
How to Make It Faster and at Lower Cost? B2B Integration with Semantic Web
Services

Silvestre Losada, Dariusz Kieczek, Richard Benjamins, Jesús Contreras
Intelligent Software Components S.A.
Pedro de Valdivia 10, Madrid, Spain

{slosada, darek, rbenjamins, jcontreras}@isoco.com

Osear Corcho José Luis Bas, Sergio Bellido
The University of Manchester Bankinter, Fundación de la Innovación

Kilburn Building, Oxford Road, Manchester, UK Paseo Castellana 29, Madrid, Spain
Oscar.Corcho@manchester.ac.uk {jlbas, sbellidog}@bankinter.es

Abstract

Web services and service oriented architectures present a
new approach to application integration. While it is reason-
able inside an enterprise, it has certain deficiencies when
applied in a B2B environment. This deficiencies apply to
the discovery, invocation and compositionphases, which re-
quire considerable manual effort. In the paper, we show on
example ofa mortgage simulator how these deficiencies can
be overeóme by applying semantic web services. The appli­
cation is compatible with the Web Services Modelling On-
tology and makes use ofan execution environment automat-
ing the processes of discovery, composition and invocation
of semantic web services, enabling faster and cheaperBIB
application integration.

1. Introduction

It is common knowledge that application integration is
one of the most costly and difficult tasks in software en-
gineering. Several approaches, such as web services and
recent service-oriented architectures (SOAs) have been de-
signed to tackle the problem of integration. They follow
the principie of loóse coupling, which aims at reducing the
assumptions that applications which are being integrated
make about each other. The business logic of enterprise ap­
plications is encapsulated in self-contained services, which
can be exposed for example in intranets.

The valué of service orientation lies in future proofing
of enterprise applications. Once a certain service is imple-
mented and exposed, it can be used by múltiple applica­
tions, including those that are still to be developed. While

this approach offers the desired flexibility and enables main-
tainable enterprise architectures (for example based on the
Enterprise Service Bus concept), it has certain deficiencies
when applied in a B2B environment. Firstly, services are
not easy to find. They are scattered over different reposito-
ries and lack semantic annotations of their interfaces and of
their functioning. Secondly, their use normally requires a
large amount of manual effort, as the descriptions (WSDL
or WSRF) are intended for developers instead of machines.
Thirdly, the granularity of services requires that they be
composed in order to achieve a non-trivial functionality.
In the remainder of this paper we will show how these
deficiencies can be overeóme with semantic web services
(SWS).

In this paper we address the situation of the Spanish
financial market. As other competitive business environ-
ments, it requires from enterprises that they be innovative
and efficient while functioning in collaborative networks.
This is the case of Spanish financial market addressed in
this paper. Therefore, new services, which can require inte-
grating applications across enterprises, should be developed
at low cost and have short time to market. We will show how
this can be achieved with SWS on an example of a mortgage
simulator developed jointly by iSOCO and Bankinter.

The rest of the paper is organized as follows. In the next
section we describe the motivation for implementing a se-
mantically enabled SOA. Section 3 explains the SWS ar-
chitecture utilized in the mortgage simulator. The following
section presents our case study. Section 5 discusses relevant
work in the field, and section 6 concludes the paper.

mailto:Oscar.Corcho@manchester.ac.uk
http://bankinter.es

2. Motivation

Bankinter is currently offering a free service which
presents data about mortgages from a set of banks in Spain.
This data is obtained manually by people, by browsing
the web pages (when available) or by calling each bank to
gather the information.

The use of SWS technology can optimize this manual
process by allowing searching in available registries, so that
new web services that have been deployed in the market can
be discovered. Besides, these registries provide information
about how to invoke the selected Web services so as to in-
clude them into other, more complex, services. Henee, the
data gathering process is improved since the relevant infor­
mation can be obtained more easily by means of executing
those services.

Consequently, more services (productprice comparators,
broker information, deposits, etc.) can be offered by banks
due to their low cost, since less human interaction is re-
quired to discover and invoke new available SWS once the
application is launched.

Some of the advantages of SWS over state-of-the-art
web service technology are the following:

When facing UDDI with a large number of exported web
services, the lookup (discovery) becomes a serious prob-
lem. There is no standard for service goal or capabilities in
current WSDL which prevents automatic service discovery.
For example, a bank offering a mortgage information web
service only for fixed interest rates and with a máximum
period of 20 years will not be able (or will have many dif-
ficulties) to publish such constraints in UDDI registries, so
that the external parties looking for services that are com-
pliant with those characteristics will not be able to know in
advance whether the service is providing this information
according to those constraints or not.

When the discovered services have been defined accord­
ing to a set of heterogeneous models, discrepancies may oc-
cur in the execution of those services. This is summarized
as follows by Gartner Research (February 28,2002): "Lack
of technologies and produets to dynamically mediate dis­
crepancies in business semantics will limit the adoption of
advanced web services for large publie communities whose
participants have disparate business processes."

Thus the possibilities of better discovery and mediation
are the main advantages of SWS technology over current
web service technology in the context of the described fi-
nancial application.

3. Semantic Web Services Infrastructure

The mortgage simulator developed at Bankinter is based
on the Web Services Modeling Ontology (WSMO) [9]
framework, which is one of the conceptual models lying

behind SWS. WSMO framework is based on four main el-
ements, namely ontologies, web services, goals and media-
tors. This is the foundation for formal languages and execu­
tion environments, which enable realizing the functionality
ofSWS.

Ontologies provide formal representation of a certain do-
main, which consists of its conceptual taxonomy, relations
between concepts, instance data and axioms describing log-
ical expressions applicable to other elements of the ontol­
ogy. All other WSMO elements use ontologies as vocabu-
laries. With respect to web services, WSMO provides a con­
ceptual model for describing their functionality and behav-
ior. This model consists of web service capability expressed
in terms of preconditions, assumptions, posteonditions and
effeets specifying the functionality, and choreography and
orchestration interfaces, which define web service behavior
in terms of communication patterns and internal composi-
tion. Goals are specified as a counterpart of web services on
the consumer side. They represent users' desires and have
similar structure to goals, which enables functional discov­
ery and automatic invocation, composition and execution of
web services, possible due to formal logic-based represen­
tation of requested and offered functionality. In heteroge­
neous environments, interoperability is enabled by the defi-
nition of mediators resolving mismatches between different
representations.

The formal model underlying WSMO eases the tasks of
developers concerned with discovering, composing and ex­
ecuting web services. These tasks are delegated to an execu­
tion environment compliant with the framework. In the fol­
lowing case study we will describe the execution environ­
ment that we created for the case study with implemented
discovery and invocation modules.

4. Case Study

4 . 1 . C o n c e p t u a l A r c h i t e c t u r e

The mortgage simulator (also referred to as comparator)
helps clients of financial institutions in finding and choosing
appropriate mortgage. Once a client has found a property
she would like to buy, she has to make following calcula-
tions:

• What type of mortgage can I deal with?

• What amount of my income should I periodically set
aside for the payment of the loan to acquire a property?

Our application helps the customer to answer these ques-
tions by allowing simulations. It accesses other financial
institutions to obtain data on their offers and presents them
in a standardized way to the user, helping her to choose be­
tween different offers.

Figure 1 illustrates the structure of the comparator, the
services offered by the providers and the end user interfaces.
In this use case, the application is the central point of inter-
action between the customer and other service providers.
The comparator aggregates web services of different finan-
cial entities that provide mortgage services. A customer
uses the comparator service as the entry point for his re-
quests. The response is produced by invoking and aggre-
gating web services offered by several financial entities (ser­
vice providers). Figure 1 depicts this process.

V J

Figure 1. Conceptual architecture

Each time a client wants to know the mortgage market
proposals, the application provides her with the actual sim-
ulations made online in each bank's WS-based simulator.
The results are given back to the user in a human-readable
interface so that she is able to compare them.

4.2. System architecture

The basic architecture is shown in Figure 2. It shows
components that usually apear in SWS execution environ-
ments, in order to provide the functionality of a semanti-
cally enabled SOA. The essential functionalities of our ar­
chitecture are as follows:

1. Providing a user interface for customer interaction:
web interface, web service interface, mobile devices
interface, etc.

2. Providing the appropriate Web Services for mortgage
simulation.

3. Discovering suitable Web Services for a certain user
request.

4. Invoking external SWS.

Figure 2. System architecture

5. Providing an execution environment for SWS with
control functions, error handling, and support of op-
tional user interaction.

6. Dealing properly with heterogeneous resources, thus
providing the suitable mediation facilities (Banks on-
tologies are expected to be heterogeneous).

7. Registering the providers' semantic descriptions.

In the remainder of this section we will explain our ap-
proach with respect to functional requirements of the appli­
cation.

Discovery The semantic web services used in our sce-
nario have been annotated with f-Logic [5]. We have de-
cided to use our own component based on f-Logic instead of
Web Services Modelling Language (WSML) because there
was no WSML reasoner capable of supporting our compo­
nent at the time of its development, as well as no discovery
component inside WSMX.

Invocation Semantic web service descriptions are
grounded to WSDL descriptions. This allows for automatic
invocation of the relevant web services, without manual
development effort.

Mediation Mediation is required in the case when one
component is not capable of interpreting the content of a
message sent by another component. The basic function­
ality of a data mediation module is to transform messages
from source format to a target one, which could require both
syntactic and semantic transformation.

Semantic Repository The semantic repository (SEMR)
is an ontology server which allows the storage, retrieval,
and querying of ontologies and other data (semantic web
service descriptions, instance data, etc.)

4 . 3 . D i s c o v e r y

Our service discovery component uses f-Logic to de­
scribe capabilities, goals and to make queries using
FLORA-2 reasoner [10] for matchmaking capabilities and
goals. In goals, we model the precondition (the state of the
information space before executing a web service) and the
postcondition (the state of the information space that is de-
sired). We express this by a fact in f-Logic (using FLORA-2
syntax). WSMO defines additionally assumptions and ef-
fects, which are designed to model the state of the world
outside of the information space of the system, and are not
applicable to our case study. Because goals are constructed
similarly to web service description, we only provide an ex-
ample description of a web service, which follows in Listing
1.

Web services, like goals, are modeled with precondition
and postcondition (see example in Listing 1). The capa-
bility describes in the precondition the state of the infor­
mation space of the service before its execution and in the
postcondition describes the state of the information space
of the service after its execution. The service description
specifies the constraints of the service, e.g. this service of-
fers simulation for mortgages with interest rate fixed, total
term smaller than 320000 euros and the initial quota smaller
than 450 euros. The mortgage for which the simulation is
performed needs to contract a home insurance. Also, this
mortgage has associated an extra opening commission that
must be paid when the user asks for a mortgage. This de­
scription includes extra information in the interface part to
execute the service discovery according to the information
specified by the user.

Listing 1

capital_if_WSlh_euribor_bankinter:
webService [interface -> wslnterface[
capability -> capitalWSCapability,
wsdlFile -> "https://aia.ebr.com/
wsDM/MortageService.asmx?WSDL",
operationToInvoke -> "datalnput"]].
capital_if_h_euribor_bankinter:
capability.

capital_if_h_euribor_bankinter
[precondition]•-
_Mortgg:'MortgageLoan'
[term -> Term,
intitalQuota-> Quota,
interestRateType -> Interest2] ,
Term< 320000,
Quota< 450,
Interest2:'ProductRateAplicationFixed'
[interestRateValue -> Rate],
Rate > 3.01.

capital_if_h_euribor_bankinter
[postcondition] •-
_Mortgggg:'MortgageLoan' [
loanCapital -> Any,
openingCommission -> OpCommission,
lifelnsurance -> 'false',
homelnsurance -> 'true'],
(OpCommission> 1; OpCommission = 1).

In the f-Logic approach for discovery we are checking
if the capability entails the goal (capability Q goal). Cur­
rent limitations with respect to available reasoners led to
the current modeling, which defines the goal consisting of
precondition and postcondition as a fact (which may not be
fully specified) and the capability of the web service (also
consisting of postcondition and precondition) as a rule. Se-
mantic discovery of web services means discovery of ab-
stract services represented by formal service capabilities,
which are part of the semantic description of the web ser­
vice published in a registry by the service providers. The
comparator creates a goal description to describe their ser­
vice requirements. To créate these descriptions a predefined
goal témplate is used by the application to créate a concrete
goal description based on user data.

A similar approach to discovery has been described in
[4].

5. Relevant work

There are several relevant initiatives, which can be clas-
sified as semantic web services frameworks and execution
environments.

Apart from WSMO, there exist two competitive ap-
proaches with respect to semantic web services frameworks.
OWL-S [7] follows similar objectives as WSMO, but de­
fines a slightly different conceptual model [6]. Another ap­
proach has been developed inside METEOR-S project [8].
It seeks to augment the existing standards, such as WSDL
and BPEL with a semantic layer, instead of introducing new
standards. There is a need for the competing specifications
to merge or be interoperable. Development of independent
benchmarks for solutions based on these approaches could
help in achieving a consensus.

There exist two implemented execution environments
compliant with WSMO: Web Services Execution Environ-
ment (WSMX) [3] and IRS-III [2]. In our application, we
use the architecture provided by WSMX, but with func-
tional components developed inside iSOCO, as at the time
of developing the application there did not exist any com­
ponents which could satisfy our requirements. There is
however ongoing work on implementing choreography, or-
chestration, discovery and invocation components inside
WSMX project [1] and we may be using them in the future
if they can be adapted to our needs.

http://aia.ebr.com/

6. Conclusions

We have presented the complete design process of a B2B
application with SWS as the underlying technology. Based
on this experience, we can formúlate lessons learned with
regard to choosing the application field, implementing the
technology and analyzing benefits of the SWS approach.

The e-Banking application field described in this paper
can be characterized by three features, which in our opinión
rationalize the additional effort required by a solution based
on SWS. Firstly, the environment is distributed. There are
many actors involved in the process of offering a mortgage
to the final customer and many information sources influ-
encing the decisión taking process.This feature ensures that
the potential of semantically-enhanced discovery and com-
position can be utilized.

Secondly, the market is dynamic. The circumstances
change, the products evolve and the partners come and go.
This feature of the environment ensures that a one-time in-
vestment will pay off in the long term. The loóse coupling
enforced by separating goals and web service descriptions
enables SWS-based applications to continué working even
if some of the web services used in application stops work­
ing provided that an alternative web service can be dynam-
ically discovered and invoked.

Thirdly, our application field is profitable, but not mis-
sion critical. These two characteristics should be a gen­
eral guideline for introducing new technologies, as the ini-
tial costs of adopting new technologies are influenced by
the need of training the personnel, which can pay off in the
longer term. New technologies bear however risks, which
can be minimized when they are deployed in an iterative
process, starting with low-risk áreas.

With respect to the characteristics of markets described
above, we have shown how SWS can bring added valué
in B2B application integration scenarios. In our case, the
benefits centered on the automatic discovery and invocation
capabilities provided by SWS. We expect that with the on-
going work on these functionalities, as well as composition
and mediation, these benefits will be further boosted, so that
SWS will become a common artifact in enterprise IT land-
scapes.

Acknowledgements This material is based upon work
supported by the EU funding under the DIP project (FP6
-507483).

References

[1] C. Bussler, D. Fensel, H. Lausen, and E. Oren, editors. Pro-
ceedings ofthe WIW 2004 Workshop on WSMO Implemen-
tations, Sept. 2004.

[2] J. Domingue, S. Galizia, and L. Cabral. The choreography
model for irs-iii. In HICSS. IEEE Computer Society, 2006.

[3] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler.
Wsmx - a semantic service-oriented architecture. In ICWS,
pages 321-328. IEEE Computer Society, 2005.

[4] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller,
H. Lausen, and D. Fensel. A logical framework for web ser­
vice discovery. In ISWC 2004 Workshop on Semantic Web
Services: Preparing to Meet the World of Business Applica­
tions, volume 119, Hiroshima, Japan, 2004. CEUR Work­
shop Proceedings.

[5] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. /. ACM,
42(4):741-843, 1995.

[6] R. Lara, D. Román, A. Polleres, and D. Fensel. A concep­
tual comparison of wsmo and owl-s. In L.-J. Zhang, editor,
ECOWS, volume 3250 of Lecture Notes in Computer Sci­
ence, pages 254-269. Springer, 2004.

[7] D. L. Martin, M. Paolucci, S. A. Mcllraith, M. H. Burstein,
D. V. McDermott, D. L. McGuinness, B. Parsia, T. R. Payne,
M. Sabou, M. Solanki, N. Srinivasan, and K. P. Sycara.
Bringing semantics to web services: The owl-s approach.
In J. Cardoso and A. P. Sheth, editors, SWSWPC, volume
3387 of Lecture Notes in Computer Science, pages 26^-2.
Springer, 2004.

[8] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma.
Meteor-s web service annotation framework. In S. I. Feld-
man, M. Uretsky, M. Najork, and C. E. Wills, editors, WWW,
pages 553-562. ACM, 2004.

[9] D. Román, U. Keller, H. Lausen, R. L. Jos de Bruijn,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web service modeling ontology. Applied On-
tology, 1(1):77-106, 2005.

[10] G. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-
based knowledge representation and inference infrastruc-
ture for the semantic web. In R. Meersman, Z. Tari,
and D. C. Schmidt, editors, CoopIS/DOA/ODBASE, volume
2888 oí Lecture Notes in Computer Science, pages 671-688.
Springer, 2003.

