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Improvement in the Schottky behavior of metal (Au) contacts with Mg0.01Zn0.99O and
Mg0.01Zn0.99O:N thin films were observed by treating the films with hydrogen peroxide (H2O2)
(dipping of samples in H2O2 at 100 ◦C for 3 min). Contacts formed on untreated film showed
Ohmic behavior in the current-voltage (I-V ) measurements. The H2O2 treatment led to a smooth
surface morphology for the films and resulted in Schottky contact of Au fabricated on the treated
films with barrier heights of 0.82 ∼ 0.85 eV. The absolute current density at a reverse bias of 3 V
was 1 ∼ 6 × 10−6 A/cm2 for Au contacts on H2O2-treated films. The treated films showed lower
electron concentration than the untreated films due to removal of the relatively high conducting
top layers of the thin films. A metal-semiconductor-metal (MSM) detector was fabricated using a
Mg0.05Zn0.95O:N film and was characterized for its spectral response.

PACS numbers: 85.60.Dw, 81.65.Rv, 81.15.Gh, 78.55.Et
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I. INTRODUCTION

Solar-blind ultraviolet photodetectors for control of en-
vironmental, flame detection, ultraviolet rays-A (UV-A)
and UV-B dosimeters are increasing the research efforts
to develop more efficient adaptations for wavelength of
ultraviolet rays [1]. ZnO presents advantage of hav-
ing a large exciton binding energy (60 meV), which is
beneficial for operating ZnO devices at a high temper-
ature. Until the present time, there have been only a
few works on ZnO-based Schottky photodetectors [2,3].
ZnO grown by using Metalorganic chemical vapor depo-
sition (MOCVD) tends to have n-type conductivity due
to intrinsic defects, such as oxygen vacancy and inter-
stitial zinc, and contains hydrocarbon impurities origi-
nating from metalorganic precursors. Typical electron
concentrations of MOCVD-grown ZnO are 1017 ∼ 1020

cm−3 [4]. In terms of rectifying Schottky contacts, it
has been reported that metals having a large work func-
tion such as Au, Ag and Pt form Schottky barriers of
0.6 ∼ 0.8 eV on n-ZnO while the barrier height is not
correlated with the obvious difference in the work func-
tions [5,6]. These reports claimed that the interface de-
fect states play a major role in determining the Schottky
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characteristics of metal contacts. Recently, it has been
reported that a surface treatment using hydrogen perox-
ide (H2O2) could improve the rectifying contact quality
by increasing the Schottky barrier height, decreasing the
reverse bias leakage-current, and achieving of an ideality
factor approaching unity.

This paper reports on the effect of H2O2 treat-
ment for improving the surface of Mg0.01Zn0.99O and
Mg0.01Zn0.99O films, leading to Schottky behaviors of
Au contacts on these films. A MSM Schottky-type UV
detector using Mg0.05Zn0.95O:N as an n-type layer and
Pt as a Schottky contact was fabricated and was evalu-
ated for its spectral response.

II. EXPERIMENTS

MgxZn1−xO films were grown on a-plane (11-20)
sapphire substrates using diethylzinc (DEZn) and bis-
ethylcycropentadienylmagnesium (EtCp2Mg). The de-
tails of the growth system are available in a previous
paper [7]. The films were grown at a total gas pres-
sure of 0.01 Torr, a substrate temperature of 600 ◦C,
an oxygen flux of 10 sccm, a nitrogen flux of 4 sccm, a
radio-frequency output of 30 W, and a hydrogen carrier
flux of 46 sccm. The molar fraction of magnesium of the
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Fig. 1. FESEM images of Mg0.01Zn0.99O:N surfaces (a)
untreated and (b) with H2O2-treatment.

MgxZn1−xO film was x = 0.01, as estimated from the
optical bandgap.

The optical transmission spectra were recorded on an
UV-VIS-NIR scanning spectrometer at wavelength from
200 ∼ 700 nm. The optical bandgap energies were deter-
mined from a plot of (αhν)2 as a function of the photon
energy (hν). The relationship between the magnesium
molar fraction and the bandgap of MgxZn1−xO film has
been reported in a previous paper [8]. Photolumines-
cence (PL) measurements were carried out using a He-
Cd laser (325 nm) at 20 K. The morphology of the films
was analyzed by a field emission scanning electron mi-
croscopy (FESEM).

Prior to the metal deposition, the samples were
cleaned in organic solvents (acetone and methanol),
rinsed in de-ionized water, and dried by a nitrogen
stream. Then, samples were dipped in a H2O2 solu-
tion at 100 ◦C for 3 min. Au contacts having contact
area of 2.16 × 10−3 cm−2 and a thickness of 100 nm was
formed by thermal evaporation through shadow mask
under turbo molecular pump vacuum at around 1 × 10−6

Torr. The Ohmic contacts were made by indium. Schot-
tky properties were examined by capacitance-voltage C-
V measurements and current-voltage I-V characteristics
at room temperature. Hall-effect measurement was done
at room temperature by a Van der Pauw configuration.
A UV photodetector was designed and fabricated using
an interdigital (IDT) metal-semiconductor-metal (MSM)

Fig. 2. Photoluminescence spectra taken at 20 K: (a) un-
doped Mg0.01Zn0.99O film either with or without H2O2 treat-
ment and (b) nitrogen-doped Mg0.01Zn0.99O film with and
without H2O2 treatment.

structure. For the IDT structure, the fingers were 2-µm
wide and 250-µm long, with a 2-µm gap. Platinum was
used to form the Schottky contact in this detector.

III. RESULT AND DISCUSSION

Figure 1 shows FESEM images of the Mg0.01Zn0.99O:N
film (thickness: 1 µm) grown directly on sapphire sub-
strates. The as-grown film had a vertically aligned
columnar growth with respect to the sapphire (11-20)
substrate (Figure 1(a)). These columns had a length
about 1 m and an average diameter of about 60 nm.
On the other hand, the H2O2 treated film showed a
smooth surface (Figure 1(b)) with grains having diam-
eters of about 10 nm. The overall smoothness of the
Mg0.01Zn0.99O:N surface was improved by the H2O2

treatment.
Figure 2 shows PL spectra of Mg0.01Zn0.99O and

Mg0.01Zn0.99O:N films with and without H2O2 treat-
ment taken at 20 K. The spectrum of the Mg0.01Zn0.99O
film without H2O2 treatment exhibited emission peaks
at 3.391 eV and shoulders on the lower energy side (Fig-
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Fig. 3. I-V characteristics of Au/ Mg0.01Zn0.99O (:N)/In
diodes. Open circles and squares show I-V for diodes de-
posited on untreated films whereas solid circles and squares
illustrate I-V for diodes deposited on H2O2-treated films.

ure 2(a)). The shoulders are assigned to the longitu-
dinal optical (LO) phonon replicas of the main peak
of 3.391 eV, associated with 1-LO of 3.321 eV and 2-
LO of 3.251 eV, respectively. The origin of the peak at
3.391 eV is not clear for the present. However, the maxi-
mum peak can be attributed to neutral donor bound ex-
citon emission because the Hall-measurement indicated
n-type conductivity for undoped Mg0.01Zn0.99O film and
its optical bandgap (3.32 eV) at room temperature was
close to that of ZnO (3.28 eV) [9, 10]. For the H2O2-
treated sample, the luminescence maxima at 3.393 eV
dominated the spectrum; a new and weaker UV emis-
sion peak located at 3.411 eV, compared to the sample
without H2O2-treatments was attributed to free exciton
emission of Mg0.01Zn0.99O [10, 11]. The shoulders at a
low energy side were assigned to the LO phonon replicas
of the main peak of 3.393 eV, associated with 1-LO of
3.323 eV and 2-LO of 3.253 eV, respectively. For both
of the N-doped Mg0.01Zn0.99O samples with and without
H2O2 treatment (Figure 2(b)), the luminescence maxima
at 3.385 eV dominated the spectrum with a low energy
tail due to overlapping of bound excitons emissions and
the satellite band of free excitons, and the DAP transi-
tion and its LO phonon replicas [11, 12]. After H2O2

treatment, the intensity of the PL spectrum was de-
creased whereas the structure of the spectrum remained
the same. N-doped samples exhibited n-type conductiv-
ity by Hall-effect measurements.

The current-voltage characteristics for the Au metal
contacts are shown in Figure 3. The samples without
H2O2 treatment showed the linear I-V characteristics
expected for Ohmic contacts. In contrast, the sam-
ples treated with H2O2 exhibited a rectifying behavior.

Table 1. Schottky barrier heights (ΦB) and ideality factors
(n) for Au Schottky contacts, and electron concentrations
(N) of the films.

Sample doping treatment ΦB n N(cm−3) N(Hall)

no. (eV) (· · ·) (C-V ) (cm−3)

1 NID as-grown · · · · · · · · · 2.42× 1018

2 NID H2O2 0.85 3.4 2.42× 1018 · · ·
3 N-doped as-grown · · · · · · · · · 1.47× 1018

4 N-doped H2O2 0.82 3.0 2.11× 1016 · · ·

The absolute current density at a reverse bias of 3 V
was 1 × 10−6 A/cm2 in the case of the H2O2-treated
Mg0.01Zn0.99O film and was 6 × 10−6 A/cm2 in the case
of the H2O2-treated Mg0.01Zn0.99O:N film. The forward
current was fitted by considering thermionic emission as
being the dominant current transport process.

I = Is

[
exp

(
e(Va − IRs)

nkBT

)
− 1

]
(1)

where, e is the elementary charge, Va is the applied volt-
age, Rs is the series resistance of the diode, n is the ide-
ality factor, T is the absolute temperature, kB is Boltz-
mann’s constant and Is is the saturation current, which
can be expressed as

Is = AA∗T 2 exp
(
−ΦB

kT

)
(2)

Eq. (2) contains the contact area A, the effective
Richardson constant A∗, having a theoretical value for
ZnO of A∗ = 32 A/cm2K2 and the effective barrier height
B at zero bias. From the data, ΦB was obtained as
0.85 eV for an Au contact deposited on a H2O2-treated
Mg0.01Zn0.99O and as 0.82 eV for Mg0.01Zn0.99O:N. The
ideality factors were 3.4 for Mg0.01Zn0.99O and 3.0 for
Mg0.01Zn0.99O:N, suggesting that the transport mech-
anism was dominated by surface recombination and/or
trapped states at deep levels rather than by thermionic
emission.

Table 1 summarizes the Schottky characteristics and
the electron concentrations for Mg0.01Zn0.99O (:N). The
electron concentration of sample 4 was estimated to be
2.11 × 1016 cm−3, which was lower than that of the un-
doped sample 2. This was due to compensation of resid-
ual electron states by nitrogen acceptors. The lower car-
rier concentrations obtained for treated samples (Table
1) was due to the removal of a relatively high conduct-
ing layer on the thin films. Besides, the higher carrier
concentration for H2O2-untreated samples was possibly
overestimated in Hall-calculations due to a trapping of
mobile carriers at the grain boundary, thereby reduc-
ing their mobility [13]. The untreated film (Figure 1(a))
had exhibited a preferential columnar growth. Since the
atoms at the grain boundary of the column structure are
disordered, there are a large number of defects due to
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Fig. 4. AC photoresponse from the MSM photodetector
fabricated on nitrogen-doped Mg0.05Zn0.95O. The photore-
sponse spectrum was compared with the absorption spectrum
and the photoluminescence spectrum of the Mg0.05Zn0.95O:N
film measured at room temperature.

incomplete atomic bonding, thereby reducing their Hall-
mobility.

Finally, we fabricated a MSM detector using a
Mg0.05Zn0.95O:N film. Platinum was used to form the
Schottky contact in this detector. Platinum has a large
work-function (5.6 eV) compared with Au (5.1 eV).
Therefore, Pt Schottky performance was expected to be a
better Schottky contact than Au. The Mg0.05Zn0.95O:N
film had an optical band gap of 3.48 eV at room temper-
atures as calculated from the absorption coefficient. A
strong wide peak was observed in the spectral response of
the photodetector, as shown in Figure 4. This peak was
centered at 357 nm, had a FWHM of 8 nm, and had a
relative height of more than one order of magnitude over
the higher energy response plateau. A room-temperature
PL emission centered at 359 nm was observed for the
Mg0.05Zn0.95O:N film and the near-band-edge emission
and absorption were attributed to free exciton recombi-
nation emission. As a result, the MSM detector with
Mg0.05Zn0.95O:N had a strong excitonic absorption near
band edge.

IV. CONCLUSION

Mg0.01Zn0.99O and Mg0.01Zn0.99O:N films having n-
type conductivity with low carrier concentrations were
realized for possible applications in photodetectors. Sur-
face treatment using H2O2 was used to improve the sur-

face conditions for forming Au Schottky contacts with
barrier heights of 0.82 ∼ 0.85 eV in the case of the
H2O2-treated surfaces. H2O2-treatment is thought to
modify the Fermi level pinning for Schottky metal con-
tacts. Treatment also resulted in a lowering of the car-
rier concentration due to the removal of a relatively
high conducting top layer of the thin films. The low-
est concentration among the experimental samples was
2.11 × 1016 cm−3 in the case of the H2O2-treated
Mg0.01Zn0.99O:N film. A MSM detector was fabricated
using a Mg0.05Zn0.95O:N film and showed a peak re-
sponse at 357 nm.
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