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Budgets for the nonzero components of the Reynolds-stress tensor are presented for numerical
channels with Reynolds numbers in the range Re�=180–2000. The scaling of the different terms is
discussed, both above and within the buffer and viscous layers. Above x2

+�150, most budget
components scale reasonably well with u�

3 /h, but the scaling with u�
4 /� is generally poor below that

level. That is especially true for the dissipations and for the pressure-related terms. The former is
traced to the effect of the wall-parallel large-scale motions, and the latter to the scaling of the
pressure itself. It is also found that the pressure terms scale better near the wall when they are not
separated into their diffusion and deviatoric components, but mostly only because the two terms
tend to cancel each other in the viscous sublayer. The budgets, together with their statistical
uncertainties, are available electronically from http://torroja.dmt.upm.es/channels.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3005862�

I. INTRODUCTION

The interest of the budget equations for the normal and
tangential Reynolds stresses in turbulent shear flows extends
from their application in formulating Reynolds-averaged tur-
bulence models to the elucidation of the physics of the cas-
cade. This is especially true in wall-bounded turbulence,
where inhomogeneity makes theoretical understanding par-
ticularly challenging. Experimental difficulties prevented for
a long time the determination of many of the quantities in-
volved, and it was not until the first direct numerical simu-
lation of a turbulent channel1 that reliable budgets of the
Reynolds-stress tensor could be obtained.2 After that pioneer-
ing paper, budgets have been published for other numerical
flows,3–9 but they have usually been limited to relatively low
Reynolds numbers by the resolution of the simulations.

The purpose of this paper is to introduce the Reynolds-
stress budgets of a recent series of simulations of turbulent
channels covering a moderately wide Reynolds number
range,10–12 and to discuss how they depend on the Reynolds
number. It was already noted in Ref. 2 that some dependence
was to be expected. It was not clear at the time in which
direction, or for which range, although it soon became ap-
parent that the original data at Re�=180 were not represen-
tative of many of the features of higher Reynolds number
flows.9 It has been found since then that the classical scaling
in wall units of several flow properties near the wall holds
only imperfectly, probably up to arbitrarily large Reynolds
numbers,13,14 and it is interesting to examine how such scal-
ing failures influence the budget equations themselves.

The budget equations are relevant both as diagnostic and
as dynamical quantities. As diagnostics, they give informa-
tion on what has failed when the classical scaling of a Rey-

nolds stress is found not to hold. As determinants, it is clear
that failures in the scaling of the energy equations, or in the
budget of the tangential Reynolds stress, bear directly on the
dynamics of the flow.

The organization of this paper is as follows. The numeri-
cal data sets are introduced in Sec. II, followed by the estab-
lishment of the notation for the budget equations. The scaling
of the budgets in the outer layers is described in Sec. IV, and
the viscous and buffer layers are discussed in Sec. V. A final
section concludes. All the budgets discussed in this paper are
available in Ref. 15.

II. THE NUMERICAL EXPERIMENTS

Most of the data used in this paper are from the turbulent
channel simulations10–12 summarized in Table I. We use xj

and uj, with j=1. . .3, for the streamwise, wall-normal, and
spanwise coordinates and velocity components, and the ki-
nematic pressure p incorporates the constant fluid density.
The density is also left out of the definition of the Reynolds
stresses. The channel half width is h, and the + superindex
denotes wall units, defined in terms of the friction velocity u�

and of the kinematic viscosity �. Mean quantities are capi-
talized, and lower-case symbols refer to fluctuations. Primed
quantities refer to root-mean-squared �rms� fluctuation inten-
sities. The friction Reynolds number is Re�=h+.

The numerical codes1 integrate the incompressible
Navier–Stokes equations in the form of evolution problems
for the wall-normal vorticity �2 and for the Laplacian of the
wall-normal velocity, �2u2. The spatial discretization uses
Fourier expansions in the wall-parallel planes, dealiased by
the two-thirds rule. The three lowest Reynolds numbers use
Chebychev polynomials in x2, while the highest one uses
seven-point compact finite differences. The characteristics of
the different simulations with respect to the large scales are
documented in the original publications. Their resolution
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properties regarding the smallest scales are discussed in
Ref. 16.

Because of minor bugs discovered in L550 and L950
after the original runs, their statistics have been recomputed
by rerunning with a clean code each of the several hundred
stored fields, long enough for their statistics near the wall to
stabilize. The occasion was used to extend L550, for which
relatively few fields had been stored, by several extra eddy
turnovers, and to compute the budgets presented here. The
difference between the new and the older statistics was found
to be negligible except below x2

+�1, which was the location
of the most important bug. The statistics of L180 and L2000
were, as far as we know, bug-free. The behaviors of the
turbulent intensities and of the spectra in the buffer layer are
discussed in the original publications for the individual simu-
lations, and those in the logarithmic and outer layers are
further discussed in Ref. 17.

III. THE BUDGET EQUATIONS

Following Ref. 2, the budget equation for the component
�uiuj� of the Reynolds-stress tensor is written as

Bij � D�uiuj�/Dt = Pij + �ij + Tij + �ij
s + �ij

d + Vij , �1�

where � � stands for averaging over the two homogeneous
directions and time. The different terms in the right-hand
side of Eq. �1� are referred to as production, dissipation,
turbulent diffusion, pressure-strain, pressure diffusion, and
viscous diffusion, and are defined as

Pij = − �uiuk�Uj,k − �ujuk�Ui,k, �2�

�ij = − 2��ui,kuj,k� , �3�

Tij = �ijk,k
t = �uiujuk�,k, �4�

�ij
s = �p�ui,j + uj,i�� , �5�

�ij
d = �ijk,k

p = − ��pui�� jk + �puj��ik�,k, �6�

Vij = ��uiuj�,kk, �7�

where �ij is Kronecker’s delta, the subscripts � �,j represent
derivation with respect to xj, and repeated subscripts imply
summation over 1 , . . . ,3. A subscript K refers to the kinetic
energy of the fluctuations, K= �uiui� /2, and �ijk

t and �ijk
p are

diffusion fluxes.

Note that homogeneity along the two wall-parallel direc-
tions implies that some terms in Eq. �1� vanish identically for
equilibrium channels. Note also that the definitions of �K and
VK are in part interchangeable, and that the decomposition
used above is not the “thermodynamically correct” one.18

However, it is known that the difference between the two
definitions is negligible everywhere for low Reynolds num-
ber channels,19 and the same is true for the present ones.

IV. THE OUTER LAYERS

Away from the buffer layer, the basic scaling of all the
terms in Eq. �1� at a fixed x2 /h is u�

3 /h. In an ideal logarith-
mic layer, the tangential Reynolds stress would be u�

2, and
U1,2=u� /�x2, where � is the Kármán constant so that the
kinetic energy production would be u�

3 /�x2. As a conse-
quence, it can be expected that all the terms in Eq. �1� should
decrease away from the wall roughly as x2

−1, and it is conve-
nient to represent them premultiplied by x2, as in Fig. 1. With
the logarithmic abscissa used in that figure, this has the
added advantage of making areas proportional to the inte-
grated energy. Note that the x2

−1 behavior holds reasonably
well for all the budgets in Fig. 1, from x2

+�50�x2 /h
�0.025� to x2 /h�0.4.

In agreement with previous results,2 all the budgets
above the buffer layer are dominated by a few terms. Energy
enters the flow through the streamwise velocity fluctuations,
from where it is extracted by the dissipation and by the
pressure-strain term. The pressure redistributes the energy to
u2 and u3, from where it is dissipated. All the other terms are
small except above x2 /h�0.4, where the production de-
creases because the mean velocity profile flattens, and the
dissipation and redistribution terms are compensated by the
turbulent and pressure diffusions. The tangential stress,
−�u1u2�, is generated by the production, and damped by the
pressure strain.

In the buffer layer, viscosity becomes important, and the
theoretical scale for the terms in Eq. �1� is u�

4 /�. The limit
between the two regions is not sharp, but it can be estimated
by testing how the profiles, expressed in outer units, drift as
the Reynolds number changes. Those tests cannot be abso-
lute because some change is bound to occur. In an experi-
ment or simulation of only finite accuracy, the only alterna-
tive is to test the hypothesis of the drift of a given variable
against its estimated numerical and statistical uncertainties.
Those can be computed in two different ways. The estima-
tion of the statistical uncertainties of the individual variables

TABLE I. Parameters of the simulations. L1 and L3 are the periodic streamwise and spanwise dimensions of the
numerical box, and h is the channel half width. 	1 and 	3 are the resolutions in terms of Fourier modes. N2 is
the number of wall-normal collocation points. NF is the number of fields used for the statistics, and T is their
time span.

Case Line Re� L1 /h L3 /h 	1
+ 	3

+ N2 NF u�T /h

L180 ¯¯ · · 186 12
 4
 9 6.7 97 106 63

L550 —·— 547 8
 4
 13 6.7 257 149 22

L950 ---- 934 8
 3
 11 5.7 385 74 12

L2000 — 2003 8
 3
 12 6.1 633 226 11
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is explained in the Appendix. They are due to the limited
running time of the simulation, and are of order 10−2 in the
units of Fig. 1. A second error estimate is obtained from the
residual balances in Eq. �1�, which turns out to be roughly of
the same order of magnitude as the statistical uncertainties.
Both magnitudes are functions of x2 and to test the range of
wall distances over which a given scaling can be used, the
estimations have to be restricted above some reference length
x2�x20. When testing for outer scaling, the error typically
increases as x20 decreases.

What is done in practice is to obtain, for each of the
variables within each budget, and for each Reynolds number,
a characteristic statistical variance by averaging the square of
its statistical uncertainty over the range x2�x20. A single
number is then obtained for each budget by adding those
variances for all the variables in the budget, and for all the

Reynolds numbers. A second error estimate is obtained by
adding for each budget the squares of its residual balances
for the different Reynolds numbers, each of them averaged
over the same x2 range as above. The final error estimate for
each of the five budgets, �ij

2 , is the maximum of those two
partial results. The resulting uncertainties are given in the
last line of Table II. They are global values for each budget,
and should be compared to the characteristic magnitude of
each budget as a whole. When the budget magnitude is de-
fined in the same way as for the uncertainties, i.e., as the root
mean of the sum of the squares of its constitutive variables,
the statistical uncertainty ranges from 4%–5% for B11 and
BK, to 1%–2% for the other three budgets.

The relative drift of a particular variable Y in Bij is de-
fined as the maximum difference between any two profiles at
different Reynolds numbers, divided by the relevant standard
deviation,

max
x2�x20

maxRe Y�x2,Re� − minRe Y�x2,Re�
�ij

, �8�

where maxz and minz, are maxima and minima over the set
defined by z. Those drifts are functions of x20, and two ex-
amples are plotted in Fig. 2 for each of the three lowest
Reynolds numbers in Table I with respect to L2000. The
figure shows that the relevant limit is x20

+ , rather than x20 /h,
which agrees with the classical argument that the thickness
of the viscous wall region scales in wall units.20 The increase
in the drift is steepest between x20

+ =100 and x20
+ =200, and we

will therefore define the outer region as x2
+�150, although

any comparable limit would do equally well. Note that case
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FIG. 1. Premultiplied budgets for the four nonzero Reynolds stresses, and
for the total kinetic energy. �—� P; �—�—� �; �—·—� T; �—�—� �s;
�----� �d; �¯¯ · ·� V. Case L2000.

TABLE II. Maximum difference between the premultiplied profiles of the
budget terms for the different Reynolds numbers. The last line contains the
standard deviation used to normalize each budget, as explained in text.
Outer scaling is above x2

+=150.

B11 B22 B33 BK B12

x2P 1.4 ¯ ¯ 1.4 4.5

x2� 0.4 7.0 4.7 1.2 1.5

x2T 3.2 3.5 1.5 3.6 4.2

x2�s 1.2 8.3 4.2 ¯ 7.1

x2�d
¯ 4.6 ¯ 0.5 2.8

x2V 0.1 0.2 0.4 0.2 0.01

� 0.18 0.02 0.02 0.09 0.06

0 100 200 300
0

2

4

x
2
+

dr
if

t

FIG. 2. Drift with respect to L2000 of �—� x2P11 and �----� x2�11, at a fixed
x2 /h, as defined in Eq. �8�, as a function of the lower limit x20

+ . Without
symbols, L180; ��� L550; ��� L950.
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L180 has virtually no outer layer under that definition. All
the results below refer only to the drift among the three
higher Reynolds numbers in Table I.

The results for all the premultiplied variables in the five
budgets are given in Table II. Most of the values in the table
are small enough to be consistent with the hypothesis that
there is no Reynolds number drift of the components of the
outer budgets within the available accuracy. Note however
that the table only measures the relevance of the drift of each
variable with respect to the particular budget in which it
participates. Some of the smaller terms clearly depend on the
Reynolds number if they are plotted by themselves and, al-
though their drifts are not strong enough to be significant to
the overall result, their scaling failures are physically inter-
esting.

Unfortunately, it is not always possible within the
present simulations to decide whether those drifts are low
Reynolds number effects, or extend to higher Re�. An ex-
ample is given in Sec. IV A.

A. Turbulent fluxes

The turbulent- and pressure-diffusion terms are diver-
gences of the vector fluxes �ijk

t and �ijk
p , respectively, whose

only nonzero components in a channel are normal to the
wall, k=2. They are physically interesting because they rep-
resent the part of the energy cascade that moves across the
inhomogeneous spatial dimension, rather than locally in
physical space and across different scales. They may there-
fore be relevant to how the scales of the turbulent eddies
change as they move in x2. The fluxes of the kinetic energy K
are given in Figs. 3�a� and 3�b�. Both are positive above the
buffer layer, carrying energy from near the wall to the center
of the channel. The pressure fluxes collapse reasonably well
in the outer layer, at least for the three highest Reynolds
numbers, but the turbulent fluxes do not. Besides a maximum
in the buffer region, case L2000 has a second maximum
around x2 /h�0.3, which implies that production slightly ex-
ceeds dissipation over the logarithmic layer. A weaker maxi-
mum at the same approximate location is present in the high-
est Reynolds number simulation in Ref. 4, at Re�=590, and
could perhaps be suggested by the shape of the present case
L950.

It is clear that the drift of the �t profiles does not satu-
rate within the range of our simulations, but an outer peak of
triple products such as �112

t is found in high Reynolds num-
ber boundary layers, and it is of some interest to compare the
present observations with those experiments.

Figure 3�c� contains �112
t above x2

+=150 from our simu-
lations and from several experimental boundary layers. The
experimental data are noisy, especially near the wall. They
display the same broad maximum around x2 /h=0.5 as the
simulations, but two of them13,23 also contain an intermediate
peak, too near the wall to correspond to the outer peak of the
simulations, but well outside the buffer layer. For example,
the data in Ref. 13, which are especially well resolved near
the wall, have a buffer layer peak around x2

+=35, the inter-
mediate peak visible in Fig. 3�c� at x2 /h�0.1 �x2

+�1000�,
and the broad maximum near x2 /h=0.4. The intermediate

peak is not present in the simulations, and it is not explicitly
discussed in any of the original experimental publications.
Since it is unclear whether it should be considered a high
Reynolds number phenomenon, a property of boundary lay-
ers not present in channels, or an experimental artifact, we
restrict ourselves to the behavior of the broader outer maxi-
mum, which is believed to occur at a fixed location in outer
units.24

Figure 3�d� contains the averaged value of �112
t over

0.3x2 /h0.5. In the Reynolds number range in which ex-
periments and simulations overlap they agree within experi-
mental noise, and the mean values of the simulations in-
crease with increasing Re�. For higher Reynolds numbers,
where there are no channel simulations with which to com-
pare, the mean values of the boundary layers are roughly
constant, with no obvious Reynolds number trend. Moreover,
the data from Ref. 13 are lower than other results at compa-
rable Reynolds numbers, suggesting a lack of universality
even among different boundary layers. The reason for this
particular discrepancy is unclear. It could perhaps be related
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FIG. 3. Kinetic energy fluxes for the numerical channels. Lines are as in
Table I. �a� �K

t . �b� �K
p . �c� Individual profiles of �112

t for several Reynolds
numbers, in outer scaling above x2

+=150. Lines are the numerical channels,
while symbols are experimental boundary layers normalized with h=�995.
��� Ref. 21, Re�=960; ��� Ref. 22, Re�=4.2�103; ��� Ref. 13, Re�

=104; ��� Ref. 23, Re�=1.8�104. �d� Mean value of �112
t over 0.3x2 /h

0.5. Symbols as in �c�, but each experiment now includes all the available
Reynolds numbers.

101511-4 S. Hoyas and J. Jiménez Phys. Fluids 20, 101511 �2008�

Downloaded 31 Oct 2008 to 83.53.251.224. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



to the different ways in which the Reynolds number was
controlled in that experiment, which was by pressurizing the
flow instead of by the more standard methods of varying the
measuring station or the tunnel velocity. That amounts to a
different tripping mechanism, whose effect on boundary lay-
ers is known to be long-lasting.21

The end result is that it is impossible to determine either
from the simulations or from the experiments whether this
particular turbulent flux has a definite high Reynolds number
limit. The question is interesting because there is evidence
that the fluctuation intensities of the streamwise velocity at
fixed x2 /h increase in the outer layer with the Reynolds
number,12,13 but it is unknown whether that trend eventually
saturates or continues for arbitrarily high Reynolds
numbers.25 It is unlikely that a drift of the intensities should
not be accompanied by the drift of some of the terms of the
corresponding budgets, and a clearer trend of the triple prod-
ucts would have given information on the trend of the inten-
sities.

Other variables suffer from similar ambiguities, which
can probably only be resolved by further experiments or
simulations. For example, the product �122

t is even less uni-
versal than �112

t , and even harder to compare with boundary
layers. Not only does it change sign at different locations in
the outer layers of the four numerical channels but vanishes
at the edge of the boundary layers, and not at the channel
center line.

V. THE BUFFER AND VISCOUS LAYERS

The wall-scaled budgets within the viscous and buffer
layers are given in Fig. 4, normalized in wall units. Contrary
to the behavior in the outer layer, most terms are active in
this region,2 although some of them, such as the viscous
diffusion, are only active in the viscous sublayer below x2

+

�10. The normalized drifts for wall-scaled variables below
x2

+=100 are given in Table III, and look different from those
in Table II. While the conclusion from that table was that any
scaling failure was relatively weak, it is clear from Table III
that inner scaling works poorly near the wall, particularly for
the dissipation and for the terms connected with the pressure.

Consider first the dissipations shown in Fig. 5�a�. The
wall-normal component �22 is negligible near the wall, and
only the terms coming from the two wall-parallel velocity
components are relevant. Both of them increase with the
Reynolds number below x2

+�20. Figure 5�b� compiles re-
sults of the dissipation at the wall from other simulations,
and confirms this growth. The behavior at Reynolds numbers
not accessible to simulations is less certain. Although there
are experimental measurements of the shear-stress fluctua-
tions at the wall, especially of �11, their scatter is large due to
measurement difficulties.28,29 The best experimental values
from Ref. 29 range from �11

+ �0.25 at Re��200 to �11
+

�0.35 at Re��1000, and are consistent with Fig. 5�b�. It
looks from that figure as if there could be an asymptotic
leveling of the wall dissipation at higher Reynolds numbers,
although that would probably be inconsistent with the known
growth with Re� of the near-wall velocity fluctuations.13,30

Since �11=−2���2u1��
2 at the wall, the drift in the velocity

fluctuations probably implies a similar drift in the dissipa-
tion.

An interesting data point was obtained for the atmo-
spheric surface layer in Ref. 30. Their measurement of �2u1�
at x2

+=2 implies −�11
+ �0.55 at Re��7�105, but it drops at

the wall to −�11
+ �0.45. The extrapolation of the data in Fig.

5�b� would be intermediate between those two values. The
lower measurement would imply a leveling of the dissipation
at very high Re�, while the higher one would imply contin-
ued growth. There is no evidence in the �11 profiles in Fig.
5�b� of any sharp variation of the dissipation between x2

+=2
and the wall, and the profiles in Ref. 30, although noisy, are
consistent with those in Fig. 5�b� up to the last measured
point away from the wall. It is unclear from the paper how
the wall shear was estimated, but the balance of the evidence
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FIG. 4. Budgets for the four nonzero Reynolds stresses, and for the total
kinetic energy, in the buffer layer and in wall units. �—� P; �—�—� �;
�—·—� T; �—�—� �s; �----� �d; �¯¯ · ·� V. Case L2000.
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suggests that the higher of the two above values is the one to
be preferred, implying continued growth.

That the dissipation near the wall should vary with the
Reynolds number as a consequence of the large-scale inac-
tive motions was already indicated in Ref. 31. This is sup-
ported by Figs. 5�c� and 5�d�, which show two-dimensional
premultiplied spectra of the total kinetic energy and of the
total enstrophy at three heights near the wall. The energy has
a “handle” along the upper right-hand end of a line �1	�3,
which is due to large-scale inactive motions coming from the
logarithmic layer.10 Those modes are irrotational near the
wall,32 which is why the handle is missing from the two
enstrophy spectra farther from the wall. Potential flow, how-
ever, cannot satisfy the no-slip boundary condition, and long,
wide, and thin viscous layers have to form near the wall to
satisfy it. The resulting wall-parallel vorticity is seen in the
spectrum closest to the wall in Fig. 5�d�, and accounts for the
Reynolds number dependence of the dissipation in that re-
gion. Note that even if spectra at the wall were not compiled
in these simulations, we have already noted that the vortici-
ties at the wall are the wall-normal derivatives of the veloci-
ties. The vorticity spectrum at the wall should then be pro-
portional to the energy spectrum, which is seen in Fig. 5�c�
to vary little below x2

+�10 �we are grateful to one of the
referees for this observation�.

Similar conclusions had been reached by other groups
following different lines of reasoning. The simulations in
Ref. 26 show the growth of � near the wall in the range
Re�=180–640. Their one-dimensional premultiplied stream-
wise spectra of the two wall shears collapse well, but the
widest wavelengths of the spanwise spectra grow continu-
ously with Re�, which the authors attribute to the effect of
the large scales. The difference between those two results
suggests that the extra energy of their shear fluctuations is
contained in modes which are too long, but not too wide, for
their computational boxes, which are about L1

+=5000 and
8000 wall units long for their two highest Reynolds numbers.
The shorter of those values is close to the point in Figs. 5�c�
and 5�d� where the large-scale handle begins to appear,
which is known to scale in wall units.10 This suggests that
these authors could not observe the streamwise extension of
their spectra because of insufficient box length.

The wall-shear spectra from the atmospheric

measurements30 grow with Reynolds numbers at all frequen-
cies, but the authors remark that the growth of the spectra of
the streamwise shear is strongest for frequencies that, when
converted to wavelengths using an advection velocity33 Uc

+

�10, correspond to �1
+�2000. This is consistent with Fig.

5�d�, and it is interesting that those authors also conclude, on
the basis of the absence of “countershear” vorticity near the
wall, that the extra dissipation in the viscous sublayer is due
to vortex layers, rather than to concentrated vortices.

The scaling failures of the pressure terms are harder to
explain because there are no good models for them.2 That
they scale poorly is clear from Table III and from the two
examples in Fig. 6�a�, and has been observed in previous

TABLE III. Maximum difference between the profiles of the budget terms
for the different Reynolds numbers. The last line contains the standard de-
viation used to normalize each budget, as explained in the text. Inner scaling
is below x2

+=100.

B11 B22 B33 BK B12

P 17 ¯ ¯ 15 7

� 30 19 41 36 0.4

T 20 10 3 18 4

�s 8 66 45 ¯ 12

�d
¯ 68 ¯ 7 5

V 13 4 9 13 0.3

�s+�d 8 29 45 7 10
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FIG. 5. �a� Reynolds number variability of the dissipation in the buffer
layer, Numerical channels. Lines as in Table I. Lines with symbols, �33;
without symbols, �11. �b� Dissipation at the wall from various simulations.
Top data are �11; bottom ones, �33. ��� present channels; ��� Ref. 4; ���
Refs. 26 and 27; ��� Ref. 28. �c� Energy, and �d� enstrophy premultiplied
spectra for L2000, at �—� x2

+=6; �----� x2
+=10; �—·—� x2

+=14. The wave-
lengths are defined in terms of the wavenumbers as � j =2
 /kj. The two
contours for each wall distance contain 50% and 90% of the total spectral
mass. The dashed diagonal is �1=�3.
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simulations at lower Reynolds numbers.7 The drift is largest
near the wall, and extends farther into the buffer region than
in the case of the dissipations. While a good model for these
terms is outside the scope of the present paper, the easiest
explanation for why the inner scaling does not work is that
the pressure itself, which is a global quantity,32,34 scales very
poorly. On dimensional grounds, the pressure fluctuations
should scale everywhere with u�

2, but it is known that the
pressure fluctuations at the wall, when scaled in that manner,
increase logarithmically with the Reynolds number.28 It has
been shown more recently that the pressure fluctuation pro-
files collapse well in outer units far from the wall,35 but
depend logarithmically on x2. When they peak in the buffer
layer at a fixed x2

+�30, the result is that their maximum
intensities increase logarithmically.17 Independently of the
particular model invoked, this strong Reynolds number de-
pendence should be enough to account for any scaling failure
of the pressure-related terms in the budgets. In fact, when the
pressure-strain terms are normalized in Fig. 6�b� with the
local root-mean-squared pressure fluctuation, most of the
drift disappears.

It is also interesting that in B22 and B12, which are the
budgets in which the pressure terms can be split into
pressure-strain and pressure-diffusion parts, about half of the
near-wall drift disappears when the decomposition is not car-
ried out. Table III has an extra line for the sum of the two
pressure terms, �s+�d, and its drifts are substantially lower
than the sum of the two individual contributions. It has been
noted before that the choice of how to split the pressure
terms is arbitrary,36 and that the customary separation is not
necessarily optimal. That seems to be supported by the
present results, but inspection of the profiles in Fig. 4 reveals
that the real reason is not that the combined term scales
better, but that it is smaller than any of its two components,
because the standard decomposition breaks the pressure term
into two large contributions of opposite sign that cancel each
other almost exactly in the viscous sublayer.

VI. DISCUSSION AND CONCLUSIONS

We have presented new budgets for the components of
the Reynolds-stress tensor in numerical channels, over a
fairly wide range of Reynolds numbers. The budgets them-
selves are available electronically and should be useful both
for modeling purposes, and to assist in the understanding of
the dynamics of wall turbulence. We have discussed briefly
the scaling behaviors of the different terms, both above and
within the buffer and viscous layers. We have shown that a
reasonable value for the limit between both regions is x2

+

�150. Above that level, most budget components scale well
with u�

3 /h, although some quantities, such as the triple prod-
ucts, do not scale anywhere within the Reynolds number
range of our simulations. Within the buffer layer, on the other
hand, the scaling of the budgets with u�

4 /� is generally poor.
That is especially true of the dissipations and of the pressure-
related terms. We have traced the former to the effect of the
wall-parallel large-scale motions, and the latter to the scaling
of the pressure itself. We have also noted that a large part of
the anomalous scaling of the pressure terms in the buffer and
viscous layers disappears when the traditional decomposition
into pressure strain and pressure diffusion is not performed,
but mostly because the two contributions to the pressure
terms tend to cancel each other within the viscous sublayer.

It is reassuring that both within and outside the buffer
layer, the budget that collapses best is that of the tangential
stress �u1u2�. The normal stresses are related to the energy,
part of which is due to inactive motions that are not directly
involved the momentum transfer.32 Neither they nor their
budgets are required to scale well in term of u�. On the other
hand, the tangential Reynolds stress is the definition of the
friction velocity, and any scaling failure of its budget would
have been harder to explain.

ACKNOWLEDGMENTS

This work was supported in part by the CICYT Contract
No. TRA2006-08226, and by the EU FP6 Wallturb Strep
under Contract No. AST4-CT-2005-516008. The computa-
tions of the budgets were made possible by the generous
collaboration of the Port d’Informació Científica �PIC�, who
lent their mass storage facilities to archive the original raw
data, and hosted our postprocessing computers. S.H. was
supported in part by the Spanish Ministry of Education and
Science, under the Juan de la Cierva program. We are grate-
ful to Messrs. Fernholz and deGraaff for electronic copies of
their original data.

APPENDIX: ESTIMATION OF THE VARIANCE

Consider a data sequence a�k�, k=1, . . . ,N, where the
variable k represents equidistant consecutive instants of time.
In our case, the data are usually short-term averages com-
piled over the intervals �tk−1 , tk�. If the different samples were
mutually independent, the standard deviation of the overall
mean,
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FIG. 6. Reynolds number variability of the pressure-related terms in the
buffer layer. Numerical channels. Lines as in Table I. With symbols, �33

s ,
and without symbols, �22

s . �a� Wall scaling. �b� Wall scaling normalized with
the rms pressure fluctuation.
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A = N−1

k=1

N

a�k� , �A1�

could be estimated as

�1 = N−1/2�N, �A2�

where

�N
2 = N−1


k=1

N

a�k�2 − A2. �A3�

However, since the temporal coherence of the turbulence
data is unknown a priori, the samples cannot be assumed to
be uncorrelated. We create a sequence of intermediate
“coarse-grained” time series

Am�j� = nm
−1 


k=jnm+1

�j+1�nm

a�k�, j = 1, . . . ,m , �A4�

where nm= �N /m�, is truncated to the next lower integer. Note
that a�AN and A�A1, and that disregarding the effect of the
truncation of nm, the mean value of all the coarse-grained
series is A. Decreasing the value of m presumably results in
more uncorrelated data since their sampling times are more
separated. We can then estimate the desired �1 as the limit of
the coarse-grained approximations

�1 = lim
m→1

m−1/2�m, �A5�

where �m is the estimated standard deviation of the sequence
Am. In practice, �m cannot be computed for m�2, and Eq.
�A5� is evaluated for some decreasing sequence of m�3. If
all goes well, the expression in Eq. �A5� reaches a plateau
well above m=3, which is taken as �1. Moreover, the ab-
sence of a clear limit serves as an indicator that the simula-
tion has not run long enough for a reliable estimation of that
variable, and that the standard deviation is underestimated.
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