensor V = B!/>, Analogously
to (33), we consider the class of strain-energy functions

Wi, I) = E(i) + F(L), (69)
and we note the connection I; = i7 — 2i;. Then,
W, L) =Wy, a) =W, L), E)=Ej). (70)

For the problem under examination, we then have, on use of (11),,

=14+ /4+72 (11)

As a particular example, we now focus on the so-called Varga model, defined by
EG) =2uli —3) =2u/4+ 1> —2=E(y), (72)

augmented by the same reinforcement (38), in order to characterize the response of a trans-
versely 1sotropic circular ¢ylindrical tube under the pure azimuthal shear deformation, As
for the neo-Hookean model, the parameter p involved in (72} is the shear modulus of the
isotropic base material, and the counterpart of (37) is

o 1 3
Wi, 1) = sp [46 =D + plla = 1] (73)

Since E'(y) = 2uy /+/1+ y? the monotonic nature of the function o (¥ ) associated with
the Varga base material is apparent. Note, however, that, in contrast to the neo-Hookean base
material £ tends to a finite value as y — 0.

The azimuthal equation (25) now specializes to

c{yy =2y @+ )7 + 20 My (Mzy” +3MpMey +2Mg)y =1(r).  (74)

Note that the finite asymptote for & (y } persists for either p = 0 or Mz = 0. More generally,
however, o (y} — oo as y — =zoo. Unlike its counterpart (43), equation (74) does not
admit explicit expressions for y, so that necessary and sufficient conditions for the unique-
ness of ¢ are not in general obtainable in closed form. However, for vy > 0 it is easy to



show that ¢ (y } is a monotonic increasing function, and hence y is determined uniquely for
7 > (. Possible loss of uniqueness is, as for the model (37), strictly associated with negative
y. When z(r} < 0 equation (74) may have multiple roots for y (< (¥} even for very small
values of the parameter p. As expected, an increase in p results in a decrease in the value of
¢ for which loss of uniqueness is initiated. In other words, we see that the analogues of ,(r)
and |71 (r)|, denoted 7, (r) and |7.(r}|, respectively, are monotonically increasing with g, so
that larger values of p result in an expansion of the region encompassing multiple choices
for y.

It is therefore ¢lear that the general qualitative properties of the boundary 7,(r) are very
similar to those of 7;{r}, Let us quantify the maximal set of points for which multiplicity of
y occurs, analogously to (48), by the inequalities

M, < Mg < M, (75)
where M, = M,(p) and M, = M,{p). Then, for any fixed p > 2 we obtain the nesting
My < M, < M, < M, (76)

which, for all relevant r, leads to

r{r) < 41(rn) < 0, (17

but the relative disposition of ;(r} and 7.(r} is not immediately clear and depends on r.
In the limiting cases where M is either radial or circumferential uniqueness of y s, as
for the model (37), guaranteed. For Mz = 0, (74) may be solved to give

y =27(4 — ¢y V2, (78)

y and r having the same sign, so there is clearly an upper bound on |z| for which the con-
sidered deformation is admissible, a point observed previously for the purely isotropic Varga
model (see, for example, the general discussion in [2), which includes results for the Varga
material as a special case). For Mg = 0, on the other hand, a closed-form solution of (74) 15
not obtainable.

The variations of the boundaries 7,(r) and %.(r} with respect to the component My are
illustrated in Figure 9 for three fixed values of p. Also shown are the plots of the Maxwell
stress ©"(r) against Mg.

The requirement for (73} to be strongly elliptic is

PMA(3May? + 6MgMoy +2MZ) 4+ +4 > 0, (79)

which is, as for its counterpart (62}, automatically satisfied throughout the body for positive
y. For megative y, on the other hand, violation of (79) may now occur for any p > 0, al-
though the associated non-strongly-elliptic domain cannot be identified explicitly. Numerical
calculations, however, show that the correlation between ellipticity failure and the existence
of multiple values for y is entirely analogous to that for the reinforced neo-Hookean model.
Thus, the properties
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Figure 9. Plots of the limiting functions 7, and ¥, against the component My for p = 2,4, 7 for the
reinforced Varga material. The dashed curves are plots of the Maxwell value 7.

ia(r) < 7(r) < 11(r) (80)

associated with (75) serve (o characterize the domain for which multiple values of y arise
and on the boundary of which ellipticity fails,

It is worth mentioning here that, as for (62), breakdown of (79) is also possible at the
limiting values M, and M., although there is no associated discontinuity in 7. This again
corresponds to the emergence of a weak discontinuity in v, i.e. a discontinuity in dy /dr, at
the appropriate value of r. Finally, we note that the possibility that (74) yields negative, and
therefore physically inadmissible, values of ¥ for positive ¢(r) may also arise here. More
specifically, for p greater than about ¢ there exists a subinterval of (75) in which multiplicity
of v, in conjunction with loss of ellipticity, occurs. For this subinterval, which varies with p,
the boundaries of the domain where positive shear stress results in negative y are determined
via equation (74) by resolving the latter in the limit 7 — 07, In the case p = 7, illustrated
in the right-hand plot in Figure 1(}, such a subinterval can he ohserved.

The ellipticity status of the material model (73) is illustrated in Figure 10 for three values
of p. The notations  ,, 71, ¥4, ¥ 7 and y , 7 5 have been adopted in parallel with those used in
Section 6.3, In particular, the counterparts of Figures 3(b)} and 4(b) are plotted for p = 2,4, 7
in order both to highlight the connection between the existence of multiple values for ¢ and
the notion of strong ellipticity. Plots of the values of 7", 7** associated with the Maxwell
stress ¥ are also shown.

8. NUMERICAL EXAMPLES AND DISCUSSION

In this section we illustrate some aspects of the response of the model (37) under the consid-
ered deformation. For numerical purposes wefix theradial dimensonsata = A = 1 (units)
and b = B = 6 (units), while the parameters p and r(b) are specified separately for each
example. Our main aim is to highlight the influence of the anisotropy parameter p and the
preferred direction M on the overall response of the bodly.
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Figure 10. Characterization of the boundaries of the strongly elliptic domain (dotted curves) for the
material model (73) in terms of the shear y (vertical axis) and Mg (horizontal axis) for p = 2,4, 7:
the curves are given by y, and ys. Also shown (continuous curves) are y; and y7, within which the
inequality (79) is reversed. The dotted loop in the right-hand plot is defined by the inadmissible values
y*, and f*s. Also shown for p = 2,4,7 are the (dashed) curves of the Maxwell values y* and y"
corresponding to ?*.
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Figure 11. Plots of (a) the shear y, and (b) the function g(r) against the radius r for the reinforced
neo-Hookean model (37) with p = 2,4, M = Eg and z(b) = +0.4. In (c) the resulting rotation angle
yz = g(b) is plotted against z(b) for p =2,4.

8.1. Radial Reinforcement

Firgt, we examine the smple case in which M is radial. Then, bearing in mind that (37)
is convex as afunction of y in this case, the solution for y is unique and smooth. We ob-
servethat \y | is amonotonic decreasing function of r, while, as expected, the corresponding
solution \g(r)\ increases with r. Furthermore, for fixed r(b), an increase in p results in a
decrease in the value of \y \ and hence of \g(r)\ at any point of the body, whilst larger vaues
of r(b) yied larger strains. Clearly, because of the nature of the radial anisotropy considered
here, the materia response is the same for either sense of the shear. In Figure 11 weplot (a)
the amount of shear y and (b) the associated rotation function g(r) againgt the radius r for



Invariant Ty

Dimensionless stress difference &

1 2 3 4 5 6
Radius r

Figure 12. Plots of (a) the dimensionless stress difference a, and (b) the invariant 7, as functions of the
radius r for the model (37) with p = 2,4, M = Er and z{b) = 0.4.
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Figure 13. Cross-section of a tube undergoing positive (anticlockwise) pure azimuthal shear deformation:
(@) the undeformed (stress-free) configuration with M = Eg; (b) p =2, z(b) = 0.2; (c) p =2, z(b) = 12

p = 2,4 whilein (c) the dependence of the rotation angle y/ on z(b) isillustrated, again for
p = 2,4. Both positive and negative shears are included so as to compare, in subsequent
sections, with the unsymmetric situation between positive and negative shears when M is not
radial.

In addition, for the same values of z (b) and p, the dimensionless dress difference a =
{dee —a,)I'fi = r(da/dr)/ju and the invariant 1, are plotted against r in Figure 12. We
observe that both a and h(> 1) are larger on the inner boundary of the body. Unlikey , a
and |, are invariant under change of sign of zip). In Figure 13 we demonstrate the results
of the considered deformation on a cross section of a tube for afixed value of the parameter
p (= 2) and for two vaues of z(b) (> 0) s0 as to illustrate how the preferred direction
changes under the deformation.
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Figure 14. Plets of (a) the shear y and (b} g(r) versus the radius r for the model (37}, with the anisotropy
defined by the geometry (83): p = 2,4, t (D) = 0.4, In {c} the rotaticn angle ¥ = g(b) is plotted as a
function of (&) (= 0): p =2, 4.

8.2, Reinforcement with Radially Yarving o

For definiteness, we now consider the preferred direction to be defined by the family of
curves

R=10c1(0 -0+, (81)

where C\ and ¢, are constants. In respect of (81) the function G(R), according to the
definition (7), takes the smple form

G(R) = (R —cz)/c1. (82

We choose 0o = 0 (radians) and, with reference to (7), Oi = 2 (rad), and then, for the
specific values of A and B adopted here, we obtain ¢\ =2.5 and ¢, = 1. Thus, from (82)
the components (8) of M are given by

o, 1 e — 2R/ @
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For this geometry, on application of postive shear, the overal response of the body
is found to be smilar to that for M = Eg. Infact, for r > 0O, equation (43) guarantees
smooth and unique values for y. Moreover, y and g are adso monotonic functions of r,
and changes in r (b) (> 0) and p have an analogous impact on the overall response of the
body, as for the case of radial reinforcement. However, we remark that the dependence of
M on r leads to stronger reinforcement of the materia since the value of y is smaller at
any r than for M = Ej; a the same shear stress and for the same vaue of p. It is aso
gpparent that the values of a and U follow a smilar pattern as functions of r. Results
for the consdered geometry are illustrated in Figure 14, in which the amount of shear and
the function g are plotted againg r for the same values of r (b) (> 0) and p as used in
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Figure 15, Plots of (a) the shear y and (b) the function g(r) versus the radius » for the model (37} with
the anisotropy defined by the geometry (83} p = 0.8, 1.8, (b} = —0.4. In (a) the (dotted) lines show the
transitional values — tan« and —2 tan &, which depend linearly on 7. In (¢} the rotation angle w = () is
plotted against ¢ (d) (< 0).

Figure 11. The dependence of the rotation angle y on z(b) is also shown. The results should
be compared with those in the upper halves of the plots in Figure 11.

The benign response of the material (37) with reinforcement (83} that was found to hold
sway for positive shear does not always persist for negative shear. Specifically, as we now
show, there is the possibility of loss of ellipticity, multiple values of ¥ and the emergence
of discontinuity surfaces. For p < 2, the (unique, smooth) root y, is now given by (44)
with (83), but is not necessarily a monotonic function of r. In fact, monotonicity is only to
be expected for sufficiently small values of |t (77)| and for materials with a small value of
p£. Indeed, as p increases, loss of monotonicity of v, associated with smaller magnitudes
of the shear stress, is initiated closer to the inner boundary r = a of the body, while an
increase in |t (b)] results in translation of such a point closer to r = b. Nevertheless, by
writing y = y (r} to indicate the dependence of y on r, the property |y (¢}| > |y (I)] always
holds. We emphasize, on the other hand, that the possible non-monotonic nature of ¥ is not
reflected in that of g, which is monotonic in r, while variation of the parameter 7 (b} does
not modify these conclusions.

By contrast, the parameter p has a very crucial role. For a fixed value of ¢ (), an increase
in p leads to a decrease in the value of |y |, but only for points for which z(r} > —tana.
If there is a point for which z(r) = —tana then y would also take the value — tan a there
independently of the value of p (< 2}, while, for points for which —2tana < z{r} <
— tan &, larger values of g correspond to smaller |y | until 7(r) reaches the value —2tan e,
at which point we have v = —2tan«, again independently of the value of p. For 7{r) <
—2tan e, the initial correlation between p and v is recovered for all relevant r. Note that the
above analysis applies for any M that depends on r. The consequences of negative shearing
on a material incorporating the properties (37} and (83) are illustrated in Figure 15, in which
the curves y, and g are plotted as functions of  for a fixed value 7 (&) (< 0} and for two
values of p { < 2). Also plotted, in Figure 15(c), are the corresponding results for the rotation
angle y as a function of z(b). These plots should be contrasted with those in the lower halves
of the plots in Figure 11.
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Figure 16. Plots of {a) the dimensionless stress difference &, and (b} the invariant /; against the radius r
for the model (37) with {83) for r (b} = —04 and p = 0.8, 1.8
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Figure 17. Cross-section of a tube undergoing a negative (clockwise) pure azimuthal shear deformation
for the model (37) with the preferred direction defined by (83): (a) undeformed (stress-free) configuration;
{b) deformed configuration with p =08 and r{6) = -04and(c) p =1.Band r (H) = -0.4.

In Figure 16, analogously to Figure 12, 6 and I, are plotied against r for the same
values of 7 (P} and p used above to illustrate the variation of y |, while Figure 17 shows the
effect of the deformation on the preferred direction for a tube cross-section with material
characterized by (37) with (83). These plots should be contrasted with those in Figures 12
and 13, respectively. Although, on the scale shown here, there appears to be an abrupt change
in the gradient of the deformed preferred direction in Figure 17(c) and an associated abrupt
change in the corresponding curve for I for p = 1.8 in Figure 16(b), in fact, since p < 2,
the deformation is still smooth (there is no discontinuity in y ). As we show next, however,
this smoothness is lost for p > 2.

Attention is now turned to the case where p > 2, for which, as explained previously in
Section 6, negative shear may be associated with failure of strong ellipticity. For p = 2, the
formulas (83) indicate that loss of ellipticity is confined to the surface r = 2.5 and only for
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Figure 18. Plots of (a) the shear y, (b) the dimensionless stress difference 4, and (¢} the invariant I,
versus radius r for the model (37) with (83}, for p = 2 and, in each case, r{#) = -0.02, -0.174, -0.6.
Only () = —0.174 is associated with loss of ellipticity. In (a) the point of loss of ellipticity on the dotted
line — tan & is shown; the corresponding point in {b) and (¢} is shown on the dotted curves indicated by
&% and I}, respectively.

the value 7(F) = —(2.5/6)* &~ —0.174. For z(b) both less than or greater than this value
the deformation is everywhere elliptic. We recall that for p = 2 uniqueness and continuity
of the shear strain y = y,, as given by (44), holds for all r, The value ¢ (b} = —0.174 gives
the temporary appearance of a cusp in the plot of I, at r = 2.5. These effects are shown in
Figure 18. It should also be noted that high slopes in the y | and & curves are to be expected
for points where y = — tana, or, equivalently, r () = — tan &, while for the same points the
curves of I, exhibit rapid change. However, a true kink obtains only for the specific value
t(b) = —0.174, at which ellipticity is temporarily lost.

As p increases, the domain M; < Mz < M, expands and therefore strong ellipticity
can fail both for a wider range of loading values 7 (b} and a wider range of locations r. This
is exhibited in Figure 19, which shows how the region of non-strong-ellipticity, which is
quite narrow, expands with p in a plot of |t ()| against r. The previously discussed case
of p = 2 gives the single point (r, £ (b)) = (2.5, —0.174)}, whereas the p > 2 regions are
nested within each other. This is not apparent from the figure since in order to distinguish the
curves they are shifted vertically by different amounts. At p = 3.9668 the nonelliptic region
first encounters one of the external boundaries, namely r = 6, while the boundary r = 1 is
reached for p = 4.205, For p > 4.205 strong ellipticity can fail at any point of the body.

We now focus attention on the case p = 3 for which we note, as reflected in Figure 19,
that failure of ellipticity is associated with the radial values

1.204 < r < 4.829, (84)

and the associated range of loadings
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Figure 19. Plots of the values of |7 (&}] corresponding to loss of ellipticity against the radius r € [1, o] for
£ =2,3,39668,4205,5 For p = 2thereis anisclated pointat r = 2.5, r (b)) = —0.174; p = 30968
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the boundary r = L. The plots are nested, with each successive curve {for increasing p) enclosing the
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distinguished.
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Figure 20. Plots cf {a) the shear y and {b} the function g{r) versus the radius r for the model {37) with
anisotropy defined by the geometry (83). p = 3 and (b} = —0.0241, —0.5. In {c} the rotation angle
w = g(b) is plotted against £ (b} (< 0}. The dotted curves in (a) are plots of y., ¥4, ¥6, 11, 1%, 9™, as
indicated.

0.0241 < |2 (b)] < 1.2517. (85)

Ag shown in Figure 20(a), in which y is plotted as a function of r, loss of convexity of the
strain energy (37 at r = 1.294, requiring |7 {b}] =~ (.0241, does not yield a discontinuity
in y . On the other hand, for any t(b) such that 0.0241 <« ()| < 1.2517 the inequality
W},? < 0 always holds within a subinterval of 1.294 < r < 4.829, leading to multiple
values for v. Im each case, however, it is possible to construct a unique non-smooth stable
solution through the body by placing an elastostatic shock at the location where ¢ matches
the Maxwell value ¢*. Figure 20(b) shows the consequence of the non-smooth solution on
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Figure 21. Plots of {a) the dimensionless stress difference o, and (b) the invariant iy in terms of
the radius r for the model (37) with (83) and p = 3 for v (b} = —0.0241, -0.5. In (a) the symbols
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the curve g(r) (discontinuity in the tangent), while the rotation (twist) angle w is plotted as
a function of 7(%) in Figure 2{(Xc). On close inspection a kink in the latter curve at r{b} =
—(1.0241 can be discerned.

Clearly, since both ¢ and I, depend on y, any discontinuity in y is reflected in the
curves ¢ and I that are plotted in Figures 21¢a) and (b), respectively, In (a) the notations
G3, 63, Gg, 07, 0., 0., serve to identify the values of & associated with y., v5, Y, ¥ 7. 7%,
y **, respectively. Similarly, the symbols Iy 2, 113, l1g, 117, l1.4, I+ .. identify the comrespond-
ing values of I, in (b). Note, however, that 2 jump in & is due to that in 64 since o, is
continuous,

For the following discussion we use the notation z, and 7, respectively, for the values
r(b)y = —0.0241 and (k) = —1.2517, the subscripts indicating “first” and “second”. It
follows that absolutely stable solutions contain an equilibrium shock for 7, < z < 7, < 0.
Imagine therefore that the originally undeformed cylinder is subject to decreasing (dimen-
sionless) shear stress 7 (b} and consider the associated quasi-static progression of absolutely
stable solutions. The associated deformations are continuous and smooth until z(b} = 7,
at which point loss of ellipticity takes place at r = 1.294. Further decrease in 7 (b} gives
rise to an elastostatic shock, initially at r = 1.294, which separates the two different el-
liptic values y = y, and y = y5. Under continued decrease in 7 (5), this discontinuity
surface increases its radial location, before eventually disappearing at r = 4.829 when
t(b)y = r,. For t{(h) < t, the deformation is again classically smooth. The connection
between the radial location r of the elastostatic shock and (1) is given simply by the for-
mula t{r) = t* = —tana, which, since t{r} = t(MP?/r? and tana = 2r/5, yields
r* = —90t{(D). The discontinuity is highlighted in Figure 22, which shows the deformed
cross-section of the tube for two values of 7 (») compared with the reference configuration.
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Figure 22. Cross-section of a tube undergoing negative (clockwise) pure azimuthal shear deformation for
the model (37} with the preferred direction defined by (83): (a) undeformed (stress-free) configuration;
deformed configuration with (b) s =3 and 7 {6} = -0.0241 and (c) p =3 and ¢ {(#) = —=0.5.

The first, z (b} = —0.0241, heralds the emergence of the shock, whereas the shock has both
increased its strength and its radial location at the second value 7 (b} = —0.5. Note that the
associated kink in the case t{(by = —0.0241 (Figure 22(b)) is ¢lose to the inner boundary
and is hardly noticeable in the figure. Across the shock the angles made by the two deformed
preferred directions are symmetrically disposed with respect to the local radial direction in
accordance with the discussion in Section 6.3. We recall that Figure 8 shows the kink angle
p" as a function of Mg, including the case p = 3 considered here. Since, for the considered
geometry, tana = 0.4r we have Mz = 1/4/1 + 0.16r%, from which the behavior of 5* as
a function of r can be deduced. The preferred direction is found to be maximally kinked at
r = 3.536, corresponding to t{b) =~ —.491,

It is worth emphasizing that by taking ¢ = a(r} the tube has been rendered effectively
mhomogeneous. This has permitted the quasi-static shock discussed above in connection
with Figure 21 to remain confined within the tbe interior regardless of the magnitude of
the twist y (equivalently of z(b}). This contrasts with the situation described by Abeyaratne
[6] in which the shock always emerges at the inner radius and travels all the way to the
outer radius as the twist magnitude increases. From a practical perspective, such internally
confined shocks could present challenges for the assessment of any damage associated with
shock formation and movement.

Broadly similar results to those described above for the reinforced neo-Hookean model
(37) have been obtained for the material model (73) and we do not report them separately,
Generally, the Varga model represents a material whose energy absorption capacity is low,
and even for very small values of p a negative shear deformation yields almost immediate
ellipticity breakdown.
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