
A Service Based Development Environment on Web 2.0 
Platforms 

Xabier Larrucea , Rafael Fernandez , Javier Soriano , Andres Leonardo Martinez 
and Jesus M. Gonzalez-Barahona 

European Software Institute, Parque Tecnologico de Zamudio 204, 
48170 Zamudio, Spain 

Xabier.Larrucea@esi.es 
Computer Networks & Web Technologies Lab., School of Computing, 

Universidad Politecnica de Madrid, 28660, Boadilla del Monte, Madrid, Spain 
{ r f e r n a n d e z , j s o r i a n o } @ f i . u p m . e s 

Telefonica Research & Development, 28043 - Emilio Vargas 6, Madrid, Spain 
a l m o @ t i d . e s 

GSyC/LibreSoft, Universidad Rey Juan Carlos 
j gb@gsyc.escet.urj c.es 

Abstract. Governments are investing on the IT adoption and promoting the so-
called e-economies as a way to improve competitive advantages. One of the 
main government's actions is to provide internet access to the most part of the 
population, people and organisations. Internet provides the required support for 
connecting organizations, people and geographically distributed developments 
teams. Software developments are tightly related to the availability of tools and 
platforms needed for products developments. Internet is becoming the most 
widely used platform. Software forges such as SourceForge provide an 
integrated tools environment gathering a set of tools that are suited for each 
development with a low cost. In this paper we propose an innovating approach 
based on Web2.0, services and a method engineering approach for software 
developments. This approach represents one of the possible usages of the 
internet of the future. 

Keywords: Service, Web2.0, Method engineering. 

1 Enterprise 2.0 Technologies and Quality Assurance 

Nowadays organisations are worried about mainly two main issues: collaboration and 
quality assurances. As global market opportunities and competition increase, 
collaboration is becoming more and more essential for improving productivity and 
accelerating innovation at the personal, team, group, enterprise and business coalition 
levels. Many enterprise collaboration platforms have already been developed and 
successfully deployed in both large, and small- and medium-sized enterprises 
(SMEs). Enterprise collaboration has recently come to benefit from the emergence of 
an enterprise-oriented specialization of the Web 2.0 vision, commonly referred to as 

mailto:Xabier.Larrucea@esi.es
mailto:almo@tid.es
mailto:gb@gsyc.escet.urj


Enterprise 2.0 providing new models and tools for emergent collaboration and co-
creation. Enterprise collaboration is thus being enhanced by virtual communities that 
leverage social linking and tagging tools (like tools for social networking, social 
bookmarking and social search), user-contributed content management platforms (like 
enterprise Wikis, blogs and forums), tools that leverage user opinions (like tools 
supporting comments and voting), subscription-based information distribution tools 
(like Enterprise RSS feeds), etc. Used in the context of a carefully engineered 
collaboration strategy, these technologies provide a wealth of collaborative services 
for software developers 

On the other side quality is still representing a nightmare for too many 
organizations. In fact quality cost is one of the most important considerations in 
software production Quality assurance practices and software products 
quality represent in most of cases the forgotten requirement and it is becoming a hard 
task to select an appropriate infrastructure in order to fulfil at the same time 
customers' requirements and some level of quality assurance. The resulting solutions 
are usually defined in terms of what functionalities are exposed and the question 
about "what is the quality required?" and "How do we achieve this quality?" are 
effaced from stakeholders' memory. 

This happening generalises a broad range of situations such as consultancy, in-
house and outsourcing developments. The evolution of Internet technologies such as 
Web2.0 and mash up platforms are supporting collaboration mechanisms but at the 
same time they need to fulfil quality models requirements (e.g., Capability Maturity 
Model Integrated-CMMI) In order to facilitate the fulfilment of these two 
challenges the proposed architecture combines the evolution of these new Enterprise 
2.0 technologies and quality assurance facilities. In fact the resulting collaborative 
environment is enriched with the savoir-faire (knowledge management) in software 
production environments. 

2 Ezforge: New Generation of Networked Forges Supporting 
Collaborative Software Development 

Organizations tend to behave like dynamically reconfigurable networked structures 
that carry out their tasks by means of collaboration and teamwork. Effective 
teamwork is an essential part of any non-trivial engineering process, and collaborative 
capabilities are an essential support for these teams. Software development is no 
exception; it is in itself a collaborative team effort, which has its own peculiarities. 
Both in the context of open source software development projects and in 
organizations that develop corporate products, more and more developers need to 
communicate and liaise with colleagues in geographically distant areas about the 
software product that they are conceiving, designing, building, testing, debugging, 
deploying and maintaining. In their work, these development teams face significant 
collaborative challenges motivated by barriers erected by geographic distances, time 
factors, number of participants, business units or differences in organizational 
hierarchy or culture that inhibit and constrain the natural flow of communication and 
collaboration. To successfully overcome these barriers, these teams need tools by 
means of which to communicate with each other and coordinate their work. These 



tools should also take into account the functional, organizational, temporal and spatial 
characteristics of this collaboration. Software product users are now becoming 
increasingly involved in this process, for which reason they should also be 
considered. In response to this necessity, forges are gaining importance both in the 
open source context and the corporate environment. 

Following the ideas a forge can be described as a kind of collaborative 
development environment (CDE) that provides a virtual space wherein all the 
stakeholders of a software development project -even if distributed by time or 
distance - may negotiate, brainstorm, discuss, share knowledge, and labor together to 
carry out a software product and its supporting artifacts. It integrates multiple 
collaborative tools and resources, thanks to which it offers a set of services to aid all 
the stakeholders in the software development area, including managers, developers, 
users, commercial software manufacturers and software product support enterprises, 
to communicate, cooperate and liaise. Forges consider software development's social 
nature and assure that the people who design, produce, maintain, commercialize and 
use software are aware of and communicate about the activities of the others simply, 
efficiently and effectively, also encouraging creativity and driving innovation. In 
doing so, forges provides with a safe a centralized solution conceived to optimize 
collaborative and distributed software development generally based on Internet 
Standards. This solution serves a number of essential purposes, including: 

• A holistic integration of disparate collaborative processes and tools through 
a collaborative environment, 

• an expansion of visibility and change control, 
• a centralization and administration of resources, and 
• a reinforcement of collaboration, creativity and innovation. 

3 EzForge 

The appearance of Enterprise 2.0-based forges, such as EzForge enable software 
development teams to find, customize, combine, catalogue, share and finally use tools 
that exactly meet their individual demands. Supported by the EzForge platform, they 
can select and combine development tools hosted by third parties rather than buying a 
pre-determined, inflexible and potentially heavyweight software development 
environment. 

EzForge as the main part of the proposed architecture is based on the idea of 
considering forges not as single sites providing a monolithic set of services to host 
projects as isolated silos of knowledge, but as a collection of distributed components 
providing services among which knowledge is shared. Each project decides on its 
own customized set of services, and users can configure their own mashup-based user 
interface. Fig. 1 depicts the 3-tier EzForge architecture. 

Back-end tier is where integrated and legacy systems reside. It is important to take 
into account that the EzForge architecture imposes no limitations to where the 
different components may be hosted. Those systems have their own set of basic forge 
services, such as source code management, wiki, and issue/bug tracking services, and 
they are integrated into the forge following a Web 2.0 approach consisting of 



Fig. 1. EzForge architecture 

transforming their legacy services into a uniform layer of resources. These resources 
are components designed following the REST architectural style that can be 
accessed through an URI via HTTP. Integrated systems already follow this approach, 
while legacy systems needs adapters to perform this task. Thanks to the 
aforementioned layer of resources, the EzForge tier can access them to gather and 
process their data by means of special resources called operators, elements designed 
to get data from resources and use it to produce new data that can be processed by 
other resources, enabling their remix and composition. Doing so, EzForge creates the 
set of resources the forge will deliver to its final users. 

Once the EzForge tier has its forge resources set, final users are empowered by 
allowing them to design their own front-end layer (or forge user interface) by means 
of composing user interface building blocks called gadgets, which are endowing with 
the forge resources. Following this approach, users can mix and compose forge 
resources on their own, allowing them to choose the best resources to meet their 
needs. User can even include external resources, such as Google Maps or RSS feeds, 
into their UI, using all of them as a whole. They will use whichever resources they 
like to create ad hoc instant forge UI, encouraging resources mashup, and following 
the DIY ("do it yourself) philosophy. 

4 Savoir-Faire in Software Production Environments 

More often than we can imagine, developers are plunged in the ocean of tools and 
procedures required in their daily work. Until now we have defined a forge (EzForge) 



as a development platform but project responsibilities are delegated to developers and 
the management of developers' know-how is not taken into account. How do we 
materialize the know-how of your developments? How can we assure that our 
software products are developed as defined by the organization? These questions 
represent some of the factors that guide organizations to consider the materialization 
of their know-how and of their internal procedures in somehow for helping 
organisations to avoid or overcome barriers and hurdles raised during their work. For 
example some of these elements are the integration of new developers within 
development teams and quality assurance with respect to the requirements of quality 
models such as CMMI®. 

This is a cornerstone in our software developments and it is part of the knowledge 
management (KM) broached by our architecture. One of the competitive advantages 
for organizations is their know-how, their human capital. Therefore we need to make 
explicit tacit knowledge in order to share information and to promote the savoir-faire 
within the organizations. In this sense in the area of KM Peter M. Senge [9] defines 
the learning organizations and he states five interrelated disciplines for the creation of 
smart and competitive organizations. In our approach we have used method 
engineering approach as the way to make explicit tacit software production processes 
and methods in order to spread knowledge within the organization. 

Method engineering approach is used for several software developments and 
approaches and we have applied this approach in our context. In fact we 
have adopted Software Process Engineering Metamodel (SPEM) 2.0 as a 
language for the definition of software development processes and by the Eclipse 
Process Framework (EPF) (www.eclipse.org/epf),as a tool support for defining 
processes and methods in a Eclipse-based environment. The main idea is to define a 
methodology and relates method elements EzForge resources required for the 
software development. The huge number of resource-oriented services that are 
envisioned to be available in an Internet-scale networked forge will become 
unmanageable and thus useless for its users. Even if a repository service is provided, 
it will eventually become difficult for software development stakeholders to find out 
which resources (i.e. tool services) are appropriate for their development process. 

This is the reason why we have created dedicated catalogues. In fact they provides 
navigation services for software development stakeholders and help them to find out 
which resources (i.e. tool services) they need to create the mash-ups they want. 
EzForge provides a user-contributed, "living" catalogue of resources founded on the 
Web 2.0 vision for user co-production and harnessing of collective intelligence (see 
Fig. 2.). This would provide all stakeholders with a collaborative semantic Wiki, and 
tagging and searching-by-recommendation capabilities for editing, remixing and 
locating resources of their interest. 

The catalogue sets out the knowledge available within a certain community for 
composing resources (e.g. a method from its fragments) in a graphical and intuitive 
fashion and for sharing them in a world-wide marketplace of forge services. 

The catalogue allows users to create complex mash-up solutions by just looking for 
(or being recommended) "pre-cooked" or off-the-shelf resources and customizing 
these resources to suit their personal needs and/or the project requirements, 
interconnecting resources, and integrating the outcome in their development 
workspace. These decisions are defined during the development process definition. 

http://www.eclipse.org/epf),as


RESOURCES 

8 
end-user 

a 
end-user Mash-up 

tagging 

Fig. 2. Cataloguing Resources 

"Folksonomies" of user-created tags will emerge, grow as users add information 
over time and act as important facilitators of a useful marketplace of resources for the 
networked forge. 

Earlier approaches to service discovery and description like UDDI are not adequate 
to support human beings in easy resource retrieval and evaluation. By contrast, the 
exploitation of collective intelligence and user-driven resource categorization is 
beneficial for users. 

A straightforward application of our savoir-faire approach using the catalogue is 
split in four steps: 

• Evaluation of new developments: taking into account previous experiences, 
method engineers evaluate a new software development. In this phase, 
Knowledge Management plays a relevant role identifying software 
development phases, tasks and problems that are resident in developers' 
minds. Method engineers should evaluate previous experiences and clearly 
specify what objectives of this new development are. 

• Selection of method fragments based on previous experiences: method 
engineers select the appropriate set of method fragments fitting software 
requirements. In fact in this context each method fragment is related to a set 
of Web2.0 resources. A basic catalogue contains the relationships between 
software processes and Web2.0 resources. Each task is related to 
workproducts representing a resource and therefore method engineers could 
specify the appropriate tools support at each software development stage. 

• Composition of method fragments in order to produce a software 
development process used in the organization. In this step the selected 
method fragments are composed defining a flow that it is guided by the 
methodology. This composition states which are the selected resources at 
each stage of the development process. This approach is similar to 
Business Process Execution Language (BPEL) where Web Services are 
called following a specific order and sequence. 



44 X. Larrucea et al. 

• Deployment within the organization. The resulting software development 
process is represented as a model and it is used by our forge. At this step 
and following CMMI® terminology, the result represents a defined and 
managed Standard Software Process (SSP) for an organization. This is a 
requirement for organizations aiming to achieve compliancy with 
CMMI® level 3. 

This novel approach uses a method engineering approach in order to make explicit 
the savoir-faire in software developments within an organization (see Fig. 3.).A 
catalogue contains relationships between method fragments represented by the 
methodology using SPEM2.0, and resources that are represented within the forge as 
aggregators or connectors. Method engineers select the required method fragments 
needed for their software developments. In this context they select indirectly a set of 
aggregators and/or connectors that are related to specific resources. These resources 
are the basic tools within the development environment. Therefore we are reducing 
the gap between methodologies and software development tools support. This process 
allows the customisation of the resources and therefore the user's interfaces. 

Managed process 

Development environment 
guided by a defined and 
managed process 

Fig. 3. A developer's environment customisation 

5 Method Engineering and EzForge Architecture: A Holistic View 

EzForge is a highly configurable and extensible user-centric collaborative software 
development tool that follows a novel mashup-based lightweight approach, given by 
the EzWeb core technology. Its user interface is defined by the user himself, who is 
able to make it up by assembling a set of small web applications called gadgets, 
which are the face of the services being offered by the forge. Up to now, there have 
been several attempts to bring mashup-based tools to the organizations with 
satisfactory results. 

But with regard to software development, open source development tools don't 
take into account a key point in the software development within organizations: 
quality. 



Gadget's 
Repository 

Method's 
Repository METHODOLOGY 

STAGE 
Method 

fragment 

Methodology 

EzForge 

Fig. 4. A holistic view of Method Engineering and EzForge 

Method Engineering and EzForge architecture (Fig. 4.) is compatible with the 
savoir-faire process defined previously and technically it is defined into three levels: 

Model stage. The goal of this stage is to link the available gadgets from the EzForge 
catalogue with the method fragments that exist in the method repository and that will 
conform lately the used methodology. This catalogue provides access in an automated 
way to EzForge catalogue in the execution level. For this purpose, we have developed 
a folksonomy-based mapping, which allows us to create that link by using social 
tagging techniques. By using these tags we will be able to choose the gadget or gadget 
group labelled with the method identifier in methodology run time in an easy way. 
Besides, it gives us a way to incorporate the organization internal knowledge about 
how things work better, as it is their own developers who carry out this tagging 
process. 

Methodology stage. It is in between model and run stages, and as we said before, it is 
where method workers select the method fragments that will make up the 
organization's methodology. To do so, method workers use the Eclipse Process 
Framework, which helps us to get, among other things, an XML representation of the 
methodology. 

Run stage. Once we've got the methodology, the next step is to put it in execution by 
means of a workflow engine. Thanks to this, EzForge can choose the appropriate and 
required development tools depending on the ongoing development phase. 

Thus, our proposed infrastructure takes the advantages of method engineering and 
brings them all to EzForge, allowing companies and organizations to have a user-
centric collaborative development tool which can guide its users through the 
development process. 

At this level the resulting and running application, Fig. 5. is shown using a web 
browser. Gadgets presented in this interface are those that have been defined by the 
method engineer when he was defining the organization's standard software process. 



uiir titan 

Him] 

p™*™ 

^n 
~^r 
r»««*w 

-^7 

i raL' .cr i i j . i rn Hr:ict:' ii-:=; I •:.-• Frsfljsilv 

implete list of local nm i Dcacs.jcs include t rac .3 
Dughltafuu bvEdqsmll Scllwsie, providing 

Fig. 5. Runtime execution overview 

Obviously there are some permanent gadgets in this interface but most of the gadgets 
are configured during the model and methodology levels. Once we start/continue a 
software development, these gadgets are modified accordingly to a software 
development phase. In Fig. 5. the main gadget marked as " 1 " acts upon the existence of 
gadgets marked as "2". Moreover there are other relationships amongst gadgets as they 
are highlighted in this figure. When we select an element in one gadget automatically 
there is a selection of the related elements in other gadgets. These relationships are not 
specified by the defined and managed methodology, they are implemented by the forge. 

Why this approach covers quality practices? 

Managers are not worried about the selected architecture but they are more focused on 
costs and quality requirements used for the developments carried out in their 
organizations. Method engineering & EzForge architecture combines quality practices 
and a development infrastructure based on Web2.0 assuring quality aspects, with low 
cost, open to new OS tools, it represents an integrated tool and it overcomes new 
developer's barriers. 

But why this approach covers quality practices? 

CMMI® is one of most used quality reference model and it comprises two 
representations: staged and continuous. Whatever CMMI® representation stakeholders 
select for their adoption, there is a common problem: a separation between process areas 
due to a scarce tool support from a holistic perspective. Nowadays engineering practices 



and process/project practices are separated and one of the main tasks for adopters is to 
assure that all process areas are coherent and consistent among them. Method 
engineering & EzForge architecture assures quality practices because the process 
defined and managed is used accordingly to its specification, and the development forge 
is guided by the methodology designed. In addition it also covers engineering and 
support process area because it provides an integrated development environment 
gathering requirements and configuration managements. 

6 Conclusions 

The presented approach combines method engineering and Web2.0 technologies in 
order to create a new generation of software developments tools and methods. Our 
approach starts from an explicit definition of the main tasks that a developer should 
carry out and its development environment is modified with respect to the 
organisation's development process. This novel approach combines an extendable 
development environment based on Web2.0 technologies with quality practices and 
tools. As results, we reduce the gap between development tools with low cost; we 
implement an extendable environment where we can select the appropriate tools 
support, and quality practices and tools are assured by this service based architecture. 
Web2.0 technologies relevance is becoming during these last years a new wave in 
several environments and method engineering approach provides architecture to make 
explicit the knowledge managed by organizations. Our experience combining both 
approaches places us on the road for a new tool generation of software developments 
which benefits are: 

• Facilitate collaboration in heterogeneous contexts: Web2.0 technologies 
facilitate software developments on the Web. 

• User interface configuration: another advantage that comes directly from using 
method engineering and EzForge altogether is the possibility of generating the 
user interface based either on the methodology used. Thus, when creating a new 
project on the forge, it will be able to help the user to choose the tools to be used 

• Help developers to add new tools within the development process. 
• Compliancy at CMMI® levels 2 and 3 through the definition of defined and 

managed standard software processes. The use of method engineering opens the 
door to the definition and management of the development processes. That is why 
EzForge will give support, for example, to the use of CMMI®. This will make it 
possible to ensure that carried out developments will place the organization in a 
certain maturity level, allowing an improvement of the methodology used 

• Establish a relationship between process a project management tools (EPF) and 
engineering tools (forge). 

• Provide a new tool in the knowledge management area through the use of 
method engineering 

Currently we are applying this approach in several test cases and projects. A step 
forward in this development is to provide facilities to the forge in order to collect all 
kind of metrics. This characteristic will provide a better understanding of our current 
developments. 



Acknowledgements 

This work was funded by the Vulcano project (Proyecto Singular Ministerio Industria, 
Turismo y Comercio- FIT-350503-2007-7). We would like to thank Vulcano partners 
for their great feedback. 

References 

McAfee, A.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan 
Management Review 47(3), 21-28 (Spring, 2006) 
Soriano, J., Lizcano, D., Canas, M.A., Reyes, M., Hierro, J.J.: Fostering Innovation in a 
Mashup-oriented Enterprise 2.0 Collaboration Environment. System and Information 
Sciences Notes 1(1) (July 2007); ISSN 1753-2310 
Huang, L., Boehm, B.: How much Software Quality Investment is Enough: a value-based 
approach. IEEE Software 23(5), 88-95 (2006); Digital Object Identifier 
10.1109/MS.2006.127 
Campanella, J.: Principles of Quality Costs. American Society for Quality Press; ISBN: 
0-87389-443 
Crisis, M.B., Konrad, M., Shrum, S.: CMMI® Second Edition. Guidelines for Process 
Integration and Product Improvement. Addison-Wesley, Reading; ISBN 0321279670 
Booch, G., Brown, A.W.: Collaborative Development Environments. Advances in 
Computers 59 (2003) 
EzForge project website, h t t p : / / e z f o r g e . morf eo - p r o j e c t . o r g / l n g / e n 
Fielding, R.T.: Architectural styles and the design of network-based software 
architectures, Ph.D. thesis, University of California, Irvine (2000) 
Senge, P.M.: The fifth discipline. Doubleday (1990); ISBN 0-385-26095-4 
Brinkkemper, S.: Method engineering: engineering of information systems development 
methods and tools. Inf. Software Technol. 38(4), 275-280 (1996) 
Henderson-Sellers, B., France, R., Georg, G., Reddy, R.: A method engineering approach 
to developing aspect-oriented modelling processes based on the OPEN process 
framework. Information and Software Technology, doi:10.1016/j.infsof.2006.08.003 
Larrucea, X.: Method Engineering Approach for Interoperable Systems Development. 
Journal Software Process: Improvement and Practice (2008), doi:10.1002/spip.371 
Software Process Engineering Metamodel (SPEM) 2.0. Object Management Group, 
http://www.omg.org/docs/ptc/07-11-01.pdf 
Driver, E., et al.: Road Map to an Enterprise Collaboration Strategy. Forrester Research, 
August 2 (2004) 

http://www.omg.org/docs/ptc/07-11-01.pdf

	INVE_MEM_2008_59372b.pdf



